1. Nanostructured bi-metallic biochar: An innovative approach for arsenic (III) removal from contaminated water
- Author
-
Tasrina Rabia Choudhury, Md. Sajjad Hossain Sajib, Sheikh Fahim Faysal Sowrav, Shahidur R. Khan, M. Nur E. Alam, and Md. Nurul Amin
- Subjects
Environmental technology. Sanitary engineering ,TD1-1066 - Abstract
Possessing variable valence states, the element Arsenic (As) is intimidating the quality of the ecology and human health severely. In this study, eliminating As (III) from water-based solutions with great efficiency was done using Bagasse-Mn-Al, a sugarcane bagasse-derived biochar impregnated with Mn and Al. The Bagasse-Mn-Al composite yielded higher removal efficiency towards As (III) than the biochar itself. About 89.53 % of As (III) was removed within 65 min maintaining the very first concentration of As (III) at 400 μg/L, initial pH at 2–2.5, and adsorbent dosage at 0.625 g/L. The Bagasse-Mn-Al composite showed an adsorption potential maximum of 54.945 mg/g which is superior to most of the cheaply synthesized metal-impregnated biochar reported. Results from a variety of characterization techniques indicated that the •OH free radical in the Bagasse-Mn-Al composite mainly contributed to the removal of As (III) where oxidation and complexation were the major mechanisms. With high catalytic efficiency, this cost effectively produced metal-coated biochar showed easy and effective separation of As (III) from aqueous solution. Further, this study focuses on the high potential of Bagasse-Mn-Al adsorbent in the treatment of both ground and wastewater.
- Published
- 2025
- Full Text
- View/download PDF