43 results on '"Mazier F"'
Search Results
2. Testing the Effect of Relative Pollen Productivity on the REVEALS Model: A Validated Reconstruction of Europe-Wide Holocene Vegetation
- Author
-
Serge, MA, Mazier, F, Fyfe, R, Gaillard, MJ, Klein, T, Lagnoux, A, Galop, D, Githumbi, E, Mindrescu, M, Nielsen, AB, Trondman, AK, Poska, A, Sugita, S, Woodbridge, J, Abel-Schaad, D, Åkesson, C, Alenius, T, Ammann, B, Andersen, ST, Anderson, RS, Andrič, M, Balakauskas, L, Barnekow, L, Batalova, V, Bergman, J, Birks, HJB, Björkman, L, Bjune, AE, Borisova, O, Broothaerts, N, Carrion, J, Caseldine, C, Christiansen, J, Cui, Q, Currás, A, Czerwiński, S, David, R, Davies, AL, De Jong, R, Di Rita, F, Dietre, B, Dörfler, W, Doyen, E, Edwards, KJ, Ejarque, A, Endtmann, E, Etienne, D, Faure, E, Feeser, I, Feurdean, A, Fischer, E, Fletcher, W, Franco-Múgica, F, Fredh, ED, Froyd, C, Garcés-Pastor, S, García-Moreiras, I, Gauthier, E, Gil-Romera, G, González-Sampériz, P, Grant, MJ, Grindean, R, Haas, JN, Hannon, G, Heather, AJ, Heikkilä, M, Hjelle, K, Jahns, S, Jasiunas, N, Jiménez-Moreno, G, Jouffroy-Bapicot, I, Kabailienė, M, Kamerling, IM, Kangur, M, Karpińska-Kołaczek, M, Kasianova, A, Kołaczek, P, Lagerås, P, Latalowa, M, Lechterbeck, J, Leroyer, C, Leydet, M, Lindbladh, M, Lisitsyna, O, López-Sáez, JA, Lowe, J, Luelmo-Lautenschlaeger, R, Lukanina, E, Macijauskaitė, L, Magri, D, Marguerie, D, Marquer, L, Martinez-Cortizas, A, Mehl, I, Mesa-Fernández, JM, Mighall, T, Miola, A, Miras, Y, Morales-Molino, C, Mrotzek, A, Serge, MA [0000-0001-5506-9732], Mazier, F [0000-0003-2643-0925], Fyfe, R [0000-0002-5676-008X], Gaillard, MJ [0000-0002-2025-410X], Klein, T [0000-0002-1276-3078], Lagnoux, A [0000-0002-6841-5814], Galop, D [0000-0003-1746-4760], Githumbi, E [0000-0002-6470-8986], Mindrescu, M [0000-0003-2291-4877], Nielsen, AB [0000-0001-7854-353X], Trondman, AK [0000-0003-3865-8548], Poska, A [0000-0002-8778-1430], Sugita, S [0000-0002-3634-7095], Woodbridge, J [0000-0003-0756-3538], Abel-Schaad, D [0000-0003-3915-8342], Alenius, T [0000-0003-2965-5177], Ammann, B [0000-0001-6123-6357], Andrič, M [0000-0003-1211-7081], Balakauskas, L [0000-0002-8941-989X], Batalova, V [0000-0002-8375-2835], Bergman, J [0000-0002-6753-917X], Birks, HJB [0000-0002-5891-9859], Bjune, AE [0000-0002-4509-0148], Borisova, O [0000-0003-1728-7610], Broothaerts, N [0000-0002-8605-9657], Carrion, J [0000-0002-6949-4382], Christiansen, J [0000-0003-2693-9887], Cui, Q [0000-0001-9824-3315], Currás, A [0000-0002-1828-7455], Czerwiński, S [0000-0003-3422-040X], Di Rita, F [0000-0002-3065-8474], Dietre, B [0000-0002-9959-3613], Dörfler, W [0000-0001-6251-7185], Ejarque, A [0000-0001-9101-5299], Feeser, I [0000-0002-9618-5139], Feurdean, A [0000-0002-2497-3005], Fletcher, W [0000-0001-8918-0690], Franco-Múgica, F [0000-0002-9372-8863], Fredh, ED [0000-0003-1787-6976], Froyd, C [0000-0001-5291-9156], Garcés-Pastor, S [0000-0001-5652-7264], García-Moreiras, I [0000-0001-8713-0374], Gauthier, E [0000-0002-9238-8190], Gil-Romera, G [0000-0001-5726-2536], González-Sampériz, P [0000-0002-5097-1468], Grant, MJ [0000-0002-4766-6913], Grindean, R [0000-0002-0518-8490], Hannon, G [0000-0002-5536-7884], Heikkilä, M [0000-0003-3885-8670], Hjelle, K [0000-0001-5777-0362], Jiménez-Moreno, G [0000-0001-7185-8686], Jouffroy-Bapicot, I [0000-0001-5920-7565], Kamerling, IM [0000-0003-3321-8631], Karpińska-Kołaczek, M [0000-0002-3249-7408], Kołaczek, P [0000-0003-2552-8269], Lagerås, P [0000-0002-2804-8028], Latalowa, M [0000-0001-7594-5146], Lechterbeck, J [0000-0003-3582-2605], Leroyer, C [0000-0002-2370-7303], Leydet, M [0000-0003-1123-3427], Lindbladh, M [0000-0002-0577-0050], Lisitsyna, O [0000-0003-1415-7650], López-Sáez, JA [0000-0002-3122-2744], Lukanina, E [0000-0001-7573-797X], Macijauskaitė, L [0000-0002-0623-871X], Magri, D [0000-0001-7254-593X], Marguerie, D [0000-0001-8672-2570], Marquer, L [0000-0002-5772-3782], Martinez-Cortizas, A [0000-0003-0430-5760], Mesa-Fernández, JM [0000-0003-1778-8351], Mighall, T [0000-0002-8365-7694], Miola, A [0000-0002-3441-4880], Miras, Y [0000-0002-4055-4134], Morales-Molino, C [0000-0002-9464-862X], and Apollo - University of Cambridge Repository
- Subjects
15 Life on Land ,4104 Environmental Management ,3304 Urban and Regional Planning ,41 Environmental Sciences ,33 Built Environment and Design ,3301 Architecture - Abstract
Reliable quantitative vegetation reconstructions for Europe during the Holocene are crucial to improving our understanding of landscape dynamics, making it possible to assess the past effects of environmental variables and land-use change on ecosystems and biodiversity, and mitigating their effects in the future. We present here the most spatially extensive and temporally continuous pollen-based reconstructions of plant cover in Europe (at a spatial resolution of 1° × 1°) over the Holocene (last 11.7 ka BP) using the ‘Regional Estimates of VEgetation Abundance from Large Sites’ (REVEALS) model. This study has three main aims. First, to present the most accurate and reliable generation of REVEALS reconstructions across Europe so far. This has been achieved by including a larger number of pollen records compared to former analyses, in particular from the Mediterranean area. Second, to discuss methodological issues in the quantification of past land cover by using alternative datasets of relative pollen productivities (RPPs), one of the key input parameters of REVEALS, to test model sensitivity. Finally, to validate our reconstructions with the global forest change dataset. The results suggest that the RPPs.st1 (31 taxa) dataset is best suited to producing regional vegetation cover estimates for Europe. These reconstructions offer a long-term perspective providing unique possibilities to explore spatial-temporal changes in past land cover and biodiversity.
- Published
- 2023
3. Testing the Effect of Relative Pollen Productivity on the REVEALS Model : A Validated Reconstruction of Europe-Wide Holocene Vegetation
- Author
-
Serge, M. A., Mazier, F., Fyfe, R., Gaillard, Marie-José, Klein, T., Lagnoux, A., Galop, D., Githumbi, Esther, Mindrescu, M., Nielsen, A. B., Trondman, Anna-Kari, Poska, A., Sugita, S., Woodbridge, J., Abel-Schaad, D., Åkesson, C., Alenius, T., Ammann, B., Andersen, S. T., Scott Anderson, R., Andric, M., Balakauskas, L., Barnekow, L., Batalova, V., Bergman, J., Birks, H. John B., Björkman, L., Bjune, A. E., Borisova, O., Broothaerts, N., Carrion, J., Caseldine, C., Christiansen, J., Cui, Q., Curras, A., Czerwinski, S., David, R., Davies, A. L., De Jong, R., Di Rita, F., Dietre, B., Doerfler, W., Doyen, E., Edwards, K. J., Ejarque, A., Endtmann, E., Etienne, D., Faure, E., Feeser, I., Feurdean, A., Fischer, E., Fletcher, W., Franco-Mugica, F., Fredh, E. D., Froyd, C., Garces-Pastor, S., Garcia-Moreiras, I., Gauthier, E., Gil-Romera, G., Gonzalez-Samperiz, P., Grant, M. J., Grindean, R., Haas, J. N., Hannon, G., Heather, A. -J, Heikkilae, M., Hjelle, K., Jahns, S., Jasiunas, N., Jimenez-Moreno, G., Jouffroy-Bapicot, I., Kabailiene, M., Kamerling, I. M., Kangur, M., Karpinska-Kolaczek, M., Kasianova, A., Kolaczek, P., Lageras, P., Latalowa, M., Lechterbeck, J., Leroyer, C., Leydet, M., Lindbladh, M., Lisitsyna, O., Lopez-Saez, J. -A, Lowe, John, Luelmo-Lautenschlaeger, R., Lukanina, E., Macijauskaite, L., Magri, D., Marguerie, D., Marquer, L., Martinez-Cortizas, A., Mehl, I., Mesa-Fernandez, J. M., Mighall, T., Miola, A., Miras, Y., Morales-Molino, C., Mrotzek, A., Sobrino, C. Munoz, Odgaard, B., Ozola, I., Perez-Diaz, S., Perez-Obiol, R. P., Poggi, C., Rego, P. Ramil, Ramos-Roman, M. J., Rasmussen, P., Reille, M., Roesch, M., Ruffaldi, P., Goni, M. Sanchez, Savukyniene, N., Schroeder, T., Schult, M., Segerström, U., Seppae, H., Vives, G. Servera, Shumilovskikh, L., Smettan, H. W., Stancikaite, M., Stevenson, A. C., Stivrins, N., Tantau, I., Theuerkauf, M., Tonkov, S., van der Knaap, W. O., van Leeuwen, J. F. N., Vecmane, E., Verstraeten, G., Veski, S., Voigt, R., Von Stedingk, H., Waller, M. P., Wiethold, J., Willis, K. J., Wolters, S., Zernitskaya, V. P., Serge, M. A., Mazier, F., Fyfe, R., Gaillard, Marie-José, Klein, T., Lagnoux, A., Galop, D., Githumbi, Esther, Mindrescu, M., Nielsen, A. B., Trondman, Anna-Kari, Poska, A., Sugita, S., Woodbridge, J., Abel-Schaad, D., Åkesson, C., Alenius, T., Ammann, B., Andersen, S. T., Scott Anderson, R., Andric, M., Balakauskas, L., Barnekow, L., Batalova, V., Bergman, J., Birks, H. John B., Björkman, L., Bjune, A. E., Borisova, O., Broothaerts, N., Carrion, J., Caseldine, C., Christiansen, J., Cui, Q., Curras, A., Czerwinski, S., David, R., Davies, A. L., De Jong, R., Di Rita, F., Dietre, B., Doerfler, W., Doyen, E., Edwards, K. J., Ejarque, A., Endtmann, E., Etienne, D., Faure, E., Feeser, I., Feurdean, A., Fischer, E., Fletcher, W., Franco-Mugica, F., Fredh, E. D., Froyd, C., Garces-Pastor, S., Garcia-Moreiras, I., Gauthier, E., Gil-Romera, G., Gonzalez-Samperiz, P., Grant, M. J., Grindean, R., Haas, J. N., Hannon, G., Heather, A. -J, Heikkilae, M., Hjelle, K., Jahns, S., Jasiunas, N., Jimenez-Moreno, G., Jouffroy-Bapicot, I., Kabailiene, M., Kamerling, I. M., Kangur, M., Karpinska-Kolaczek, M., Kasianova, A., Kolaczek, P., Lageras, P., Latalowa, M., Lechterbeck, J., Leroyer, C., Leydet, M., Lindbladh, M., Lisitsyna, O., Lopez-Saez, J. -A, Lowe, John, Luelmo-Lautenschlaeger, R., Lukanina, E., Macijauskaite, L., Magri, D., Marguerie, D., Marquer, L., Martinez-Cortizas, A., Mehl, I., Mesa-Fernandez, J. M., Mighall, T., Miola, A., Miras, Y., Morales-Molino, C., Mrotzek, A., Sobrino, C. Munoz, Odgaard, B., Ozola, I., Perez-Diaz, S., Perez-Obiol, R. P., Poggi, C., Rego, P. Ramil, Ramos-Roman, M. J., Rasmussen, P., Reille, M., Roesch, M., Ruffaldi, P., Goni, M. Sanchez, Savukyniene, N., Schroeder, T., Schult, M., Segerström, U., Seppae, H., Vives, G. Servera, Shumilovskikh, L., Smettan, H. W., Stancikaite, M., Stevenson, A. C., Stivrins, N., Tantau, I., Theuerkauf, M., Tonkov, S., van der Knaap, W. O., van Leeuwen, J. F. N., Vecmane, E., Verstraeten, G., Veski, S., Voigt, R., Von Stedingk, H., Waller, M. P., Wiethold, J., Willis, K. J., Wolters, S., and Zernitskaya, V. P.
- Abstract
Reliable quantitative vegetation reconstructions for Europe during the Holocene are crucial to improving our understanding of landscape dynamics, making it possible to assess the past effects of environmental variables and land-use change on ecosystems and biodiversity, and mitigating their effects in the future. We present here the most spatially extensive and temporally continuous pollen-based reconstructions of plant cover in Europe (at a spatial resolution of 1 degrees x 1 degrees) over the Holocene (last 11.7 ka BP) using the 'Regional Estimates of VEgetation Abundance from Large Sites' (REVEALS) model. This study has three main aims. First, to present the most accurate and reliable generation of REVEALS reconstructions across Europe so far. This has been achieved by including a larger number of pollen records compared to former analyses, in particular from the Mediterranean area. Second, to discuss methodological issues in the quantification of past land cover by using alternative datasets of relative pollen productivities (RPPs), one of the key input parameters of REVEALS, to test model sensitivity. Finally, to validate our reconstructions with the global forest change dataset. The results suggest that the RPPs.st1 (31 taxa) dataset is best suited to producing regional vegetation cover estimates for Europe. These reconstructions offer a long-term perspective providing unique possibilities to explore spatial-temporal changes in past land cover and biodiversity.
- Published
- 2023
- Full Text
- View/download PDF
4. Testing the Effect of Relative Pollen Productivity on the REVEALS Model: A Validated Reconstruction of Europe-Wide Holocene Vegetation
- Author
-
European Commission, Serge, M. A., Mazier, F., Fyfe, R., Gaillard, M. J., Klein, T., Lagnoux, A., Galop, D., Githumbi, E., Mindrescu, M., Nielsen, A. B., Trondman, A. K., Barnekow, L., Batalova, V., Bergman, J., Birks, H. John B., Björkman, L., Bjune, A. E., Borisova, O., Broothaerts, N., Carrion, J., Caseldine, C., Grindean, R., Christiansen, J., Cui, Q., Currás, Andrés, Czerwiński, S., David, R., Davies, A. L., De Jong, R., Di Rita, F., Dietre, B., Dörfler, W., Haas, J. N., Doyen, E., Edwards, K. J., Ejarque, A., Endtmann, E., Etienne, D., Faure, E., Feeser, I., Feurdean, A., Fischer, E., Fletcher, W., Hannon, G., Franco-Múgica, F., Fredh, E. D., Froyd, C., Garcés-Pastor, S., García-Moreiras, I., Gauthier, E., Gil-Romera, Graciela, González-Sampériz, Penélope, Grant, M. J., Heather, A. J., Heikkilä, M., Hjelle, K., Jahns, S., Jasiunas, N., Jiménez-Moreno, G., Jouffroy-Bapicot, I., Sobrino, C. Muñoz, Kabailienė, M., Kamerling, I. M., Kangur, M., Karpińska-Kołaczek, M., Kasianova, A., Kołaczek, P., Lagerås, P., Latalowa, M., Lechterbeck, J., Leroyer, C., Odgaard, B., Leydet, M., Lindbladh, M., Lisitsyna, O., López Sáez, José Antonio, Lowe, John, Luelmo Lautenschlaeger, Reyes, Lukanina, E., Macijauskaitė, L., Magri, D., Marguerie, D., Ozola, I., Marquer, L., Martínez Cortizas, Antonio, Mehl, I., Mesa-Fernández, J. M., Mighall, Tim, Miola, A., Miras, Y., Morales-Molino, C., Mrotzek, A., Pérez-Díaz, S., Pérez-Obiol, R. P., Poggi, C., Rego, P. Ramil, Ramos-Román, M. J., Rasmussen, P., Reille, M., Poska, A., Rösch, M., Ruffaldi, P., Goni, M. Sánchez, Savukynienė, N., Schröder, T., Schult, M., Segerström, U., Seppä, H., Vives, G. Servera, Shumilovskikh, L., Sugita, S., Smettan, H. W., Stancikaite, M., Stevenson, A. C., Stivrins, N., Tantau, I., Theuerkauf, M., Tonkov, S., van der Knaap, W. O., van Leeuwen, J. F. N., Vecmane, E., Woodbridge, J., Verstraeten, G., Veski, S., Voigt, R., Von Stedingk, H., Waller, M. P., Wiethold, J., Willis, K. J., Wolters, S., Zernitskaya, V. P., Abel-Schaad, D., Åkesson, C., Alenius, T., Ammann, B., Andersen, S. T., Anderson, R. Scott, Andrič, M., Balakauskas, L., European Commission, Serge, M. A., Mazier, F., Fyfe, R., Gaillard, M. J., Klein, T., Lagnoux, A., Galop, D., Githumbi, E., Mindrescu, M., Nielsen, A. B., Trondman, A. K., Barnekow, L., Batalova, V., Bergman, J., Birks, H. John B., Björkman, L., Bjune, A. E., Borisova, O., Broothaerts, N., Carrion, J., Caseldine, C., Grindean, R., Christiansen, J., Cui, Q., Currás, Andrés, Czerwiński, S., David, R., Davies, A. L., De Jong, R., Di Rita, F., Dietre, B., Dörfler, W., Haas, J. N., Doyen, E., Edwards, K. J., Ejarque, A., Endtmann, E., Etienne, D., Faure, E., Feeser, I., Feurdean, A., Fischer, E., Fletcher, W., Hannon, G., Franco-Múgica, F., Fredh, E. D., Froyd, C., Garcés-Pastor, S., García-Moreiras, I., Gauthier, E., Gil-Romera, Graciela, González-Sampériz, Penélope, Grant, M. J., Heather, A. J., Heikkilä, M., Hjelle, K., Jahns, S., Jasiunas, N., Jiménez-Moreno, G., Jouffroy-Bapicot, I., Sobrino, C. Muñoz, Kabailienė, M., Kamerling, I. M., Kangur, M., Karpińska-Kołaczek, M., Kasianova, A., Kołaczek, P., Lagerås, P., Latalowa, M., Lechterbeck, J., Leroyer, C., Odgaard, B., Leydet, M., Lindbladh, M., Lisitsyna, O., López Sáez, José Antonio, Lowe, John, Luelmo Lautenschlaeger, Reyes, Lukanina, E., Macijauskaitė, L., Magri, D., Marguerie, D., Ozola, I., Marquer, L., Martínez Cortizas, Antonio, Mehl, I., Mesa-Fernández, J. M., Mighall, Tim, Miola, A., Miras, Y., Morales-Molino, C., Mrotzek, A., Pérez-Díaz, S., Pérez-Obiol, R. P., Poggi, C., Rego, P. Ramil, Ramos-Román, M. J., Rasmussen, P., Reille, M., Poska, A., Rösch, M., Ruffaldi, P., Goni, M. Sánchez, Savukynienė, N., Schröder, T., Schult, M., Segerström, U., Seppä, H., Vives, G. Servera, Shumilovskikh, L., Sugita, S., Smettan, H. W., Stancikaite, M., Stevenson, A. C., Stivrins, N., Tantau, I., Theuerkauf, M., Tonkov, S., van der Knaap, W. O., van Leeuwen, J. F. N., Vecmane, E., Woodbridge, J., Verstraeten, G., Veski, S., Voigt, R., Von Stedingk, H., Waller, M. P., Wiethold, J., Willis, K. J., Wolters, S., Zernitskaya, V. P., Abel-Schaad, D., Åkesson, C., Alenius, T., Ammann, B., Andersen, S. T., Anderson, R. Scott, Andrič, M., and Balakauskas, L.
- Abstract
Reliable quantitative vegetation reconstructions for Europe during the Holocene are crucial to improving our understanding of landscape dynamics, making it possible to assess the past effects of environmental variables and land-use change on ecosystems and biodiversity, and mitigating their effects in the future. We present here the most spatially extensive and temporally continuous pollen-based reconstructions of plant cover in Europe (at a spatial resolution of 1° × 1°) over the Holocene (last 11.7 ka BP) using the ‘Regional Estimates of VEgetation Abundance from Large Sites’ (REVEALS) model. This study has three main aims. First, to present the most accurate and reliable generation of REVEALS reconstructions across Europe so far. This has been achieved by including a larger number of pollen records compared to former analyses, in particular from the Mediterranean area. Second, to discuss methodological issues in the quantification of past land cover by using alternative datasets of relative pollen productivities (RPPs), one of the key input parameters of REVEALS, to test model sensitivity. Finally, to validate our reconstructions with the global forest change dataset. The results suggest that the RPPs.st1 (31 taxa) dataset is best suited to producing regional vegetation cover estimates for Europe. These reconstructions offer a long-term perspective providing unique possibilities to explore spatial-temporal changes in past land cover and biodiversity.
- Published
- 2023
5. Testing the Effect of Relative Pollen Productivity on the REVEALS Model: A Validated Reconstruction of Europe-Wide Holocene Vegetation
- Author
-
Serge, M., primary, Mazier, F., additional, Fyfe, R., additional, Gaillard, M.-J., additional, Klein, T., additional, Lagnoux, A., additional, Galop, D., additional, Githumbi, E., additional, Mindrescu, M., additional, Nielsen, A., additional, Trondman, A.-K., additional, Poska, A., additional, Sugita, S., additional, Woodbridge, J., additional, Abel-Schaad, D., additional, Åkesson, C., additional, Alenius, T., additional, Ammann, B., additional, Andersen, S., additional, Anderson, R., additional, Andrič, M., additional, Balakauskas, L., additional, Barnekow, L., additional, Batalova, V., additional, Bergman, J., additional, Birks, H., additional, Björkman, L., additional, Bjune, A., additional, Borisova, O., additional, Broothaerts, N., additional, Carrion, J., additional, Caseldine, C., additional, Christiansen, J., additional, Cui, Q., additional, Currás, A., additional, Czerwiński, S., additional, David, R., additional, Davies, A., additional, De Jong, R., additional, Di Rita, F., additional, Dietre, B., additional, Dörfler, W., additional, Doyen, E., additional, Edwards, K., additional, Ejarque, A., additional, Endtmann, E., additional, Etienne, D., additional, Faure, E., additional, Feeser, I., additional, Feurdean, A., additional, Fischer, E., additional, Fletcher, W., additional, Franco-Múgica, F., additional, Fredh, E., additional, Froyd, C., additional, Garcés-Pastor, S., additional, García-Moreiras, I., additional, Gauthier, E., additional, Gil-Romera, G., additional, González-Sampériz, P., additional, Grant, M., additional, Grindean, R., additional, Haas, J., additional, Hannon, G., additional, Heather, A.-J., additional, Heikkilä, M., additional, Hjelle, K., additional, Jahns, S., additional, Jasiunas, N., additional, Jiménez-Moreno, G., additional, Jouffroy-Bapicot, I., additional, Kabailienė, M., additional, Kamerling, I., additional, Kangur, M., additional, Karpińska-Kołaczek, M., additional, Kasianova, A., additional, Kołaczek, P., additional, Lagerås, P., additional, Latalowa, M., additional, Lechterbeck, J., additional, Leroyer, C., additional, Leydet, M., additional, Lindbladh, M., additional, Lisitsyna, O., additional, López-Sáez, J.-A., additional, Lowe, John, additional, Luelmo-Lautenschlaeger, R., additional, Lukanina, E., additional, Macijauskaitė, L., additional, Magri, D., additional, Marguerie, D., additional, Marquer, L., additional, Martinez-Cortizas, A., additional, Mehl, I., additional, Mesa-Fernández, J., additional, Mighall, T., additional, Miola, A., additional, Miras, Y., additional, Morales-Molino, C., additional, Mrotzek, A., additional, Sobrino, C., additional, Odgaard, B., additional, Ozola, I., additional, Pérez-Díaz, S., additional, Pérez-Obiol, R., additional, Poggi, C., additional, Rego, P., additional, Ramos-Román, M., additional, Rasmussen, P., additional, Reille, M., additional, Rösch, M., additional, Ruffaldi, P., additional, Goni, M., additional, Savukynienė, N., additional, Schröder, T., additional, Schult, M., additional, Segerström, U., additional, Seppä, H., additional, Vives, G., additional, Shumilovskikh, L., additional, Smettan, H., additional, Stancikaite, M., additional, Stevenson, A., additional, Stivrins, N., additional, Tantau, I., additional, Theuerkauf, M., additional, Tonkov, S., additional, van der Knaap, W., additional, van Leeuwen, J., additional, Vecmane, E., additional, Verstraeten, G., additional, Veski, S., additional, Voigt, R., additional, Von Stedingk, H., additional, Waller, M., additional, Wiethold, J., additional, Willis, K., additional, Wolters, S., additional, and Zernitskaya, V., additional
- Published
- 2023
- Full Text
- View/download PDF
6. Palynological perspectives on vegetation survey: a critical step for model-based reconstruction of Quaternary land cover
- Author
-
Bunting, M.J., Farrell, M., Broström, A., Hjelle, K.L., Mazier, F., Middleton, R., Nielsen, A.B., Rushton, E., Shaw, H., and Twiddle, C.L.
- Published
- 2013
- Full Text
- View/download PDF
7. Testing the effect of site selection and parameter setting on REVEALS-model estimates of plant abundance using the Czech Quaternary Palynological Database
- Author
-
Mazier, F., Gaillard, M.-J., Kuneš, P., Sugita, S., Trondman, A.-K., and Broström, A.
- Published
- 2012
- Full Text
- View/download PDF
8. Palaeoecological data indicates land-use changes across Europe linked to spatial heterogeneity in mortality during the Black Death pandemic
- Author
-
Max Planck Society, Estonian Research Council, European Research Council, Latvian Council of Science, Ministerio de Economía y Competitividad (España), Ministerio de Educación, Cultura y Deporte (España), Swedish Research Council, Volkswagen Foundation, Ministerio de Ciencia e Innovación (España), López Sáez, José Antonio [0000-0002-3122-2744], Izdebski, A., Guzowski, P., Poniat, R., Masci, Lucrezia, Palli, J., Vignola, Cristiano, Bauch, M., Cocozza, C., Fernandes, R., Ljungqvist , F.C., Newfield, T., Seim, A., Abel-Schaad, D., Alba-Sánchez, F., Björkman, L., Brauer, A., Brown, A., Czerwiński, S., Ejarque, A., Fiłoc, M., Florenzano, A., Fredh, E. D., Fyfe, R, Jasiunas, N., Kołaczek, P., Kouli, K., Kozáková, R., Kupryjanowicz, M., Lagerås, P., Lamentowicz. M., Lindbladh, M., López Sáez, José Antonio, Luelmo Lautenschlaeger, Reyes, Marcisz, K., Mazier, F., Mensing, S., Mercuri, A.M., Milecka, K., Miras, Y., Noryśkiewicz, A.M., Novenko, E., Obremska, M., Panajiotidis, S., Papadopoulou, M.L., Pędziszewska, A., Pérez-Díaz, Sebastián, Piovesan, G., Pluskowski, A., Pokorný, Petr, Poska, A., Reitalu, T., Rösch, M., Sadori , L., Sá Ferreira, C., Sebag, D., Słowiński, M., Stančikaitė, M., Stivrins, N., Tunno, I., Veski, S., Wacnik, A., Masi, A., Max Planck Society, Estonian Research Council, European Research Council, Latvian Council of Science, Ministerio de Economía y Competitividad (España), Ministerio de Educación, Cultura y Deporte (España), Swedish Research Council, Volkswagen Foundation, Ministerio de Ciencia e Innovación (España), López Sáez, José Antonio [0000-0002-3122-2744], Izdebski, A., Guzowski, P., Poniat, R., Masci, Lucrezia, Palli, J., Vignola, Cristiano, Bauch, M., Cocozza, C., Fernandes, R., Ljungqvist , F.C., Newfield, T., Seim, A., Abel-Schaad, D., Alba-Sánchez, F., Björkman, L., Brauer, A., Brown, A., Czerwiński, S., Ejarque, A., Fiłoc, M., Florenzano, A., Fredh, E. D., Fyfe, R, Jasiunas, N., Kołaczek, P., Kouli, K., Kozáková, R., Kupryjanowicz, M., Lagerås, P., Lamentowicz. M., Lindbladh, M., López Sáez, José Antonio, Luelmo Lautenschlaeger, Reyes, Marcisz, K., Mazier, F., Mensing, S., Mercuri, A.M., Milecka, K., Miras, Y., Noryśkiewicz, A.M., Novenko, E., Obremska, M., Panajiotidis, S., Papadopoulou, M.L., Pędziszewska, A., Pérez-Díaz, Sebastián, Piovesan, G., Pluskowski, A., Pokorný, Petr, Poska, A., Reitalu, T., Rösch, M., Sadori , L., Sá Ferreira, C., Sebag, D., Słowiński, M., Stančikaitė, M., Stivrins, N., Tunno, I., Veski, S., Wacnik, A., and Masi, A.
- Abstract
The Black Death (1347–1352 CE) is the most renowned pandemic in human history, believed by many to have killed half of Europe’s population. However, despite advances in ancient DNA research that conclusively identified the pandemic’s causative agent (bacterium Yersinia pestis), our knowledge of the Black Death remains limited, based primarily on qualitative remarks in medieval written sources available for some areas of Western Europe. Here, we remedy this situation by applying a pioneering new approach, ‘big data palaeoecology’, which, starting from palynological data, evaluates the scale of the Black Death’s mortality on a regional scale across Europe. We collected pollen data on landscape change from 261 radiocarbon-dated coring sites (lakes and wetlands) located across 19 modern-day European countries. We used two independent methods of analysis to evaluate whether the changes we see in the landscape at the time of the Black Death agree with the hypothesis that a large portion of the population, upwards of half, died within a few years in the 21 historical regions we studied. While we can confirm that the Black Death had a devastating impact in some regions, we found that it had negligible or no impact in others. These inter-regional differences in the Black Death’s mortality across Europe demonstrate the significance of cultural, ecological, economic, societal and climatic factors that mediated the dissemination and impact of the disease. The complex interplay of these factors, along with the historical ecology of plague, should be a focus of future research on historical pandemics.
- Published
- 2022
9. Big Data Palaeoecology reveals significant variation in Black Death mortality in Europe [Preprint]
- Author
-
Izdebski, A., Guzowski, P., Poniat, R., Masci, L., Palli, J., Vignola, C., Bauch, M., Cocozza, C., Fernandes, R., Ljungqvist, F. C., Newfield, T., Seim, A., Abel-Schaad, D., Alba-Sánchez, F., Björkman, L., Brauer, A., Brown, A., Czerwiński, S., Ejarque, A., Fiłoc, M., Florenzano, A., Fredh, E. D., Fyfe, R., Jasiunas, N., Kołaczek, P., Kouli, K., 1, Kozáková, R., Kupryjanowicz, M., Lagerås, P., Lamentowicz, M., Lindbladh, M., López-Sáez, J. A., Luelmo-Lautenschlaeger, R., Marcisz, K., Mazier, F., Mensing, S., Mercuri, A. M., Milecka, K., Miras, Y., Noryśkiewicz, A. M., Novenko, E., Obremska, M., Panajiotidis, S., Papadopoulou, M. L., Pędziszewska, A., Pérez-Díaz, S., Piovesan, G., Pluskowski, A., Pokorny, P., Poska, A., Reitalu, T., Rösch, M., Sadori, L., Sá Ferreira, C., Sebag, D., Słowiński, M., Stančikaitė, M., Stivrins, N., Tunno, I., Veski, S., Wacnik, A., Masi, A., Universidad de Cantabria, Max Planck Institute for the Science of Human History (MPI-SHH), Max-Planck-Gesellschaft, Uniwersytet Jagielloński w Krakowie = Jagiellonian University (UJ), University of Bialystok, Department of Earth Sciences, Sapienza University of Rome, Università degli Studi di Roma 'La Sapienza' = Sapienza University [Rome] (UNIROMA), Department of Environmental Biology, Sapienza University of Rome, Università degli studi della Tuscia [Viterbo], Leibniz Institute for the History and Culture of Eastern Europe (GWZO), Universität Leipzig, ArchaeoBioCenter, Ludwig-Maximilians-Universität München, München, Germany, School of Archaeology, University of Oxford, Oxford, UK, Masaryk University [Brno] (MUNI), Stockholm University, Bolin Centre for Climate Research, Swedish Collegium for Advanced Study [Uppsala], Department of History, Georgetown University, Washington DC, USA, Department of biology, georgetown University, Washington DC, Chair of Forest Growth and Dendroecology, University of Freiburg, Institute of Botany [Innsbruck], Leopold Franzens Universität Innsbruck - University of Innsbruck, Universidad de Granada = University of Granada (UGR), Viscum Pollenanalys & Miljöhistoria, Nässjö, Sweden, German Research Centre for Geosciences - Helmholtz-Centre Potsdam (GFZ), Institute of Geosciences [Potsdam], University of Potsdam = Universität Potsdam, Wessex Archaeology [Salisbury], Department of Archaeology and Centre for Past Climate Change, University of Reading, Reading, UK, Adam Mickiewicz University in Poznań (UAM), Laboratoire de Géographie Physique et Environnementale (GEOLAB), Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Institut Sciences de l'Homme et de la Société (IR SHS UNILIM), Université de Limoges (UNILIM)-Université de Limoges (UNILIM)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA), Institut des Sciences de l'Evolution de Montpellier (UMR ISEM), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-École Pratique des Hautes Études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut de recherche pour le développement [IRD] : UR226-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), Department of Palaeobiology, Faculty of Biology, University of Białystok, Białystok, Poland, Laboratory of Palynology and Palaeobotany, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy, The Arctic University of Norway [Tromsø, Norway] (UiT), School of Geography, Earth and Environmental Sciences [Plymouth] (SoGEES), Plymouth University, University of Latvia (LU), National and Kapodistrian University of Athens (NKUA), Institute of Archaeology of the Czech Academy of Sciences, Prague, The Archaeologists, National Historical Museums, Lund, Sweden, Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences (SLU), Environmental Archaeology Research Group, Institute of History, CSIC, Madrid, Spain, Department of Geography, Universidad Autónoma de Madrid, Madrid, Spain, Géographie de l'environnement (GEODE), Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Department of Geography, University of Nevada, Reno, USA, Histoire naturelle de l'Homme préhistorique (HNHP), Muséum national d'Histoire naturelle (MNHN)-Université de Perpignan Via Domitia (UPVD)-Centre National de la Recherche Scientifique (CNRS), Nicolaus Copernicus University [Toruń], MSU Faculty of Geography [Moscow], Lomonosov Moscow State University (MSU), Institute of Geography, Russian Academy of Sciences, Moscow, Russian Federation, Institute of Geological Sciences, Polish Academy of Sciences, Polska Akademia Nauk = Polish Academy of Sciences (PAN), Laboratory of Forest Botany-Geobotany, School of Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki, Greece, University of Cologne, Faculty of Biology [Gdansk, Poland], University of Gdańsk (UG), Department of Geography, Urban and Regional Planning, Universidad de Cantabria, Santander, Spain., Centre for Theoretical Studies, Charles University, Czechia (CTS), Charles University [Prague] (CU)-Czech Academy of Sciences [Prague] (CAS), Institute of Geology at Tallinn, Tallinn University of Technology (TTÜ), Universität Heidelberg [Heidelberg] = Heidelberg University, Queen's University [Belfast] (QUB), IFP Energies nouvelles (IFPEN), Institute of Geography and Spatial Organization, Polish Academy of Sciences, Nature Research Centre, Institute of Geology and Geography, Vilnius, Lithuania, Center for Accelerator Mass Spectrometry (CAMS), Lawrence Livermore National Laboratory, Lawrence, CA, USA, W. Szafer Institute of Botany, Polish Academy of Sciences, European Project: 263735,EC:FP7:ERC,ERC-2010-StG_20091209,TEC(2010), Max Planck Institute for the Science of Human History, Kahlaische Str. 10, 07745, Jena, Germany, Faculty of History and International Relations, University of Bialystok, Bialystok, Poland, Department of Earth Science, Sapienza University of Rome, Rome, Italy, Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Roma, Italy, Leibniz Institute for the History and Culture of Eastern Europe (GWZO), Leipzig, Germany, Swedish Collegium for Advanced Study, Uppsala, Sweden, Chair of Forest Growth and Dendroecology, Institute of Forest Sciences, Albert-Ludwigs-University Freiburg, Freiburg, Universität Innsbruck [Innsbruck], GFZ-German Research Centre for Geosciences, Section Climate Dynamics and Landscape Evolution, Potsdam, Germany, Institute of Geosciences, University of Potsdam, Potsdam, Germany, Wessex Archaeology, Portway House, Salisbury, UK, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-École pratique des hautes études (EPHE), The Arctic University of Norway (UiT), Institute of Archeology, Academy of Sciences of the Czech Republic, Prague, Czech Republi, Université Toulouse - Jean Jaurès (UT2J)-Centre National de la Recherche Scientifique (CNRS), Faculty of Geography, Lomonosov Moscow State University, Moscow, Russia., Department of Quaternary Research, Institute of Geography Russian Academy of Science, Moscow, Russia, Institute of Geological Sciences, Polish Academy of Sciences, Warsaw, Poland., Laboratory of Palaeoecology and Archaeobotany, Department of Plant Ecology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland., Charles University [Prague] (CU), Department of Geology, Tallinn University of Technology, Tallinn, Estonia, Lund University [Lund], Department of Geology, Tallinn University of Technology, Tallinn, Estonia., Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia, University of Tartu, Universität Heidelberg [Heidelberg], IFP Energies Nouvelles, Earth Sciences and Environmental Technologies Division, Rueil-Malmaison, Rueil-Malmaison, Past Landscape Dynamics Laboratory, Institute of Geography and Spatial Organization, Polish Academy of Sciences, Warsaw, Poland., 3 Department of Geology, Tallinn University of Technology, Tallinn, Estonia, W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, Poland., Institute of History, Jagiellonian University in Krakow, Krakow, Poland, Department of Agriculture and Forest Sciences (Dafne), University of Tuscia, Viterbo, Italy, Department of Ecological and Biological Sciences (Deb), University of Tuscia, Viterbo, Italy., Faculty of Arts, Masaryk University, Brno, Czech Republic, Department of Botany, University of Innsbruck, Innsbruck, Austria, Department of Botany, University of Granada, Granada, Spain, Climate Change Ecology Research Unit, Adam Mickiewicz University, Poznań, Poland., Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Université Clermont Auvergne (UCA)-Institut Sciences de l'Homme et de la Société (IR SHS UNILIM), Université de Limoges (UNILIM)-Université de Limoges (UNILIM)-Centre National de la Recherche Scientifique (CNRS), ISEM, UMR 5554, Université Montpellier, CNRS, EPHE, IRD, Montpellier, Museum of Archaeology, University of Stavanger, Stavanger, Norway, School of Geography, Earth and Environmental Science, University of Plymouth, Plymouth, UK, Department of Geography, University of Latvia, Riga, Latvia., Climate Change Ecology Research Unit, Adam Mickiewicz University, Poznań, Poland, Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, Athens, Greece, Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Alnarp, Sweden, Centre National de la Recherche Scientifique (CNRS)-Université Toulouse - Jean Jaurès (UT2J), Anthropocene Research Unit, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, Poznań, CNRS, HNHP UMR 7194, Muséum National d’Histoire Naturelle, Institut de Paléontologie Humaine, Paris, France, Institute of Archaeology, Faculty of History, Nicolaus Copernicus University, Toruń, Poland., Centre for Climate Change Research, Nicolaus Copernicus University, Toruń, Poland, Institute of Geography, University of Cologne, Cologne, Germany, Department of Ecological and Biological Sciences (Deb), University of Tuscia, Viterbo, Italy, Centre for Theoretical Study, Charles University and Academy of Sciences of the Czech Republic, Prague, Czech Republic., Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden, Department of Pre- and Early History and West Asian Archaeology, University of Heidelberg, Heidelberg, Germany, School of Natural and Built Environment, Queen’s University, Belfast, Northern Ireland, Department of Geography, University of Latvia, Riga, Latvia, Institute of Latvian History, University of Latvia, Riga, Latvia., Max Planck Society, Estonian Research Council, European Research Council, Latvian Council of Science, Ministerio de Economía y Competitividad (España), Ministerio de Educación, Cultura y Deporte (España), Swedish Research Council, Volkswagen Foundation, Ministerio de Ciencia e Innovación (España), López Sáez, José Antonio [0000-0002-3122-2744], López Sáez, José Antonio, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Montpellier (UM)-Institut de recherche pour le développement [IRD] : UR226-Centre National de la Recherche Scientifique (CNRS), and Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS)-Université de Perpignan Via Domitia (UPVD)
- Subjects
Land-use changes ,Ecology ,black death pandemic ,Humaniora: 000::Arkeologi: 090 [VDP] ,palaeoecological data ,[SHS.GEO]Humanities and Social Sciences/Geography ,paleoecology ,palynology, big data, paleoecology ,Europe ,big data ,[SHS.ENVIR]Humanities and Social Sciences/Environmental studies ,[SDE]Environmental Sciences ,[SHS.HIST]Humanities and Social Sciences/History ,palynology ,Ecology, Evolution, Behavior and Systematics - Abstract
The authors acknowledge the following funding sources: Max Planck Independent Research Group, Palaeo-Science and History Group (A.I., A.M. and C.V.); Estonian Research Council #PRG323, PUT1173 (A.Pos., T.R., N.S. and S.V.); European Research Council #FP7 263735 (A.Bro. and A.Plu.), #MSC 655659 (A.E.); Georgetown Environmental Initiative (T.N.); Latvian Council of Science #LZP-2020/2-0060 (N.S. and N.J.); LLNL-JRNL-820941 (I.T.); NSF award #GSS-1228126 (S.M.); Polish-Swiss Research Programme #013/2010 CLIMPEAT (M.Lam.), #086/2010 CLIMPOL (A.W.); Polish Ministry of Science and Higher Education #N N306 275635 (M.K.); Polish National Science Centre #2019/03/X/ST10/00849 (M.Lam.), #2015/17/B/ST10/01656 (M.Lam.), #2015/17/B/ST10/03430 (M.So.), #2018/31/B/ST10/02498 (M.So.), #N N304 319636 (A.W.); SCIEX #12.286 (K.Mar.); Spanish Ministry of Economy and Competitiveness #REDISCO-HAR2017-88035-P (J.A.L.S.); Spanish Ministry of Education, Culture and Sports #FPU16/00676 (R.L.L.); Swedish Research Council #421-2010-1570 (P.L.), #2018-01272 (F.C.L. and A.S.); Volkswagen Foundation Freigeist Fellowship Dantean Anomaly (M.B.), Spanish Ministry of Science and Innovation #RTI2018-101714-B-I00 (F.A.S. and D.A.S.), OP RDE, MEYS project #CZ.02.1.01/0.0/0.0/16_019/0000728 (P.P.)., The Black Death (1347–1352 ce) is the most renowned pandemic in human history, believed by many to have killed half of Europe’s population. However, despite advances in ancient DNA research that conclusively identified the pandemic’s causative agent (bacterium Yersinia pestis), our knowledge of the Black Death remains limited, based primarily on qualitative remarks in medieval written sources available for some areas of Western Europe. Here, we remedy this situation by applying a pioneering new approach, ‘big data palaeoecology’, which, starting from palynological data, evaluates the scale of the Black Death’s mortality on a regional scale across Europe. We collected pollen data on landscape change from 261 radiocarbon-dated coring sites (lakes and wetlands) located across 19 modern-day European countries. We used two independent methods of analysis to evaluate whether the changes we see in the landscape at the time of the Black Death agree with the hypothesis that a large portion of the population, upwards of half, died within a few years in the 21 historical regions we studied. While we can confirm that the Black Death had a devastating impact in some regions, we found that it had negligible or no impact in others. These inter-regional differences in the Black Death’s mortality across Europe demonstrate the significance of cultural, ecological, economic, societal and climatic factors that mediated the dissemination and impact of the disease. The complex interplay of these factors, along with the historical ecology of plague, should be a focus of future research on historical pandemics., Max Planck Independent Research Group, Palaeo-Science and History Group, Estonian Research Council PRG323 PUT1173, European Research Council (ERC) European Commission FP7 263735 MSC 655659, Georgetown Environmental Initiative, Latvian Ministry of Education and Science LZP-2020/2-0060 LLNL-JRNL-820941, National Science Foundation (NSF) GSS-1228126, Polish-Swiss Research Programme 013/2010 086/2010, Ministry of Science and Higher Education, Poland N306 275635, Polish National Science Centre 2019/03/X/ST10/00849 2015/17/B/ST10/01656 2015/17/B/ST10/03430 2018/31/B/ST10/02498 N N304 319636, SCIEX 12.286, Spanish Government REDISCO-HAR2017-88035-P FPU16/00676, Swedish Research Council, European Commission 421-2010-1570 2018-01272, Volkswagen Foundation Freigeist Fellowship Dantean Anomaly, Spanish Government RTI2018-101714-B-I00, OP RDE, MEYS project CZ.02.1.01/0.0/0.0/16_019/0000728
- Published
- 2022
- Full Text
- View/download PDF
10. Chapter 9. Trace Metal Legacy in Mountain Environments. A View from the Pyrenees Mountains
- Author
-
Le Roux, Gaël, Hansson, S. V., Claustres, A., Binet, S., De Vleeschouwer, F., Gandois, L., Mazier, F., Simonneau, A., Teisserenc, R., Allen, D., Rosset, T., Haver, Marilen, Da Ros, Luca, Galop, Didier, Durantez, P., Probst, A., Sánchez Pérez, José Miguel, Sauvage, Sabine, Laffaille, P., Jean, S., Schmeller, Dirk S., Camarero, Lluís, Marquer, L., and Lofts, S.
- Abstract
The mineral reserves of mountain environments have been exploited since the beginning of metallurgy and legacy contamination from activities such as mining persist to this day. This is particularly the case in the soils of the European mountains where potential harmful trace elements (such as Pb, Sb, As, and Hg) of anthropogenic origin have accumulated since Antiquity. The French Pyrenees are no exception to this, as many mine sites in the region date back to the Bronze Age, resulting in landscape alternations and anthropogenic environmental impacts on a millennial scale. The mountain critical zone is sensitive both to human‐induced environmental changes (e.g., agriculture, mining, clear‐cutting) as well as to climate‐induced rapid environmental fluctuations. The legacy of trace metal contamination in other environments has been documented at individual sites in Europe and around the world, however, the fate of such legacy metals over time, in particular within mountainous regions, is poorly understood. This is despite the fact that a large proportion of metals was deposited and stored before 1800 CE in these areas. Using a case study from the Central French Pyrenees as a specific example, we here show that legacy metal (e.g., Pb) contamination in mountain environments is still persistent and a potential threat to mountain ecosystem health. We emphasize methods that aim to understand, in an interdisciplinary and coordinated way, the fate of legacy metals in the Central Pyrenees and beyond. We highlight the importance of research in the mountain critical zone for the whole of Europe, as mountains are the source of water and provide regional economic and socio‐ecological resources. The goal of this chapter is, therefore, to draw attention to and provide fellow researchers with, the background information and methodologies needed to address the problem of legacy metal accumulation, transport, storage, remobilization, and redeposition in mountain watersheds, as well as potential subsequent environmental impacts downstream.
- Published
- 2020
11. Europe's lost forests : a pollen-based synthesis for the last 11,000 years
- Author
-
Roberts, N., Fyfe, R. M., Woodbridge, J., Gaillard, Marie-José, Davis, B. A. S., Kaplan, J. O., Marquer, L., Mazier, F., Nielsen, A. B., Sugita, S., Trondman, Anna-Kari, Leydet, M., Roberts, N., Fyfe, R. M., Woodbridge, J., Gaillard, Marie-José, Davis, B. A. S., Kaplan, J. O., Marquer, L., Mazier, F., Nielsen, A. B., Sugita, S., Trondman, Anna-Kari, and Leydet, M.
- Abstract
8000 years ago, prior to Neolithic agriculture, Europe was mostly a wooded continent. Since then, its forest cover has been progressively fragmented, so that today it covers less than half of Europe's land area, in many cases having been cleared to make way for fields and pasture-land. Establishing the origin of Europe's current, more open land-cover mosaic requires a long-term perspective, for which pollen analysis offers a key tool. In this study we utilise and compare three numerical approaches to transforming pollen data into past forest cover, drawing on >1000 C-14-dated site records. All reconstructions highlight the different histories of the mixed temperate and the northern boreal forests, with the former declining progressively since similar to 6000 years ago, linked to forest clearance for agriculture in later prehistory (especially in northwest Europe) and early historic times (e.g. in north central Europe). In contrast, extensive human impact on the needle-leaf forests of northern Europe only becomes detectable in the last two millennia and has left a larger area of forest in place. Forest loss has been a dominant feature of Europe's landscape ecology in the second half of the current interglacial, with consequences for carbon cycling, ecosystem functioning and biodiversity.
- Published
- 2018
- Full Text
- View/download PDF
12. Europe’s lost forests: a pollen-based synthesis for the last 11,000 years
- Author
-
Roberts, N., primary, Fyfe, R. M., additional, Woodbridge, J., additional, Gaillard, M.-J., additional, Davis, B. A. S., additional, Kaplan, J. O., additional, Marquer, L., additional, Mazier, F., additional, Nielsen, A. B., additional, Sugita, S., additional, Trondman, A.-K., additional, and Leydet, M., additional
- Published
- 2018
- Full Text
- View/download PDF
13. Erratum to The European Modern Pollen Database (EMPD) project (Veget Hist Archaeobot, 10.1007/s00334-012-0388-5)
- Author
-
Davis, B. A. S., Zanon, M., Collins, P., Mauri, A., Bakker, J., Barboni, D., Barthelmes, A., Beaudouin, C., Birks, H. J. B., Bjune, A. E., Bozilova, E., Bradshaw, R. H. W., Brayshay, B. A., Brewer, S., Brugiapaglia, E., Bunting, J., Connor, S. E., de Beaulieu, J. -L., Edwards, K. J., Ejarque, A., Fall, P., Florenzano, A., Fyfe, R., Galop, D., Giardini, M., Giesecke, T., Grant, M. J., Guiot, J., Jahns, S., Jankovska, V., Juggins, S., Kahrmann, M., Karpinska-Kolaczek, M., Kolaczek, P., Kuhl, N., Kunes, P., Lapteva, E. G., Leroy, S. A. G., Leydet, M., Saez, J. A. L., Masi, A., Matthias, I., Mazier, F., Meltsov, V., Mercuri, A. M., Miras, Y., Mitchell, F. J. G., Morris, J. L., Naughton, F., Nielsen, A. B., Novenko, E., Odgaard, B., Ortu, E., Overballe-Petersen, M. V., Pardoe, H. S., Peglar, S. M., Pidek, I. A., Sadori, L., Seppa, H., Severova, E., Shaw, H., Swieta-Musznicka, J., Theuerkauf, M., Tonkov, S., Veski, S., van der Knaap, P. W. O., van Leeuwen, J. F. N., Woodbridge, J., Zimny, M., and Kaplan, J. O.
- Subjects
Archeology (arts and humanities) ,Plant Science ,Paleontology - Published
- 2013
14. Historical TOC concentration minima during peak sulfur deposition in two Swedish lakes
- Author
-
Bragee, P., Mazier, F., Nielsen, A. B., Rosén, Peter, Fredh, D., Brostrom, A., Graneli, W., Hammarlund, D., Bragee, P., Mazier, F., Nielsen, A. B., Rosén, Peter, Fredh, D., Brostrom, A., Graneli, W., and Hammarlund, D.
- Abstract
Decadal-scale variations in total organic carbon (TOC) concentration in lake water since AD1200 in two small lakes in southern Sweden were reconstructed based on visible-near-infrared spectroscopy (VNIRS) of their recent sediment successions. In order to assess the impacts of local land-use changes, regional variations in sulfur, and nitrogen deposition and climate variations on the inferred changes in TOC concentration, the same sediment records were subjected to multi-proxy palaeolimnological analyses. Changes in lake-water pH were inferred from diatom analysis, whereas pollen-based land-use reconstructions (Landscape Reconstruction Algorithm) together with geochemical records provided information on catchment-scale environmental changes, and comparisons were made with available records of climate and population density. Our long-term reconstructions reveal that inferred lake-water TOC concentrations were generally high prior to AD1900, with additional variability coupled mainly to changes in forest cover and agricultural land-use intensity. The last century showed significant changes, and unusually low TOC concentrations were inferred at AD1930-1990, followed by a recent increase, largely consistent with monitoring data. Variations in sulfur emissions, with an increase in the early 1900s to a peak around AD1980 and a subsequent decrease, were identified as an important driver of these dynamics at both sites, while processes related to the introduction of modern forestry and recent increases in precipitation and temperature may have contributed, but the effects differed between the sites. The increase in lake-water TOC concentration from around AD1980 may therefore reflect a recovery process. Given that the effects of sulfur deposition now subside and that the recovery of lake-water TOC concentrations has reached pre-industrial levels, other forcing mechanisms related to land management and climate change may become the main drivers of TOC concentration changes in
- Published
- 2015
- Full Text
- View/download PDF
15. Social-ecological systems in the Anthropocene : The need for integrating social and biophysical records at regional scales.
- Author
-
Dearing, JA, Acma, B, Bub, S, Chambers, FM, Chen, X, Cooper, J, Crook, D, Dong, XH, Dotterweich, M, Edwards, ME, Foster, TH, Gaillard, Marie-José, Galop, D, Gell, P, Gil, A, Jeffers, E, Jones, RT, Anupama, K, Langdon, PG, Marchant, R, Mazier, F, McLean, CE, Nunes, LH, Sukumar, R, Suryaprakash, I, Umer, M, Yang, XD, Wang, R, Zhang, K, Dearing, JA, Acma, B, Bub, S, Chambers, FM, Chen, X, Cooper, J, Crook, D, Dong, XH, Dotterweich, M, Edwards, ME, Foster, TH, Gaillard, Marie-José, Galop, D, Gell, P, Gil, A, Jeffers, E, Jones, RT, Anupama, K, Langdon, PG, Marchant, R, Mazier, F, McLean, CE, Nunes, LH, Sukumar, R, Suryaprakash, I, Umer, M, Yang, XD, Wang, R, and Zhang, K
- Abstract
Understanding social-ecological system dynamics is a major research priority for sustainable management of landscapes, ecosystems and resources. But the lack of multi-decadal records represents an important gap in information that hinders the development of the research agenda. Without improved information on the long-term and complex interactions between causal factors and responses, it will be difficult to answer key questions about trends, rates of change, tipping points, safe operating spaces and pre-impact conditions. Where available long-term monitored records are too short or lacking, palaeoenvironmental sciences may provide continuous multi-decadal records for an array of ecosystem states, processes and services. Combining these records with conventional sources of historical information from instrumental monitoring records, official statistics and enumerations, remote sensing, archival documents, cartography and archaeology produces an evolutionary framework for reconstructing integrated regional histories. We demonstrate the integrated approach with published case studies from Australia, China, Europe and North America.
- Published
- 2015
- Full Text
- View/download PDF
16. Pollen-based quantitative reconstructions of Holocene regional vegetation cover (plant-functional types and land-cover types) in Europe suitable for climate modelling
- Author
-
Trondman, Anna-Kari, Gaillard, Marie-José, Mazier, F., Sugita, Shinya, Fyfe, R., Nielsen, Anne Birgitte, Twiddle, C., Barratt, P., Birks, H. J. B., Bjune, A. E., Bjorkman, L., Brostrom, A., Caseldine, C., David, R., Dodson, J., Doerfler, W., Fischer, E., van Geel, B., Giesecke, T., Hultberg, T., Kalnina, L., Kangur, M., van der Knaap, P., Koff, T., Kunes, P., Lageras, P., Latalowa, M., Lechterbeck, J., Leroyer, C., Leydet, M., Lindbladh, M., Marquer, Laurent, Mitchell, F. J. G., Odgaard, B. V., Peglar, S. M., Persson, T., Poska, A., Roesch, M., Seppa, H., Veski, S., Wick, L., Trondman, Anna-Kari, Gaillard, Marie-José, Mazier, F., Sugita, Shinya, Fyfe, R., Nielsen, Anne Birgitte, Twiddle, C., Barratt, P., Birks, H. J. B., Bjune, A. E., Bjorkman, L., Brostrom, A., Caseldine, C., David, R., Dodson, J., Doerfler, W., Fischer, E., van Geel, B., Giesecke, T., Hultberg, T., Kalnina, L., Kangur, M., van der Knaap, P., Koff, T., Kunes, P., Lageras, P., Latalowa, M., Lechterbeck, J., Leroyer, C., Leydet, M., Lindbladh, M., Marquer, Laurent, Mitchell, F. J. G., Odgaard, B. V., Peglar, S. M., Persson, T., Poska, A., Roesch, M., Seppa, H., Veski, S., and Wick, L.
- Abstract
We present quantitative reconstructions of regional vegetation cover in north-western Europe, western Europe north of the Alps, and eastern Europe for five time windows in the Holocene [around 6k, 3k, 0.5k, 0.2k, and 0.05k calendar years before present (bp)] at a 1 degrees x1 degrees spatial scale with the objective of producing vegetation descriptions suitable for climate modelling. The REVEALS model was applied on 636 pollen records from lakes and bogs to reconstruct the past cover of 25 plant taxa grouped into 10 plant-functional types and three land-cover types [evergreen trees, summer-green (deciduous) trees, and open land]. The model corrects for some of the biases in pollen percentages by using pollen productivity estimates and fall speeds of pollen, and by applying simple but robust models of pollen dispersal and deposition. The emerging patterns of tree migration and deforestation between 6k bp and modern time in the REVEALS estimates agree with our general understanding of the vegetation history of Europe based on pollen percentages. However, the degree of anthropogenic deforestation (i.e. cover of cultivated and grazing land) at 3k, 0.5k, and 0.2k bp is significantly higher than deduced from pollen percentages. This is also the case at 6k in some parts of Europe, in particular Britain and Ireland. Furthermore, the relationship between summer-green and evergreen trees, and between individual tree taxa, differs significantly when expressed as pollen percentages or as REVEALS estimates of tree cover. For instance, when Pinus is dominant over Picea as pollen percentages, Picea is dominant over Pinus as REVEALS estimates. These differences play a major role in the reconstruction of European landscapes and for the study of land cover-climate interactions, biodiversity and human resources.
- Published
- 2015
- Full Text
- View/download PDF
17. Late Holocene vegetation changes in relation with climate fluctuations and human activity in Languedoc (southern France)
- Author
-
Azuara, J., primary, Combourieu-Nebout, N., additional, Lebreton, V., additional, Mazier, F., additional, Müller, S. D., additional, and Dezileau, L., additional
- Published
- 2015
- Full Text
- View/download PDF
18. Social-ecological systems in the Anthropocene: The need for integrating social and biophysical records at regional scales
- Author
-
Dearing, JA, primary, Acma, B, additional, Bub, S, additional, Chambers, FM, additional, Chen, X, additional, Cooper, J, additional, Crook, D, additional, Dong, XH, additional, Dotterweich, M, additional, Edwards, ME, additional, Foster, TH, additional, Gaillard, M-J, additional, Galop, D, additional, Gell, P, additional, Gil, A, additional, Jeffers, E, additional, Jones, RT, additional, Anupama, K, additional, Langdon, PG, additional, Marchant, R, additional, Mazier, F, additional, McLean, CE, additional, Nunes, LH, additional, Sukumar, R, additional, Suryaprakash, I, additional, Umer, M, additional, Yang, XD, additional, Wang, R, additional, and Zhang, K, additional
- Published
- 2015
- Full Text
- View/download PDF
19. Historical TOC concentration minima during peak sulfur deposition in two Swedish lakes
- Author
-
Bragée, P., primary, Mazier, F., additional, Nielsen, A. B., additional, Rosén, P., additional, Fredh, D., additional, Broström, A., additional, Granéli, W., additional, and Hammarlund, D., additional
- Published
- 2015
- Full Text
- View/download PDF
20. Regional climate model simulations for Europe at 6 and 0.2 k BP : sensitivity to changes in anthropogenic deforestation
- Author
-
Strandberg, Gustav, Kjellstrom, Erik, Poska, A., Wagner, S., Gaillard, M. -J, Trondman, A. -K, Mauri, A., Davis, B. A. S., Kaplan, J. O., Birks, H. J. B., Bjune, A. E., Fyfe, R., Giesecke, T., Kalnina, L., Kangur, M., van der Knaap, W. O., Kokfelt, U., Kunes, P., Latalowa, M., Marquer, L., Mazier, F., Nielsen, A. B., Smith, B., Seppa, H., Sugita, S., Strandberg, Gustav, Kjellstrom, Erik, Poska, A., Wagner, S., Gaillard, M. -J, Trondman, A. -K, Mauri, A., Davis, B. A. S., Kaplan, J. O., Birks, H. J. B., Bjune, A. E., Fyfe, R., Giesecke, T., Kalnina, L., Kangur, M., van der Knaap, W. O., Kokfelt, U., Kunes, P., Latalowa, M., Marquer, L., Mazier, F., Nielsen, A. B., Smith, B., Seppa, H., and Sugita, S.
- Abstract
This study aims to evaluate the direct effects of anthropogenic deforestation on simulated climate at two contrasting periods in the Holocene, similar to 6 and similar to 0.2 k BP in Europe. We apply We apply the Rossby Centre regional climate model RCA3, a regional climate model with 50 km spatial resolution, for both time periods, considering three alternative descriptions of the past vegetation: (i) potential natural vegetation (V) simulated by the dynamic vegetation model LPJ-GUESS, (ii) potential vegetation with anthropogenic land use (deforestation) from the HYDE3.1 (History Database of the Global Environment) scenario (V + H3.1), and (iii) potential vegetation with anthropogenic land use from the KK10 scenario (V + KK10). The climate model results show that the simulated effects of deforestation depend on both local/regional climate and vegetation characteristics. At similar to 6 k BP the extent of simulated deforestation in Europe is generally small, but there are areas where deforestation is large enough to produce significant differences in summer temperatures of 0.5-1 degrees C. At similar to 0.2 k BP, extensive deforestation, particularly according to the KK10 model, leads to significant temperature differences in large parts of Europe in both winter and summer. In winter, deforestation leads to lower temperatures because of the differences in albedo between forested and unforested areas, particularly in the snow-covered regions. In summer, deforestation leads to higher temperatures in central and eastern Europe because evapotranspiration from unforested areas is lower than from forests. Summer evaporation is already limited in the southernmost parts of Europe under potential vegetation conditions and, therefore, cannot become much lower. Accordingly, the albedo effect dominates in southern Europe also in summer, which implies that deforestation causes a decrease in temperatures. Differences in summer temperature due to deforestation range from -1 degree
- Published
- 2014
- Full Text
- View/download PDF
21. Regional climate model simulations for Europe at 6 and 0.2 k BP:sensitivity to changes in anthropogenic deforestation
- Author
-
Strandberg, G., Kjellstrom, E., Poska, A., Wagner, Stefan, Gaillard, M. -J., Trondman, A. -K., Mauri, A., Davis, B. A. S., Kaplan, J. O., Birks, H. J. B., Bjune, A. E., Fyfe, R., Giesecke, T., Kalnina, L., Kangur, M., van der Knaap, W. O., Kokfelt, Ulla, Kunes, P., Latalowa, M., Marquer, L., Mazier, F., Nielsen, A. B., Smith, B., Seppa, H., Sugita, S., Strandberg, G., Kjellstrom, E., Poska, A., Wagner, Stefan, Gaillard, M. -J., Trondman, A. -K., Mauri, A., Davis, B. A. S., Kaplan, J. O., Birks, H. J. B., Bjune, A. E., Fyfe, R., Giesecke, T., Kalnina, L., Kangur, M., van der Knaap, W. O., Kokfelt, Ulla, Kunes, P., Latalowa, M., Marquer, L., Mazier, F., Nielsen, A. B., Smith, B., Seppa, H., and Sugita, S.
- Published
- 2014
22. The role of holocene land-use change (6K to 0.2K before present) on regional climate via biogeophysical feedbacks in NW Europe
- Author
-
Gaillard, Marie-José, Strandberg, G., Poska, A., Kaplan, J.O., Smith, B., Sugita, S., Trondman, Anna-Kari, Mazier, F., Fyfe, R., Nielsen, A.B., Marquer, L., Gaillard, Marie-José, Strandberg, G., Poska, A., Kaplan, J.O., Smith, B., Sugita, S., Trondman, Anna-Kari, Mazier, F., Fyfe, R., Nielsen, A.B., and Marquer, L.
- Published
- 2014
23. Pollen‐based quantitative reconstructions of Holocene regional vegetation cover (plant‐functional types and land‐cover types) in Europe suitable for climate modelling
- Author
-
Trondman, A.‐K., primary, Gaillard, M.‐J., additional, Mazier, F., additional, Sugita, S., additional, Fyfe, R., additional, Nielsen, A. B., additional, Twiddle, C., additional, Barratt, P., additional, Birks, H. J. B., additional, Bjune, A. E., additional, Björkman, L., additional, Broström, A., additional, Caseldine, C., additional, David, R., additional, Dodson, J., additional, Dörfler, W., additional, Fischer, E., additional, Geel, B., additional, Giesecke, T., additional, Hultberg, T., additional, Kalnina, L., additional, Kangur, M., additional, Knaap, P., additional, Koff, T., additional, Kuneš, P., additional, Lagerås, P., additional, Latałowa, M., additional, Lechterbeck, J., additional, Leroyer, C., additional, Leydet, M., additional, Lindbladh, M., additional, Marquer, L., additional, Mitchell, F. J. G., additional, Odgaard, B. V., additional, Peglar, S. M., additional, Persson, T., additional, Poska, A., additional, Rösch, M., additional, Seppä, H., additional, Veski, S., additional, and Wick, L., additional
- Published
- 2014
- Full Text
- View/download PDF
24. Holocene changes in vegetation composition in northern Europe: why pollen-based quantitative reconstructions matter?
- Author
-
Marquer, L., Gaillard, M.-J., Sugita, S., Trondman, A.-K., Mazier, F., Nielsen, A.B., Fyfe, R.M., Odgaard, B.V., Alenius, T., Birks, H. J. B., Bjune, A., Christiansen, J., Dodson, J., Edwards, K.J., Giesecke, T., Herzschuh, U., Kangur, M., Lorenz, S., Poska, A., Schult, M., Seppä, H., Marquer, L., Gaillard, M.-J., Sugita, S., Trondman, A.-K., Mazier, F., Nielsen, A.B., Fyfe, R.M., Odgaard, B.V., Alenius, T., Birks, H. J. B., Bjune, A., Christiansen, J., Dodson, J., Edwards, K.J., Giesecke, T., Herzschuh, U., Kangur, M., Lorenz, S., Poska, A., Schult, M., and Seppä, H.
- Abstract
We present pollen-based reconstructions of the spatio-temporal dynamics of northern European regional vegetation abundance through the Holocene. We apply the Regional Estimates of VEgetation Abundance from Large Sites (REVEALS) model using fossil pollen records from eighteen sites within five modern biomes in the region. The eighteen sites are classified into four time-trajectory types on the basis of principal components analysis of both the REVEALS-based vegetation estimates (RVs) and the pollen percentage (PPs). The four trajectory types are more clearly separated for RVs than PPs. Further, the timing of major Holocene shifts, rates of compositional change, and diversity indices (turnover and evenness) differ between RVs and PPs. The differences are due to the reduction by REVEALS of biases in fossil pollen assemblages caused by different basin size, and inter-taxonomic differences in pollen productivity and dispersal properties. For example, in comparison to the PPs, the RVs show an earlier increase in Corylus and Ulmus in the early-Holocene and a more pronounced increase in grassland and deforested areas since the mid-Holocene. The results suggest that the influence of deforestation and agricultural activities on plant composition and abundance from Neolithic times was stronger than previously inferred from PPs. Relative to PPs, RVs show a more rapid compositional change, a largest decrease in turnover, and less variable evenness in most of northern Europe since 5200 cal yr BP. All these changes are primarily related to the strong impact of human activities on the vegetation. This study demonstrates that RV-based estimates of diversity indices, timing of shifts, and rates of change in reconstructed vegetation provide new insights into the timing and magnitude of major human disturbance on Holocene regional vegetation, features that are critical in the assessment of human impact on vegetation, land-cover, biodiversity, and climate in the past.
- Published
- 2013
25. Regional climate model simulations for Europe at 6 k and 0.2 k yr BP: sensitivity to changes in anthropogenic deforestation.
- Author
-
Strandberg, G., Kjellström, E., Poska, A., Wagner, S., Gaillard, Marie-José, Trondman, Anna-Kari, Mauri, A., Birks, H.J.B., Bjune, A.E., Davis, B. A. S., Fyfe, R., Giesecke, T., Kalnina, L., Kangur, M., Kaplan, J.O., van der Knaap, W.O., Kokfelt, U., Kuneš, P., Latałowa, M., Marquer, Laurent, Mazier, F., Nielsen, A.B., Smith, B., Seppä, H., Sugita, S., Strandberg, G., Kjellström, E., Poska, A., Wagner, S., Gaillard, Marie-José, Trondman, Anna-Kari, Mauri, A., Birks, H.J.B., Bjune, A.E., Davis, B. A. S., Fyfe, R., Giesecke, T., Kalnina, L., Kangur, M., Kaplan, J.O., van der Knaap, W.O., Kokfelt, U., Kuneš, P., Latałowa, M., Marquer, Laurent, Mazier, F., Nielsen, A.B., Smith, B., Seppä, H., and Sugita, S.
- Abstract
This study aims to evaluate the direct effects of anthropogenic deforestation on simulated climate at two contrasting periods in the Holocene, ~6 k BP and ~0.2 k BP in Europe. We apply RCA3, a regional climate model with 50 km spatial resolution, for both time periods, considering three alternative descriptions of the past vegetation: (i) potential natural vegetation (V) simulated by the dynamic vegetation model LPJ-GUESS, (ii) potential vegetation with anthropogenic land cover (deforestation) as simulated by the HYDE model (V + H), and (iii) potential vegetation with anthropogenic land cover as simulated by the KK model (V + K). The KK model estimates are closer to a set of pollen-based reconstructions of vegetation cover than the HYDE model estimates. The climate-model results show that the simulated effects of deforestation depend on both local/regional climate and vegetation characteristics. At ~6 k BP the extent of simulated deforestation in Europe is generally small, but there are areas where deforestation is large enough to produce significant differences in summer temperatures of 0.5–1 °C. At ~0.2 k BP, simulated deforestation is much more extensive than previously assumed, in particular according to the KK model. This leads to significant temperature differences in large parts of Europe in both winter and summer. In winter, deforestation leads to lower temperatures because of the differences in albedo between forested and unforested areas, particularly in the snow-covered regions. In summer, deforestation leads to higher temperatures in central and eastern Europe since evapotranspiration from unforested areas is lower than from forests. Summer evaporation is already limited in the southernmost parts of Europe under potential vegetation conditions and, therefore, cannot become much lower. Accordingly, the albedo effect dominates also in summer, which implies that deforestation causes a decrease in temperatures. Differences in summer temperature due to defore
- Published
- 2013
- Full Text
- View/download PDF
26. The Holocene history of shallow lakes of the Great Alvar, Öland, Baltic Sea, southern Sweden.
- Author
-
Gaillard, Marie-José, Lemdahl, Geoffrey, Mazier, F., Gaillard, Marie-José, Lemdahl, Geoffrey, and Mazier, F.
- Published
- 2009
27. Regional climate model simulations for Europe at 6 and 0.2 k BP: sensitivity to changes in anthropogenic deforestation
- Author
-
Strandberg, G., primary, Kjellström, E., additional, Poska, A., additional, Wagner, S., additional, Gaillard, M.-J., additional, Trondman, A.-K., additional, Mauri, A., additional, Davis, B. A. S., additional, Kaplan, J. O., additional, Birks, H. J. B., additional, Bjune, A. E., additional, Fyfe, R., additional, Giesecke, T., additional, Kalnina, L., additional, Kangur, M., additional, van der Knaap, W. O., additional, Kokfelt, U., additional, Kuneš, P., additional, Lata\\l owa, M., additional, Marquer, L., additional, Mazier, F., additional, Nielsen, A. B., additional, Smith, B., additional, Seppä, H., additional, and Sugita, S., additional
- Published
- 2014
- Full Text
- View/download PDF
28. Forcing mechanisms behind variations in total organic carbon (TOC) concentration of lake waters during the past eight centuries – palaeolimnological evidence from southern Sweden
- Author
-
Bragée, P., primary, Mazier, F., additional, Rosén, P., additional, Fredh, D., additional, Broström, A., additional, Granéli, W., additional, and Hammarlund, D., additional
- Published
- 2013
- Full Text
- View/download PDF
29. Regional climate model simulations for Europe at 6 k and 0.2 k yr BP: sensitivity to changes in anthropogenic deforestation
- Author
-
Strandberg, G., primary, Kjellström, E., additional, Poska, A., additional, Wagner, S., additional, Gaillard, M.-J., additional, Trondman, A.-K., additional, Mauri, A., additional, Birks, H. J. B., additional, Bjune, A. E., additional, Davis, B. A. S., additional, Fyfe, R., additional, Giesecke, T., additional, Kalnina, L., additional, Kangur, M., additional, Kaplan, J. O., additional, van der Knaap, W. O., additional, Kokfelt, U., additional, Kuneš, P., additional, Latałowa, M., additional, Marquer, L., additional, Mazier, F., additional, Nielsen, A. B., additional, Smith, B., additional, Seppä, H., additional, and Sugita, S., additional
- Published
- 2013
- Full Text
- View/download PDF
30. The impact of land-use change on floristic diversity at regional scale in southern Sweden 600 BC–AD 2008
- Author
-
Fredh, D., primary, Broström, A., additional, Rundgren, M., additional, Lagerås, P., additional, Mazier, F., additional, and Zillén, L., additional
- Published
- 2013
- Full Text
- View/download PDF
31. The impact of land-use change on floristic diversity at regional scale in southern Sweden 600 BC–AD 2008
- Author
-
Fredh, D., primary, Broström, A., additional, Rundgren, M., additional, Lagerås, P., additional, Mazier, F., additional, and Zillén, L., additional
- Published
- 2012
- Full Text
- View/download PDF
32. Signals of tree volume and temperature in a high‐resolution record of pollen accumulation rates in northern Finland
- Author
-
Mazier, F., primary, Nielsen, A. B., additional, Broström, A., additional, Sugita, S., additional, and Hicks, S., additional
- Published
- 2012
- Full Text
- View/download PDF
33. Grazing activities and biodiversity history in the Pyrenees: New insights on high altitude ecosystems in the framework of a Human-Environment Observatory
- Author
-
Galop, Didier, primary, Houet, T, additional, Mazier, F, additional, Leroux, G, additional, and Rius, D, additional
- Published
- 2011
- Full Text
- View/download PDF
34. Holocene land-cover reconstructions for studies on land cover-climate feedbacks
- Author
-
Gaillard, M.-J., primary, Sugita, S., additional, Mazier, F., additional, Trondman, A.-K., additional, Broström, A., additional, Hickler, T., additional, Kaplan, J. O., additional, Kjellström, E., additional, Kokfelt, U., additional, Kuneš, P., additional, Lemmen, C., additional, Miller, P., additional, Olofsson, J., additional, Poska, A., additional, Rundgren, M., additional, Smith, B., additional, Strandberg, G., additional, Fyfe, R., additional, Nielsen, A. B., additional, Alenius, T., additional, Balakauskas, L., additional, Barnekow, L., additional, Birks, H. J. B., additional, Bjune, A., additional, Björkman, L., additional, Giesecke, T., additional, Hjelle, K., additional, Kalnina, L., additional, Kangur, M., additional, van der Knaap, W. O., additional, Koff, T., additional, Lagerås, P., additional, Latałowa, M., additional, Leydet, M., additional, Lechterbeck, J., additional, Lindbladh, M., additional, Odgaard, B., additional, Peglar, S., additional, Segerström, U., additional, von Stedingk, H., additional, and Seppä, H., additional
- Published
- 2010
- Full Text
- View/download PDF
35. Multidisciplinary approach to reconstructing local pastoral activities: an example from the Pyrenean Mountains (Pays Basque)
- Author
-
Mazier, F., primary, Galop, D., additional, Gaillard, M.J., additional, Rendu, C., additional, Cugny, C., additional, Legaz, A., additional, Peyron, O., additional, and Buttler, A., additional
- Published
- 2009
- Full Text
- View/download PDF
36. Environmental and climatic changes in the Jura mountains (eastern France) during the Lateglacial–Holocene transition: a multi-proxy record from Lake Lautrey
- Author
-
MAGNY, M, primary, AALBERSBERG, G, additional, BEGEOT, C, additional, BENOITRUFFALDI, P, additional, BOSSUET, G, additional, DISNAR, J, additional, HEIRI, O, additional, LAGGOUNDEFARGE, F, additional, MAZIER, F, additional, and MILLET, L, additional
- Published
- 2006
- Full Text
- View/download PDF
37. Pollen-based quantitative reconstructions of Holocene regional vegetation cover (plant-functional types and land-cover types) in Europe suitable for climate modelling.
- Author
-
Trondman, A.‐K., Gaillard, M.‐J., Mazier, F., Sugita, S., Fyfe, R., Nielsen, A. B., Twiddle, C., Barratt, P., Birks, H. J. B., Bjune, A. E., Björkman, L., Broström, A., Caseldine, C., David, R., Dodson, J., Dörfler, W., Fischer, E., Geel, B., Giesecke, T., and Hultberg, T.
- Subjects
GROUND vegetation cover ,PALYNOLOGY ,HOLOCENE paleobotany ,PALEOCLIMATOLOGY ,DEFORESTATION - Abstract
We present quantitative reconstructions of regional vegetation cover in north-western Europe, western Europe north of the Alps, and eastern Europe for five time windows in the Holocene [around 6k, 3k, 0.5k, 0.2k, and 0.05k calendar years before present ( bp)] at a 1° × 1° spatial scale with the objective of producing vegetation descriptions suitable for climate modelling. The REVEALS model was applied on 636 pollen records from lakes and bogs to reconstruct the past cover of 25 plant taxa grouped into 10 plant-functional types and three land-cover types [evergreen trees, summer-green (deciduous) trees, and open land]. The model corrects for some of the biases in pollen percentages by using pollen productivity estimates and fall speeds of pollen, and by applying simple but robust models of pollen dispersal and deposition. The emerging patterns of tree migration and deforestation between 6k bp and modern time in the REVEALS estimates agree with our general understanding of the vegetation history of Europe based on pollen percentages. However, the degree of anthropogenic deforestation (i.e. cover of cultivated and grazing land) at 3k, 0.5k, and 0.2k bp is significantly higher than deduced from pollen percentages. This is also the case at 6k in some parts of Europe, in particular Britain and Ireland. Furthermore, the relationship between summer-green and evergreen trees, and between individual tree taxa, differs significantly when expressed as pollen percentages or as REVEALS estimates of tree cover. For instance, when Pinus is dominant over Picea as pollen percentages, Picea is dominant over Pinus as REVEALS estimates. These differences play a major role in the reconstruction of European landscapes and for the study of land cover-climate interactions, biodiversity and human resources. [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF
38. The impact of land-use change on floristic diversity at regional scale in southern Sweden 600 BC-AD 2008.
- Author
-
Fredh, D., Broström, A., Rundgren, M., Lagerås, P., Mazier, F., and Zillén, L.
- Subjects
CLIMATE change ,LAND use ,PLANT diversity ,ARCHAEOLOGICAL assemblages ,FOSSIL pollen ,MATHEMATICAL models ,QUANTITATIVE research - Abstract
This study explores the relationship between land-use and floristic diversity between 600 BC and AD 2008 in the uplands of southern Sweden. We use fossil pollen assemblages and the Regional Estimates of Vegetation Abundance from Large Sites (REVEALS) model to quantitatively reconstruct land-cover at a regional scale. Floristic richness and evenness are estimated using palynological richness and REVEALS-based evenness, respectively. We focus on the period AD 350 to 750 to investigate the impact of an inferred, short-lived (< 200 yr) period of land-use expansion and sub-sequent land abandonment on vegetation composition and floristic diversity. The observed vegetation response is compared to that recorded during the transition from traditional to modern land-use management at the end of the 19th century. Our results suggest that agricultural land-use was most widespread between AD 350 and 1850, which correlates broadly with high values of palynological richness. REVEALS-based evenness was highest between AD 500 and 1600 which indicates a more equal distribution among taxa during this time interval. Palynological richness increased during the inferred land-use expansion after AD 350 and decreased during the subsequent regression AD 550-750, while REVEALS-based increased throughout this period. The values of palynological richness during the last few decades are within the range observed during the last 1650 yr. However, REVEALS-based evenness shows much lower values during the last century compared to the previous ca. 2600 yr, which indicates that the distribution of present day vegetation is unusual in a millennial perspective. Our results show that regional scale changes in land-use have had clear impacts on floristic diversity in southern Sweden, with a vegetation response time of less than 20 to 50 yr. We show the importance of traditional land-use to attain high biodiversity and suggest that ecosystem management should include a regional landscape perspective. [ABSTRACT FROM AUTHOR]
- Published
- 2012
- Full Text
- View/download PDF
39. Holocene land-cover reconstructions for studies on land cover-climate feedbacks.
- Author
-
M.-J. Gaillard, Sugita, S., Mazier, F., Kaplan, J. O., Trondman, A.-K., Broström, A., Hickler, T., Kjellström, E., Kunes, P., Lemmen, C., Olofsson, J., Smith, B., and Strandberg, G.
- Abstract
The major objectives of this paper are: (1) to review the pros and cons of the scenarios of past anthropogenic land cover change (ALCC) developed during the last ten years, (2) to discuss issues related to pollen-based reconstruction of the past land-cover and introduce a new method, REVEALS (Regional Estimates of VEgetation Abundance from Large Sites), to infer long-term records of past land-cover from pollen data, (3) to present a new project (LANDCLIM: LAND cover - CLIMate interactions in NW Europe during the Holocene) currently underway, and show preliminary results of REVEALS reconstructions of the regional land-cover in the Czech Republic for five selected time windows of the Holocene, and (4) to discuss the implications and future directions in climate and vegetation/land-cover modeling, and in the assessment of the effects of human-induced changes in land-cover on the regional climate through altered feedbacks. The existing ALCC scenarios show large discrepancies between them, and few cover time periods older than AD 800. When these scenarios are used to assess the impact of human land-use on climate, contrasting results are obtained. It emphasizes the need of REVEALS model-based land-cover reconstructions. They might help to fine-tune descriptions of past land-cover and lead to a better understanding of how long-term changes in ALCC might have influenced climate. The REVEALS model is proved to provide better estimates of the regional vegetation/land-cover changes than the traditional use of pollen percentages. Thus, the application of REVEALS opens up the possibility of achieving a more robust assessment of land cover at regionalto continental-spatial scale throughout the Holocene. We present maps of REVEALS estimates for the percentage cover of 10 plant functional types (PFTs) at 200 BP and 6000 BP, and of the two open-land PFTs "grassland" and "agricultural land" at five time-windows from 6000 BP to recent time. The LANDCLIM results are expected to provide crucial data to reassess ALCC estimates for a better understanding of the land suface-atmosphere interactions. [ABSTRACT FROM AUTHOR]
- Published
- 2010
- Full Text
- View/download PDF
40. Pollen-based quantitative reconstructions of Holocene regional vegetation cover (plant-functional types and land-cover types) in Europe suitable for climate modelling
- Author
-
Birks, H. J. B., Fischer, E., Poska, A., Giesecke, T., Leroyer, C., Van Geel, B., Leydet, M., Caseldine, C., Lindbladh, M., Sugita, S., Bjorkman, L., Lechterbeck, J., Barratt, P., Twiddle, C., Van Der Knaap, Pim, Fyfe, R., Hultberg, T., Veski, S., Dodson, J., Kangur, M., Marquer, L., Wick, L., Lageras, P., Kunes, P., Mazier, F., Doerfler, W., Koff, T., Trondman, A. -K., Odgaard, B. V., Roesch, M., Nielsen, A. B., David, R., Seppa, H., Gaillard, M. -J., Latalowa, M., Peglar, S. M., Kalnina, L., Brostrom, A., Mitchell, F. J. G., Persson, T., and Bjune, A. E.
- Subjects
13. Climate action ,15. Life on land ,580 Plants (Botany) - Abstract
We present quantitative reconstructions of regional vegetation cover in north-western Europe, western Europe north of the Alps, and eastern Europe for five time windows in the Holocene around 6k, 3k, 0.5k, 0.2k, and 0.05k calendar years before present (bp)] at a 1 degrees x1 degrees spatial scale with the objective of producing vegetation descriptions suitable for climate modelling. The REVEALS model was applied on 636 pollen records from lakes and bogs to reconstruct the past cover of 25 plant taxa grouped into 10 plant-functional types and three land-cover types evergreen trees, summer-green (deciduous) trees, and open land]. The model corrects for some of the biases in pollen percentages by using pollen productivity estimates and fall speeds of pollen, and by applying simple but robust models of pollen dispersal and deposition. The emerging patterns of tree migration and deforestation between 6k bp and modern time in the REVEALS estimates agree with our general understanding of the vegetation history of Europe based on pollen percentages. However, the degree of anthropogenic deforestation (i.e. cover of cultivated and grazing land) at 3k, 0.5k, and 0.2k bp is significantly higher than deduced from pollen percentages. This is also the case at 6k in some parts of Europe, in particular Britain and Ireland. Furthermore, the relationship between summer-green and evergreen trees, and between individual tree taxa, differs significantly when expressed as pollen percentages or as REVEALS estimates of tree cover. For instance, when Pinus is dominant over Picea as pollen percentages, Picea is dominant over Pinus as REVEALS estimates. These differences play a major role in the reconstruction of European landscapes and for the study of land cover-climate interactions, biodiversity and human resources.
41. Palaeoecological data indicates land-use changes across Europe linked tospatial heterogeneity in mortality during the Black Death pandemic
- Author
-
Izdebski, A. Guzowski, P. Poniat, R. Masci, L. Palli, J. and Vignola, C. Bauch, M. Cocozza, C. Fernandes, R. and Ljungqvist, F. C. Newfield, T. Seim, A. Abel-Schaad, D. and Alba-Sanchez, F. Bjoerkman, L. Brauer, A. Brown, A. and Czerwinski, S. Ejarque, A. Filoc, M. Florenzano, A. and Fredh, E. D. Fyfe, R. Jasiunas, N. Kolaczek, P. Kouli, K. Kozakova, R. Kupryjanowicz, M. Lageras, P. and Lamentowicz, M. Lindbladh, M. Lopez-Saez, J. A. and Luelmo-Lautenschlaeger, R. Marcisz, K. Mazier, F. Mensing, S. Mercuri, A. M. Milecka, K. Miras, Y. Noryskiewicz, A. M. Novenko, E. Obremska, M. Panajiotidis, S. and Papadopoulou, M. L. Pedziszewska, A. Perez-Diaz, S. and Piovesan, G. Pluskowski, A. Pokorny, P. Poska, A. and Reitalu, T. Roesch, M. Sadori, L. Ferreira, C. Sa Sebag, D. Slowinski, M. Stancikaite, M. Stivrins, N. Tunno, I and Veski, S. Wacnik, A. Masi, A. and Izdebski, A. Guzowski, P. Poniat, R. Masci, L. Palli, J. and Vignola, C. Bauch, M. Cocozza, C. Fernandes, R. and Ljungqvist, F. C. Newfield, T. Seim, A. Abel-Schaad, D. and Alba-Sanchez, F. Bjoerkman, L. Brauer, A. Brown, A. and Czerwinski, S. Ejarque, A. Filoc, M. Florenzano, A. and Fredh, E. D. Fyfe, R. Jasiunas, N. Kolaczek, P. Kouli, K. Kozakova, R. Kupryjanowicz, M. Lageras, P. and Lamentowicz, M. Lindbladh, M. Lopez-Saez, J. A. and Luelmo-Lautenschlaeger, R. Marcisz, K. Mazier, F. Mensing, S. Mercuri, A. M. Milecka, K. Miras, Y. Noryskiewicz, A. M. Novenko, E. Obremska, M. Panajiotidis, S. and Papadopoulou, M. L. Pedziszewska, A. Perez-Diaz, S. and Piovesan, G. Pluskowski, A. Pokorny, P. Poska, A. and Reitalu, T. Roesch, M. Sadori, L. Ferreira, C. Sa Sebag, D. Slowinski, M. Stancikaite, M. Stivrins, N. Tunno, I and Veski, S. Wacnik, A. Masi, A.
- Abstract
Historical accounts of the mortality outcomes of the Black Death plague pandemic are variable across Europe, with much higher death tolls suggested in some areas than others. Here the authors use a `big data palaeoecology' approach to show that land use change following the pandemic was spatially variable across Europe, confirming heterogeneous responses with empirical data. The Black Death (1347-1352 ce) is the most renowned pandemic in human history, believed by many to have killed half of Europe's population. However, despite advances in ancient DNA research that conclusively identified the pandemic's causative agent (bacterium Yersinia pestis), our knowledge of the Black Death remains limited, based primarily on qualitative remarks in medieval written sources available for some areas of Western Europe. Here, we remedy this situation by applying a pioneering new approach, `big data palaeoecology', which, starting from palynological data, evaluates the scale of the Black Death's mortality on a regional scale across Europe. We collected pollen data on landscape change from 261 radiocarbon-dated coring sites (lakes and wetlands) located across 19 modern-day European countries. We used two independent methods of analysis to evaluate whether the changes we see in the landscape at the time of the Black Death agree with the hypothesis that a large portion of the population, upwards of half, died within a few years in the 21 historical regions we studied. While we can confirm that the Black Death had a devastating impact in some regions, we found that it had negligible or no impact in others. These inter-regional differences in the Black Death's mortality across Europe demonstrate the significance of cultural, ecological, economic, societal and climatic factors that mediated the dissemination and impact of the disease. The complex interplay of these factors, along with the historical ecology of plague, should be a focus of future research on
42. Substantial light woodland and open vegetation characterized the temperate forest biome before Homo sapiens .
- Author
-
Pearce EA, Mazier F, Normand S, Fyfe R, Andrieu V, Bakels C, Balwierz Z, Bińka K, Boreham S, Borisova OK, Brostrom A, de Beaulieu JL, Gao C, González-Sampériz P, Granoszewski W, Hrynowiecka A, Kołaczek P, Kuneš P, Magri D, Malkiewicz M, Mighall T, Milner AM, Möller P, Nita M, Noryśkiewicz B, Pidek IA, Reille M, Robertsson AM, Salonen JS, Schläfli P, Schokker J, Scussolini P, Šeirienė V, Strahl J, Urban B, Winter H, and Svenning JC
- Subjects
- Humans, Biodiversity, Pollen, Wood, Trees, Ecosystem, Forests
- Abstract
The extent of vegetation openness in past European landscapes is widely debated. In particular, the temperate forest biome has traditionally been defined as dense, closed-canopy forest; however, some argue that large herbivores maintained greater openness or even wood-pasture conditions. Here, we address this question for the Last Interglacial period (129,000-116,000 years ago), before Homo sapiens -linked megafauna declines and anthropogenic landscape transformation. We applied the vegetation reconstruction method REVEALS to 96 Last Interglacial pollen records. We found that light woodland and open vegetation represented, on average, more than 50% cover during this period. The degree of openness was highly variable and only partially linked to climatic factors, indicating the importance of natural disturbance regimes. Our results show that the temperate forest biome was historically heterogeneous rather than uniformly dense, which is consistent with the dependency of much of contemporary European biodiversity on open vegetation and light woodland.
- Published
- 2023
- Full Text
- View/download PDF
43. When beggars are choosers-How nesting of a solitary bee is affected by temporal dynamics of pollen plants in the landscape.
- Author
-
Persson AS, Mazier F, and Smith HG
- Abstract
Wild bees are declining in intensively farmed regions worldwide, threatening pollination services to flowering crops and wild plants. To halt bee declines, it is essential that conservation actions are based on a mechanistic understanding of how bee species utilize landscapes. We aimed at teasing apart how foraging resources in the landscape through the nesting season affected nesting and reproduction of a solitary bee in a farmland region. We investigated how availability of floral resources and potentially resource-rich habitats surrounding nests affected nest provisioning and reproduction in the solitary polylectic bee Osmia bicornis . The study was performed in 18 landscape sectors dominated by agriculture, but varying in agricultural intensity in terms of proportion of organic crop fields and seminatural permanent pastures. Pasture-rich sectors contained more oak ( Quercus robur ), which pollen analysis showed to be favored forage in early season. More oaks ≤100 m from nests led to higher proportions of oak pollen in nest provisions and increased speed of nest construction in early season, but this effect tapered off as flowering decreased. Late-season pollen foraging was dominated by buttercup ( Ranunculus spp.), common in various noncrop habitats. Foraging trips were longer with more oaks and increased further through the season. The opposite was found for buttercup. Oak and buttercup interacted to explain the number of offspring; buttercup had a positive effect only when the number of oaks was above the mean for the studied sectors. The results show that quality of complex and pasture-rich landscapes for O. bicornis depends on preserving existing and generating new oak trees. Lignose plants are key early-season forage resources in agricultural landscapes. Increasing habitat heterogeneity with trees and shrubs and promoting suitable late-flowering forbs can benefit O. bicornis and other wild bees active in spring and early summer, something which existing agri-environment schemes seldom target.
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.