1. The dynamic atmospheric and aeolian environment of Jezero crater, Mars.
- Author
-
Newman CE, Hueso R, Lemmon MT, Munguira A, Vicente-Retortillo Á, Apestigue V, Martínez GM, Toledo D, Sullivan R, Herkenhoff KE, de la Torre Juárez M, Richardson MI, Stott AE, Murdoch N, Sanchez-Lavega A, Wolff MJ, Arruego I, Sebastián E, Navarro S, Gómez-Elvira J, Tamppari L, Viúdez-Moreiras D, Harri AM, Genzer M, Hieta M, Lorenz RD, Conrad P, Gómez F, McConnochie TH, Mimoun D, Tate C, Bertrand T, Bell JF 3rd, Maki JN, Rodriguez-Manfredi JA, Wiens RC, Chide B, Maurice S, Zorzano MP, Mora L, Baker MM, Banfield D, Pla-Garcia J, Beyssac O, Brown A, Clark B, Lepinette A, Montmessin F, Fischer E, Patel P, Del Río-Gaztelurrutia T, Fouchet T, Francis R, and Guzewich SD
- Abstract
Despite the importance of sand and dust to Mars geomorphology, weather, and exploration, the processes that move sand and that raise dust to maintain Mars' ubiquitous dust haze and to produce dust storms have not been well quantified in situ, with missions lacking either the necessary sensors or a sufficiently active aeolian environment. Perseverance rover's novel environmental sensors and Jezero crater's dusty environment remedy this. In Perseverance's first 216 sols, four convective vortices raised dust locally, while, on average, four passed the rover daily, over 25% of which were significantly dusty ("dust devils"). More rarely, dust lifting by nonvortex wind gusts was produced by daytime convection cells advected over the crater by strong regional daytime upslope winds, which also control aeolian surface features. One such event covered 10 times more area than the largest dust devil, suggesting that dust devils and wind gusts could raise equal amounts of dust under nonstorm conditions.
- Published
- 2022
- Full Text
- View/download PDF