217,565 results on '"Maxwell, A."'
Search Results
2. Ion exchange synthesizes layered polymorphs of MgZrN$_2$ and MgHfN$_2$, two metastable semiconductors
- Author
-
Rom, Christopher L., Jankousky, Matthew, Phan, Maxwell Q., O'Donnell, Shaun, Regier, Corlyn, Neilson, James R., Stevanovic, Vladan, and Zakutayev, Andriy
- Subjects
Condensed Matter - Materials Science - Abstract
The synthesis of ternary nitrides is uniquely difficult, in large part because elemental N$_2$ is relatively inert. However, lithium reacts readily with other metals and N$_2$, making Li-M-N the most numerous sub-set of ternary nitrides. Here, we use Li$_2$ZrN$_2$, a ternary with a simple synthesis recipe, as a precursor for ion exchange reactions towards AZrN$_2$ (A = Mg, Fe, Cu, Zn). In situ synchrotron powder X-ray diffraction studies show that Li$^+$ and Mg$^{2+}$ undergo ion exchange topochemically, preserving the layers of octahedral [ZrN$_6$] to yield a metastable layered polymorph of MgZrN$_2$ (spacegroup $R\overline{3}m$) rather than the calculated ground state structure ($I41/amd$). UV-vis measurements show an optical absorption onset near 2.0 eV, consistent with the calculated bandgap for this polymorph. Our experimental attempts to extend this ion exchange method towards FeZrN$_2$, CuZrN$_2$, and ZnZrN$_2$ resulted in decomposition products (A + ZrN + 1/6 N$_2$), an outcome that our computational results explain via the higher metastability of these phases. We successfully extended this ion exchange method to other Li-M-N precursors by synthesizing MgHfN$_2$ from Li$_2$HfN$_2$. In addition to the discovery of metastable $R\overline{3}m$ MgZrN$_2$ and MgHfN$_2$, this work highlights the potential of the 63 unique Li-M-N phases as precursors to synthesize new ternary nitrides.
- Published
- 2024
3. $\left(p,q\right)$-adic Analysis and the Collatz Conjecture
- Author
-
Siegel, Maxwell Charles
- Subjects
Mathematics - General Mathematics ,11S80 (Primary), 37P99 (Primary), 46S10 (Secondary) - Abstract
What use can there be for a function from the $p$-adic numbers to the $q$-adic numbers, where $p$ and $q$ are distinct primes? The traditional answer, courtesy of the half-century old theory of non-archimedean functional analysis: not much. It turns out this judgment was premature. '$\left(p,q\right)$-adic analysis' of this sort appears to be naturally suited for studying the infamous Collatz map and similar arithmetical dynamical systems. Given such a map $H:\mathbb{Z}\rightarrow\mathbb{Z}$, one can construct a function $\chi_{H}:\mathbb{Z}_{p}\rightarrow\mathbb{Z}_{q}$ for an appropriate choice of distinct primes $p,q$ with the property that $x\in\mathbb{Z}\backslash\left\{ 0\right\} $ is a periodic point of $H$ if and only if there is a $p$-adic integer $\mathfrak{z}\in\left(\mathbb{Q}\cap\mathbb{Z}_{p}\right)\backslash\left\{ 0,1,2,\ldots\right\} $ so that $\chi_{H}\left(\mathfrak{z}\right)=x$. By generalizing Monna-Springer integration theory and establishing a $\left(p,q\right)$-adic analogue of the Wiener Tauberian Theorem, one can show that the question 'is $x\in\mathbb{Z}\backslash\left\{ 0\right\} $ a periodic point of $H$?' is essentially equivalent to 'is the span of the translates of the Fourier transform of $\chi_{H}\left(\mathfrak{z}\right)-x$ dense in an appropriate non-archimedean function space?' This presents an exciting new frontier in Collatz research, and these methods can be used to study Collatz-type dynamical systems on the lattice $\mathbb{Z}^{d}$ for any $d\geq1$., Comment: This is the author's PhD dissertation. 467 pages. 1 table
- Published
- 2024
4. A Doubly Robust Method to Counteract Outcome-Dependent Selection Bias in Multi-Cohort EHR Studies
- Author
-
Kundu, Ritoban, Shi, Xu, Salvatore, Maxwell, Fritsche, Lars G., and Mukherjee, Bhramar
- Subjects
Statistics - Methodology - Abstract
Selection bias can hinder accurate estimation of association parameters in binary disease risk models using non-probability samples like electronic health records (EHRs). The issue is compounded when participants are recruited from multiple clinics or centers with varying selection mechanisms that may depend on the disease or outcome of interest. Traditional inverse-probability-weighted (IPW) methods, based on constructed parametric selection models, often struggle with misspecifications when selection mechanisms vary across cohorts. This paper introduces a new Joint Augmented Inverse Probability Weighted (JAIPW) method, which integrates individual-level data from multiple cohorts collected under potentially outcome-dependent selection mechanisms, with data from an external probability sample. JAIPW offers double robustness by incorporating a flexible auxiliary score model to address potential misspecifications in the selection models. We outline the asymptotic properties of the JAIPW estimator, and our simulations reveal that JAIPW achieves up to five times lower relative bias and three times lower root mean square error (RMSE) compared to the best performing joint IPW methods under scenarios with misspecified selection models. Applying JAIPW to the Michigan Genomics Initiative (MGI), a multi-clinic EHR-linked biobank, combined with external national probability samples, resulted in cancer-sex association estimates more closely aligned with national estimates. We also analyzed the association between cancer and polygenic risk scores (PRS) in MGI to illustrate a situation where the exposure is not available in the external probability sample.
- Published
- 2024
5. Rapid Trapping and Label-free Characterization of Single Nanoscale Extracellular Vesicles and Nanoparticles in Solution
- Author
-
Hong, Ikjun, Hong, Chuchuan, Anyika, Theodore, Zhu, Guodong, Ugwu, Maxwell, Franklin, Jeff, Coffey, Robert, and Ndukaife, Justus C.
- Subjects
Physics - Optics ,Physics - Applied Physics - Abstract
Achieving high-throughput, comprehensive analysis of single nanoparticles to determine their size, shape, and composition is essential for understanding particle heterogeneity with applications ranging from drug delivery to environmental monitoring. Existing techniques are hindered by low throughput, lengthy trapping times, irreversible particle adsorption, or limited characterization capabilities. Here, we introduce Interferometric Electrohydrodynamic Tweezers (IET), an integrated platform that rapidly traps single nanoparticles in parallel within three seconds. IET enables label-free characterization of particle size and shape via interferometric imaging and identifies molecular composition through Raman spectroscopy, all without the need for fluorescent labeling. We demonstrate the platform's capabilities by trapping and imaging colloidal polymer beads, nanoscale extracellular vesicles (EVs), and newly discovered extracellular nanoparticles known as supermeres. By monitoring their interferometric contrast images while trapped, we accurately determine the sizes of EVs and supermeres. Our IET represents a powerful optofluidics platform for comprehensive characterization of nanoscale objects, opening new avenues in nanomedicine, environmental monitoring, and beyond.
- Published
- 2024
6. RelCon: Relative Contrastive Learning for a Motion Foundation Model for Wearable Data
- Author
-
Xu, Maxwell A., Narain, Jaya, Darnell, Gregory, Hallgrimsson, Haraldur, Jeong, Hyewon, Forde, Darren, Fineman, Richard, Raghuram, Karthik J., Rehg, James M., and Ren, Shirley
- Subjects
Electrical Engineering and Systems Science - Signal Processing ,Computer Science - Artificial Intelligence ,Computer Science - Machine Learning - Abstract
We present RelCon, a novel self-supervised *Rel*ative *Con*trastive learning approach that uses a learnable distance measure in combination with a softened contrastive loss for training an motion foundation model from wearable sensors. The learnable distance measure captures motif similarity and domain-specific semantic information such as rotation invariance. The learned distance provides a measurement of semantic similarity between a pair of accelerometer time-series segments, which is used to measure the distance between an anchor and various other sampled candidate segments. The self-supervised model is trained on 1 billion segments from 87,376 participants from a large wearables dataset. The model achieves strong performance across multiple downstream tasks, encompassing both classification and regression. To our knowledge, we are the first to show the generalizability of a self-supervised learning model with motion data from wearables across distinct evaluation tasks.
- Published
- 2024
7. Stochastic Stokes origami: folds, cusps and skyrmionic facets in random polarisation fields
- Author
-
Maxwell, Kerr and Dennis, Mark R
- Subjects
Physics - Optics ,Mathematical Physics - Abstract
We consider the jacobian of a random transverse polarisation field, from the transverse plane to the Poincar\'e sphere, as a Skyrme density partially covering the sphere. Connected domains of the plane where the jacobian has the same sign -- patches -- map to facets subtending some general solid angle on the Poincar\'e sphere. As a generic continuous mapping between surfaces, we interpret the polarisation pattern on the sphere in terms of fold lines (corresponding to the crease lines between neighbouring patches) and cusp points (where fold lines meet). We perform a basic statistical analysis of the properties of the patches and facets, including a brief discussion of the percolation properties of the jacobian domains. Connections with abstract origami manifolds are briefly considered. This analysis combines previous studies of structured skyrmionic polarisation patterns with random polarisation patterns, suggesting a particle-like interpretation of random patches as polarisation skyrmionic anyons., Comment: 14 pages, 7 figures. Submitted to IOP Journal of Optics Focus Issue on Optical Skyrmions
- Published
- 2024
8. The Roman coronagraph community participation program: observation planning
- Author
-
Wolff, Schuyler G., Wang, Jason, Stapelfeldt, Karl, Bailey, Vanessa P., Savransky, Dmitry, Hom, Justin, Biller, Beth, Brandner, Wolfgang, Anche, Ramye, Blunt, Sarah, Brinjikji, Marah, Girard, Julien H., Krause, Oliver, Li, Zhexing, Livingston, John, Millar-Blanchaer, Maxwell A., Noel, Malachi, Pueyo, Laurent, De Rosa, Robert J., Samland, Matthias, and Schragal, Nicholas
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
The Coronagraphic Instrument onboard the Nancy Grace Roman Space Telescope is an important stepping stone towards the characterization of habitable, rocky exoplanets. In a technology demonstration phase conducted during the first 18 months of the mission (expected to launch in late 2026), novel starlight suppression technology may enable direct imaging of a Jupiter analog in reflected light. Here we summarize the current activities of the Observation Planning working group formed as part of the Community Participation Program. This working group is responsible for target selection and observation planning of both science and calibration targets in the technology demonstration phase of the Roman Coronagraph. We will discuss the ongoing efforts to expand target and reference catalogs, and to model astrophysical targets (exoplanets and circumstellar disks) within the Coronagraph's expected sensitivity. We will also present preparatory observations of high priority targets., Comment: Proceedings Volume 13092, Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave; 1309255 (2024)
- Published
- 2024
- Full Text
- View/download PDF
9. OrCAS: Origins, Compositions, and Atmospheres of Sub-neptunes. I. Survey Definition
- Author
-
Crossfield, Ian J. M., Polanski, Alex S., Robertson, Paul, Murphy, Joseph Akana, Turtelboom, Emma V., Luque, Rafael, Beatty, Thomas, Daylan, Tansu, Isaacson, Howard, Brande, Jonathan, Kreidberg, Laura, Batalha, Natalie M., Huber, Daniel, Rhem, Maleah, Dressing, Courtney, Kane, Stephen R., Bossett, Malik, Gagnebin, Anna, Kroft, Maxwell A., Premnath, Pranav H., Rogers, Claire J., Collins, Karen A., Latham, David W., Watkins, Cristilyn N., Ciardi, David R., Howell, Steve B., Savel, Arjun B., Berlind, Perry, Calkins, Michael L., Esquerdo, Gilbert A., Mink, Jessica, Clark, Catherine A., Lund, Michael B., Matson, Rachel A., Everett, Mark E., Schlieder, Joshua E., Matthews, Elisabeth C., Giacalone, Steven, Barclay, Thomas, Zambelli, Roberto, Plavchan, Peter, Ellingson, Taylor, Bowen, Michael, Srdoc, Gregor, McLeod, Kim K., Schwarz, Richard P., Barkaoui, Khalid, Kamler, Jacob, Murgas, Felipe, Palle, Enric, Narita, Norio, Fukui, Akihiko, Relles, Howard M., Bieryla, Allyson, Girardin, Eric, Massey, Bob, Stockdale, Chris, Lewin, Pablo, Papini, Riccardo, Guerra, Pere, Conti, Dennis M., Yalcinkaya, Selcuk, Basturk, Ozgur, and Mourad, Ghachoui
- Subjects
Astrophysics - Earth and Planetary Astrophysics - Abstract
Sub-Neptunes - volatile-rich exoplanets smaller than Neptune - are intrinsically the most common type of planet known. However, the formation and nature of these objects, as well as the distinctions between sub-classes (if any), remain unclear. Two powerful tools to tease out the secrets of these worlds are measurements of (i) atmospheric composition and structure revealed by transit and/or eclipse spectroscopy, and (ii) mass, radius, and density revealed by transit photometry and Doppler spectroscopy. Here we present OrCAS, a survey to better elucidate the origins, compositions, and atmospheres of sub-Neptunes. This radial velocity survey uses a repeatable, quantifiable metric to select targets suitable for subsequent transmission spectroscopy and address key science themes about the atmospheric & internal compositions and architectures of these systems. Our survey targets 26 systems with transiting sub-Neptune planet candidates, with the overarching goal of increasing the sample of such planets suitable for subsequent atmospheric characterization. This paper lays out our survey's science goals, defines our target prioritization metric, and performs light-curve fits and statistical validation using existing TESS photometry and ground-based follow-up observations. Our survey serves to continue expanding the sample of small exoplanets with well-measured properties orbiting nearby bright stars, ensuring fruitful studies of these systems for many years to come., Comment: 20 pages, 4 figures, 4 tables, 26 sub-Neptunes, 31 TOIs. Accepted to AJ
- Published
- 2024
10. Whispering-Gallery-Mode Resonators for Detection and Classification of Free-Flowing Nanoparticles and Cells through Photoacoustic Signatures
- Author
-
Liao, Jie, Adolphson, Maxwell, Li, Hangyue, Sikder, Dipayon Kumar, Lu, Chenyang, and Yang, Lan
- Subjects
Physics - Biological Physics ,Physics - Optics - Abstract
Micro and nanoscale particles are crucial in various fields, from biomedical imaging to environmental processes. While conventional spectroscopy and microscopy methods for characterizing these particles often involve bulky equipment and complex sample preparation, optical micro-sensors have emerged as a promising alternative. However, their broad applicability is limited by the need for surface binding and difficulty in differentiating between sensing targets. This study introduces an optofluidic, high-throughput optical microresonator sensor that captures subtle acoustic signals generated by particles absorbing pulsed light energy. This novel approach enables real-time, label-free detection and interrogation of particles and cells in their native environments across an extended sensing volume. By leveraging unique optical absorption properties, our technique selectively detects and classifies flowing particles without surface binding, even in complex matrices like whole blood samples. We demonstrate the measurement of gold nanoparticles with diverse geometries and different species of red blood cells amidst other cellular elements and proteins. These particles are identified and classified based on their photoacoustic fingerprint, which captures shape, composition, and morphology features. This work opens new avenues for rapid, reliable, and high-throughput particle and cell identification in clinical and industrial applications, offering a valuable tool for understanding complex biological and environmental systems., Comment: 14 pages, 4 figures
- Published
- 2024
11. Advanced LIGO detector performance in the fourth observing run
- Author
-
Capote, E., Jia, W., Aritomi, N., Nakano, M., Xu, V., Abbott, R., Abouelfettouh, I., Adhikari, R. X., Ananyeva, A., Appert, S., Apple, S. K., Arai, K., Aston, S. M., Ball, M., Ballmer, S. W., Barker, D., Barsotti, L., Berger, B. K., Betzwieser, J., Bhattacharjee, D., Billingsley, G., Biscans, S., Blair, C. D., Bode, N., Bonilla, E., Bossilkov, V., Branch, A., Brooks, A. F., Brown, D. D., Bryant, J., Cahillane, C., Cao, H., Clara, F., Collins, J., Compton, C. M., Cottingham, R., Coyne, D. C., Crouch, R., Csizmazia, J., Cumming, A., Dartez, L. P., Davis, D., Demos, N., Dohmen, E., Driggers, J. C., Dwyer, S. E., Effler, A., Ejlli, A., Etzel, T., Evans, M., Feicht, J., Frey, R., Frischhertz, W., Fritschel, P., Frolov, V. V., Fuentes-Garcia, M., Fulda, P., Fyffe, M., Ganapathy, D., Gateley, B., Gayer, T., Giaime, J. A., Giardina, K. D., Glanzer, J., Goetz, E., Goetz, R., Goodwin-Jones, A. W., Gras, S., Gray, C., Griffith, D., Grote, H., Guidry, T., Gurs, J., Hall, E. D., Hanks, J., Hanson, J., Heintze, M. C., Helmling-Cornell, A. F., Holland, N. A., Hoyland, D., Huang, H. Y., Inoue, Y., James, A. L., Jamies, A., Jennings, A., Jones, D. H., Kabagoz, H. B., Karat, S., Karki, S., Kasprzack, M., Kawabe, K., Kijbunchoo, N., King, P. J., Kissel, J. S., Komori, K., Kontos, A., Kumar, Rahul, Kuns, K., Landry, M., Lantz, B., Laxen, M., Lee, K., Lesovsky, M., Villarreal, F. Llamas, Lormand, M., Loughlin, H. A., Macas, R., MacInnis, M., Makarem, C. N., Mannix, B., Mansell, G. L., Martin, R. M., Mason, K., Matichard, F., Mavalvala, N., Maxwell, N., McCarrol, G., McCarthy, R., McClelland, D. E., McCormick, S., McRae, T., Mera, F., Merilh, E. L., Meylahn, F., Mittleman, R., Moraru, D., Moreno, G., Mullavey, A., Nelson, T. J. N., Neunzert, A., Notte, J., Oberling, J., OHanlon, T., Osthelder, C., Ottaway, D. J., Overmier, H., Parker, W., Patane, O., Pele, A., Pham, H., Pirello, M., Pullin, J., Quetschke, V., Ramirez, K. E., Ransom, K., Reyes, J., Richardson, J. W., Robinson, M., Rollins, J. G., Romel, C. L., Romie, J. H., Ross, M. P., Ryan, K., Sadecki, T., Sanchez, A., Sanchez, E. J., Sanchez, L. E., Savage, R. L., Schaetzl, D., Schiworski, M. G., Schnabel, R., Schofield, R. M. S., Schwartz, E., Sellers, D., Shaffer, T., Short, R. W., Sigg, D., Slagmolen, B. J. J., Soike, C., Soni, S., Srivastava, V., Sun, L., Tanner, D. B., Thomas, M., Thomas, P., Thorne, K. A., Todd, M. R., Torrie, C. I., Traylor, G., Ubhi, A. S., Vajente, G., Vanosky, J., Vecchio, A., Veitch, P. J., Vibhute, A. M., von Reis, E. R. G., Warner, J., Weaver, B., Weiss, R., Whittle, C., Willke, B., Wipf, C. C., Wright, J. L., Yamamoto, H., Zhang, L., and Zucker, M. E.
- Subjects
General Relativity and Quantum Cosmology ,Astrophysics - Instrumentation and Methods for Astrophysics ,Physics - Instrumentation and Detectors ,Physics - Optics ,Quantum Physics - Abstract
On May 24th, 2023, the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO), joined by the Advanced Virgo and KAGRA detectors, began the fourth observing run for a two-year-long dedicated search for gravitational waves. The LIGO Hanford and Livingston detectors have achieved an unprecedented sensitivity to gravitational waves, with an angle-averaged median range to binary neutron star mergers of 152 Mpc and 160 Mpc, and duty cycles of 65.0% and 71.2%, respectively, with a coincident duty cycle of 52.6%. The maximum range achieved by the LIGO Hanford detector is 165 Mpc and the LIGO Livingston detector 177 Mpc, both achieved during the second part of the fourth observing run. For the fourth run, the quantum-limited sensitivity of the detectors was increased significantly due to the higher intracavity power from laser system upgrades and replacement of core optics, and from the addition of a 300 m filter cavity to provide the squeezed light with a frequency-dependent squeezing angle, part of the A+ upgrade program. Altogether, the A+ upgrades led to reduced detector-wide losses for the squeezed vacuum states of light which, alongside the filter cavity, enabled broadband quantum noise reduction of up to 5.2 dB at the Hanford observatory and 6.1 dB at the Livingston observatory. Improvements to sensors and actuators as well as significant controls commissioning increased low frequency sensitivity. This paper details these instrumental upgrades, analyzes the noise sources that limit detector sensitivity, and describes the commissioning challenges of the fourth observing run., Comment: 26 pages, 18 figures
- Published
- 2024
12. Enhanced Collisional Losses from a Magnetic Mirror Using the Lenard-Bernstein Collision Operator
- Author
-
Rosen, Maxwell H., Sengupta, Wrick, Ochs, Ian, Diaz, Felix Parra, and Hammett, Gregory W.
- Subjects
Physics - Plasma Physics - Abstract
Collisions play a crucial role in governing particle and energy transport in plasmas confined in a magnetic mirror trap. Modern gyrokinetic codes are used to model transport in magnetic mirrors, but some of these codes utilize approximate model collision operators. This study focuses on a Pastukhov-style method of images calculation of particle and energy confinement times using a Lenard-Bernstein model collision operator. Prior work on parallel particle and energy balances used a different Fokker-Planck plasma collision operator and the method needs to be extended in non-trivial ways to study the Lenard-Bernstein operator. To assess the effectiveness of our approach, we compare our results with a modern finite element solver. Our findings reveal that the particle confinement time scales like $a \exp(a^2)$ using the Lenard-Bernstein operator, in contrast to the more accurate scaling that the Coulomb collision operator would yield $a^2 \exp(a^2)$, where $a^2$ is approximately proportional to the ambipolar potential. We propose that codes modeling collisional losses in a magnetic mirrors utilizing the Lenard-Bernstein or Dougherty collision operator scale their collision frequency of any electrostatically confined species. This study illuminates the intricate role the collision operator plays in the Pastukhov-style method of images calculation of collisional confinement., Comment: 21 pages, 4 figures, 3 tables, submitted to journal of plasma physics
- Published
- 2024
13. Thermodynamic Algorithms for Quadratic Programming
- Author
-
Bartosik, Patryk-Lipka, Donatella, Kaelan, Aifer, Maxwell, Melanson, Denis, Perarnau-Llobet, Marti, Brunner, Nicolas, and Coles, Patrick J.
- Subjects
Computer Science - Emerging Technologies ,Condensed Matter - Statistical Mechanics ,Mathematics - Optimization and Control - Abstract
Thermodynamic computing has emerged as a promising paradigm for accelerating computation by harnessing the thermalization properties of physical systems. This work introduces a novel approach to solving quadratic programming problems using thermodynamic hardware. By incorporating a thermodynamic subroutine for solving linear systems into the interior-point method, we present a hybrid digital-analog algorithm that outperforms traditional digital algorithms in terms of speed. Notably, we achieve a polynomial asymptotic speedup compared to conventional digital approaches. Additionally, we simulate the algorithm for a support vector machine and predict substantial practical speedups with only minimal degradation in solution quality. Finally, we detail how our method can be applied to portfolio optimization and the simulation of nonlinear resistive networks., Comment: 13 pages, 4 figures
- Published
- 2024
14. A Universal Protocol for Quantum-Enhanced Sensing via Information Scrambling
- Author
-
Kobrin, Bryce, Schuster, Thomas, Block, Maxwell, Wu, Weijie, Mitchell, Bradley, Davis, Emily, and Yao, Norman Y.
- Subjects
Quantum Physics ,Condensed Matter - Quantum Gases ,Condensed Matter - Statistical Mechanics ,Physics - Atomic Physics - Abstract
We introduce a novel protocol, which enables Heisenberg-limited quantum-enhanced sensing using the dynamics of any interacting many-body Hamiltonian. Our approach - dubbed butterfly metrology - utilizes a single application of forward and reverse time evolution to produce a coherent superposition of a "scrambled" and "unscrambled" quantum state. In this way, we create metrologically-useful long-range entanglement from generic local quantum interactions. The sensitivity of butterfly metrology is given by a sum of local out-of-time-order correlators (OTOCs) - the prototypical diagnostic of quantum information scrambling. Our approach broadens the landscape of platforms capable of performing quantum-enhanced metrology; as an example, we provide detailed blueprints and numerical studies demonstrating a route to scalable quantum-enhanced sensing in ensembles of solid-state spin defects.
- Published
- 2024
15. On Hilbert scheme of complete intersection on the biprojective
- Author
-
Fontes, Aislan Leal and Paixão, Maxwell
- Subjects
Mathematics - Algebraic Geometry ,14D22, 14H10, 14C05, 14D20 - Abstract
The goal of this paper is to construct the Hilbert scheme of complete intersections in the biprojective space $X=\mathbb{P}^m\times\mathbb{P}^n$ and for this, we define a partial order on the bidegrees of the bihomogeneous forms. As a consequence of this construction, we computer explicitly the Hilbert scheme for curves of genus 7 and 8 listed in \cite{MUK95} and \cite{MUKIDE03} that are complete intersections. Finally, we construct the coarse moduli space of complete intersections in $\mathbb{P}^1\times\mathbb{P}^1$., Comment: 19 pages
- Published
- 2024
16. Stabilizer Tensor Networks with Magic State Injection
- Author
-
Nakhl, Azar C., Harper, Ben, West, Maxwell, Dowling, Neil, Sevior, Martin, Quella, Thomas, and Usman, Muhammad
- Subjects
Quantum Physics - Abstract
This work augments the recently introduced Stabilizer Tensor Network (STN) protocol with magic state injection, reporting a new framework with significantly enhanced ability to simulate circuits with an extensive number of non-Clifford operations. Specifically, for random $T$-doped $N$-qubit Clifford circuits the computational cost of circuits prepared with magic state injection scales as $\mathcal{O}(\text{poly}(N))$ when the circuit has $t \lesssim N$ $T$-gates compared to an exponential scaling for the STN approach, which is demonstrated in systems of up to $200$ qubits. In the case of the Hidden Bit Shift circuit, a paradigmatic benchmarking system for extended stabilizer methods with a tunable amount of magic, we report that our magic state injected STN framework can efficiently simulate $4000$ qubits and $320$ $T$-gates. These findings provide a promising outlook for the use of this protocol in the classical modelling of quantum circuits that are conventionally difficult to simulate efficiently., Comment: 5+5 pages, 3+2 figures
- Published
- 2024
17. Partial Evaluation, Whole-Program Compilation
- Author
-
Fallin, Chris and Bernstein, Maxwell
- Subjects
Computer Science - Programming Languages - Abstract
There is a tension in dynamic language runtime design between speed and correctness: state-of-the-art JIT compilation, the result of enormous industrial investment and significant research, achieves heroic speedups at the cost of complexity that can result in serious correctness bugs. Much of this complexity comes from the existence of multiple tiers and the need to maintain correspondence between these separate definitions of the language's semantics; also, from the indirect nature of the semantics implicitly encoded in a compiler backend. One way to address this complexity is to automatically derive, as much as possible, the compiled code from a single source-of-truth; for example, the interpreter tier. In this work, we introduce a partial evaluator that can derive compiled code ``for free'' by specializing an interpreter with its bytecode. This transform operates on the interpreter body at a basic-block IR level and is applicable to almost unmodified existing interpreters in systems languages such as C or C++. We show the effectiveness of this new tool by applying it to the interpreter tier of an existing industrial JavaScript engine, SpiderMonkey, yielding $2.17\times$ speedups, and the PUC-Rio Lua interpreter, yielding $1.84\times$ speedups with only three hours' effort. Finally, we outline an approach to carry this work further, deriving more of the capabilities of a JIT backend from first principles while retaining semantics-preserving correctness.
- Published
- 2024
18. On the Nature and Complexity of an Impartial Two-Player Variant of the Game Lights-Out
- Author
-
Fiorini, Eugene, Fogler, Maxwell, Levandosky, Katherine, Lu, Bryan, Porter, Jacob, and Woldar, Andrew
- Subjects
Mathematics - Combinatorics ,Computer Science - Computational Complexity - Abstract
In this paper we study a variant of the solitaire game Lights-Out, where the player's goal is to turn off a grid of lights. This variant is a two-player impartial game where the goal is to make the final valid move. This version is playable on any simple graph where each node is given an assignment of either a 0 (representing a light that is off) or 1 (representing a light that is on). We focus on finding the Nimbers of this game on grid graphs and generalized Petersen graphs. We utilize a recursive algorithm to compute the Nimbers for 2 x n grid graphs and for some generalized Petersen graphs.
- Published
- 2024
19. Nonlocal elliptic systems via nonlinear Rayleigh quotient with general concave and coupling nonlinearities
- Author
-
Silva, Edcarlos D., Leite, Elaine A. F., and da Silva, Maxwell L.
- Subjects
Mathematics - Analysis of PDEs - Abstract
In this work, we shall investigate existence and multiplicity of solutions for a nonlocal elliptic systems driven by the fractional Laplacian. Specifically, we establish the existence of two positive solutions for following class of nonlocal elliptic systems: \begin{equation*} \left\{\begin{array}{lll} (-\Delta)^su +V_1(x)u = \lambda|u|^{p - 2}u+ \frac{\alpha}{\alpha+\beta}\theta |u|^{\alpha - 2}u|v|^{\beta}, \;\;\; \mbox{in}\;\;\; \mathbb{R}^N, (-\Delta)^sv +V_2(x)v= \lambda|v|^{q - 2}v+ \frac{\beta}{\alpha+\beta}\theta |u|^{\alpha}|v|^{\beta-2}v, \;\;\; \mbox{in}\;\;\; \mathbb{R}^N, (u, v) \in H^s(\mathbb{R}^N) \times H^s(\mathbb{R}^N). \end{array}\right. \end{equation*} Here we mention that $\alpha > 1, \beta > 1, 1 \leq p \leq q < 2 < \alpha + \beta < 2^*_s$, $\theta > 0, \lambda > 0, N > 2s$, and $s \in (0,1)$. Notice also that continuous potentials $V_1, V_2: \mathbb{R}^N \to \mathbb{R}$ satisfy some extra assumptions. Furthermore, we find the largest positive number $\lambda^* > 0$ such that our main problem admits at least two positive solutions for each $ \lambda \in (0, \lambda^*)$. This can be done by using the nonlinear Rayleigh quotient together with the Nehari method. The main feature here is to minimize the energy functional in Nehari manifold which allows us to prove our main results without any restriction on size of parameter $\theta > 0$., Comment: In this work, we shall investigate existence and multiplicity of solutions for a nonlocal elliptic systems driven by the fractional Laplacian. Specifically, we establish the existence of two positive solutions for following class of nonlocal elliptic systems
- Published
- 2024
20. SALSA: Soup-based Alignment Learning for Stronger Adaptation in RLHF
- Author
-
Chegini, Atoosa, Kazemi, Hamid, Mirzadeh, Iman, Yin, Dong, Horton, Maxwell, Nabi, Moin, Farajtabar, Mehrdad, and Alizadeh, Keivan
- Subjects
Computer Science - Machine Learning - Abstract
In Large Language Model (LLM) development, Reinforcement Learning from Human Feedback (RLHF) is crucial for aligning models with human values and preferences. RLHF traditionally relies on the Kullback-Leibler (KL) divergence between the current policy and a frozen initial policy as a reference, which is added as a penalty in policy optimization algorithms like Proximal Policy Optimization (PPO). While this constraint prevents models from deviating too far from the initial checkpoint, it limits exploration of the reward landscape, reducing the model's ability to discover higher-quality solutions. As a result, policy optimization is often trapped in a narrow region of the parameter space, leading to suboptimal alignment and performance. This paper presents SALSA (Soup-based Alignment Learning for Stronger Adaptation), a novel approach designed to overcome these limitations by creating a more flexible and better located reference model through weight-space averaging of two independent supervised fine-tuned (SFT) models. This model soup allows for larger deviation in KL divergence and exploring a promising region of the solution space without sacrificing stability. By leveraging this more robust reference model, SALSA fosters better exploration, achieving higher rewards and improving model robustness, out-of-distribution generalization, and performance. We validate the effectiveness of SALSA through extensive experiments on popular open models (Llama2-7B, Mistral-7B, and Gemma-2B) across various benchmarks (MT-Bench, Arena-Hard, UltraFeedback), where it consistently surpasses PPO by fostering deeper exploration and achieving superior alignment in LLMs.
- Published
- 2024
21. IO Transformer: Evaluating SwinV2-Based Reward Models for Computer Vision
- Author
-
Meyer, Maxwell and Spruyt, Jack
- Subjects
Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Machine Learning - Abstract
Transformers and their derivatives have achieved state-of-the-art performance across text, vision, and speech recognition tasks. However, minimal effort has been made to train transformers capable of evaluating the output quality of other models. This paper examines SwinV2-based reward models, called the Input-Output Transformer (IO Transformer) and the Output Transformer. These reward models can be leveraged for tasks such as inference quality evaluation, data categorization, and policy optimization. Our experiments demonstrate highly accurate model output quality assessment across domains where the output is entirely dependent on the input, with the IO Transformer achieving perfect evaluation accuracy on the Change Dataset 25 (CD25). We also explore modified Swin V2 architectures. Ultimately Swin V2 remains on top with a score of 95.41 % on the IO Segmentation Dataset, outperforming the IO Transformer in scenarios where the output is not entirely dependent on the input. Our work expands the application of transformer architectures to reward modeling in computer vision and provides critical insights into optimizing these models for various tasks., Comment: 15 pages, 3 figures, 2 tables
- Published
- 2024
22. First Light and Reionisation Epoch Simulations (FLARES) XVII: Learning the galaxy-halo connection at high redshifts
- Author
-
Maltz, Maxwell G. A., Thomas, Peter A., Lovell, Christoper C., Roper, William J., Vijayan, Aswin P., Irodotou, Dimitrios, Liao, Shihong, Seeyave, Louise T. C., and Wilkins, Stephen M.
- Subjects
Astrophysics - Astrophysics of Galaxies ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Understanding the galaxy-halo relationship is not only key for elucidating the interplay between baryonic and dark matter, it is essential for creating large mock galaxy catalogues from N-body simulations. High-resolution hydrodynamical simulations are limited to small volumes by their large computational demands, hindering their use for comparisons with wide-field observational surveys. We overcome this limitation by using the First Light and Reionisation Epoch Simulations (FLARES), a suite of high-resolution (M_gas = 1.8 x 10^6 M_Sun) zoom simulations drawn from a large, (3.2 cGpc)^3 box. We use an extremely randomised trees machine learning approach to model the relationship between galaxies and their subhaloes in a wide range of environments. This allows us to build mock catalogues with dynamic ranges that surpass those obtainable through periodic simulations. The low cost of the zoom simulations facilitates multiple runs of the same regions, differing only in the random number seed of the subgrid models; changing this seed introduces a butterfly effect, leading to random differences in the properties of matching galaxies. This randomness cannot be learnt by a deterministic machine learning model, but by sampling the noise and adding it post-facto to our predictions, we are able to recover the distributions of the galaxy properties we predict (stellar mass, star formation rate, metallicity, and size) remarkably well. We also explore the resolution-dependence of our models' performances and find minimal depreciation down to particle resolutions of order M_DM ~ 10^8 M_Sun, enabling the future application of our models to large dark matter-only boxes., Comment: 19 pages, 12 figures. Submitted to MNRAS
- Published
- 2024
23. Observation of fractional evolution in nonlinear optics
- Author
-
Hoang, Van Thuy, Widjaja, Justin, Qiang, Y. Long, Liu, Maxwell, Alexander, Tristram J., Runge, Antoine F. J., and de Sterke, C. Martijn
- Subjects
Physics - Optics - Abstract
The idea of fractional derivatives has a long history that dates back centuries. Apart from their intriguing mathematical properties, fractional derivatives have been studied widely in physics, for example in quantum mechanics and generally in systems with nonlocal temporal or spatial interactions. However, systematic experiments have been rare due to challenges associated with the physical implementation. Here we report the observation and full characterization of a family of temporal optical solitons that are governed by a nonlinear wave equation with a fractional Laplacian. This equation has solutions with unique properties such as non-exponential tails and a very small time-bandwidth product.
- Published
- 2024
24. EMGBench: Benchmarking Out-of-Distribution Generalization and Adaptation for Electromyography
- Author
-
Yang, Jehan, Soh, Maxwell, Lieu, Vivianna, Weber, Douglas J, and Erickson, Zackory
- Subjects
Computer Science - Machine Learning - Abstract
This paper introduces the first generalization and adaptation benchmark using machine learning for evaluating out-of-distribution performance of electromyography (EMG) classification algorithms. The ability of an EMG classifier to handle inputs drawn from a different distribution than the training distribution is critical for real-world deployment as a control interface. By predicting the user's intended gesture using EMG signals, we can create a wearable solution to control assistive technologies, such as computers, prosthetics, and mobile manipulator robots. This new out-of-distribution benchmark consists of two major tasks that have utility for building robust and adaptable control interfaces: 1) intersubject classification and 2) adaptation using train-test splits for time-series. This benchmark spans nine datasets--the largest collection of EMG datasets in a benchmark. Among these, a new dataset is introduced, featuring a novel, easy-to-wear high-density EMG wearable for data collection. The lack of open-source benchmarks has made comparing accuracy results between papers challenging for the EMG research community. This new benchmark provides researchers with a valuable resource for analyzing practical measures of out-of-distribution performance for EMG datasets. Our code and data from our new dataset can be found at emgbench.github.io.
- Published
- 2024
25. Real classical shadows
- Author
-
West, Maxwell, Mele, Antonio Anna, Larocca, Martin, and Cerezo, M.
- Subjects
Quantum Physics - Abstract
Efficiently learning expectation values of a quantum state using classical shadow tomography has become a fundamental task in quantum information theory. In a classical shadows protocol, one measures a state in a chosen basis $\mathcal{W}$ after it has evolved under a unitary transformation randomly sampled from a chosen distribution $\mathcal{U}$. In this work we study the case where $\mathcal{U}$ corresponds to either local or global orthogonal Clifford gates, and $\mathcal{W}$ consists of real-valued vectors. Our results show that for various situations of interest, this ``real'' classical shadow protocol improves the sample complexity over the standard scheme based on general Clifford unitaries. For example, when one is interested in estimating the expectation values of arbitrary real-valued observables, global orthogonal Cliffords decrease the required number of samples by a factor of two. More dramatically, for $k$-local observables composed only of real-valued Pauli operators, sampling local orthogonal Cliffords leads to a reduction by an exponential-in-$k$ factor in the sample complexity over local unitary Cliffords. Finally, we show that by measuring in a basis containing complex-valued vectors, orthogonal shadows can, in the limit of large system size, exactly reproduce the original unitary shadows protocol., Comment: 7+12 pages, 1+1 figures
- Published
- 2024
26. Dynamic Information Sub-Selection for Decision Support
- Author
-
Huang, Hung-Tien, Lennon, Maxwell, Brahmavar, Shreyas Bhat, Sylvia, Sean, and Oliva, Junier B.
- Subjects
Computer Science - Machine Learning - Abstract
We introduce Dynamic Information Sub-Selection (DISS), a novel framework of AI assistance designed to enhance the performance of black-box decision-makers by tailoring their information processing on a per-instance basis. Blackbox decision-makers (e.g., humans or real-time systems) often face challenges in processing all possible information at hand (e.g., due to cognitive biases or resource constraints), which can degrade decision efficacy. DISS addresses these challenges through policies that dynamically select the most effective features and options to forward to the black-box decision-maker for prediction. We develop a scalable frequentist data acquisition strategy and a decision-maker mimicking technique for enhanced budget efficiency. We explore several impactful applications of DISS, including biased decision-maker support, expert assignment optimization, large language model decision support, and interpretability. Empirical validation of our proposed DISS methodology shows superior performance to state-of-the-art methods across various applications.
- Published
- 2024
27. A Multi-Agent Reinforcement Learning Testbed for Cognitive Radio Applications
- Author
-
Vangaru, Sriniketh, Rosen, Daniel, Green, Dylan, Rodriguez, Raphael, Wiecek, Maxwell, Johnson, Amos, Jones, Alyse M., and Headley, William C.
- Subjects
Computer Science - Machine Learning ,Computer Science - Artificial Intelligence ,Computer Science - Multiagent Systems ,Computer Science - Networking and Internet Architecture - Abstract
Technological trends show that Radio Frequency Reinforcement Learning (RFRL) will play a prominent role in the wireless communication systems of the future. Applications of RFRL range from military communications jamming to enhancing WiFi networks. Before deploying algorithms for these purposes, they must be trained in a simulation environment to ensure adequate performance. For this reason, we previously created the RFRL Gym: a standardized, accessible tool for the development and testing of reinforcement learning (RL) algorithms in the wireless communications space. This environment leveraged the OpenAI Gym framework and featured customizable simulation scenarios within the RF spectrum. However, the RFRL Gym was limited to training a single RL agent per simulation; this is not ideal, as most real-world RF scenarios will contain multiple intelligent agents in cooperative, competitive, or mixed settings, which is a natural consequence of spectrum congestion. Therefore, through integration with Ray RLlib, multi-agent reinforcement learning (MARL) functionality for training and assessment has been added to the RFRL Gym, making it even more of a robust tool for RF spectrum simulation. This paper provides an overview of the updated RFRL Gym environment. In this work, the general framework of the tool is described relative to comparable existing resources, highlighting the significant additions and refactoring we have applied to the Gym. Afterward, results from testing various RF scenarios in the MARL environment and future additions are discussed., Comment: Accepted to IEEE CCNC 2025. Added revisions from paper reviews
- Published
- 2024
28. User-Centered Design of Socially Assistive Robotic Combined with Non-Immersive Virtual Reality-based Dyadic Activities for Older Adults Residing in Long Term Care Facilities
- Author
-
Ghosh, Ritam, Khan, Nibraas, Migovich, Miroslava, Tate, Judith A., Maxwell, Cathy, Latshaw, Emily, Newhouse, Paul, Scharre, Douglas W., Tan, Alai, Colopietro, Kelley, Mion, Lorraine C., and Sarkar, Nilanjan
- Subjects
Computer Science - Human-Computer Interaction ,Electrical Engineering and Systems Science - Systems and Control - Abstract
Apathy impairs the quality of life for older adults and their care providers. While few pharmacological remedies exist, current non-pharmacologic approaches are resource intensive. To address these concerns, this study utilizes a user-centered design (UCD) process to develop and test a set of dyadic activities that provide physical, cognitive, and social stimuli to older adults residing in long-term care (LTC) communities. Within the design, a novel framework that combines socially assistive robots and non-immersive virtual reality (SAR-VR) emphasizing human-robot interaction (HRI) and human-computer interaction (HCI) is utilized with the roles of the robots being coach and entertainer. An interdisciplinary team of engineers, nurses, and physicians collaborated with an advisory panel comprising LTC activity coordinators, staff, and residents to prototype the activities. The study resulted in four virtual activities: three with the humanoid robot, Nao, and one with the animal robot, Aibo. Fourteen participants tested the acceptability of the different components of the system and provided feedback at different stages of development. Participant approval increased significantly over successive iterations of the system highlighting the importance of stakeholder feedback. Five LTC staff members successfully set up the system with minimal help from the researchers, demonstrating the usability of the system for caregivers. Rationale for activity selection, design changes, and both quantitative and qualitative results on the acceptability and usability of the system have been presented. The paper discusses the challenges encountered in developing activities for older adults in LTCs and underscores the necessity of the UCD process to address them.
- Published
- 2024
29. Search for gravitational waves emitted from SN 2023ixf
- Author
-
The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, Abac, A. G., Abbott, R., Abouelfettouh, I., Acernese, F., Ackley, K., Adhicary, S., Adhikari, N., Adhikari, R. X., Adkins, V. K., Agarwal, D., Agathos, M., Abchouyeh, M. Aghaei, Aguiar, O. D., Aguilar, I., Aiello, L., Ain, A., Akutsu, T., Albanesi, S., Alfaidi, R. A., Al-Jodah, A., Alléné, C., Allocca, A., Al-Shammari, S., Altin, P. A., Alvarez-Lopez, S., Amato, A., Amez-Droz, L., Amorosi, A., Amra, C., Ananyeva, A., Anderson, S. B., Anderson, W. G., Andia, M., Ando, M., Andrade, T., Andres, N., Andrés-Carcasona, M., Andrić, T., Anglin, J., Ansoldi, S., Antelis, J. M., Antier, S., Aoumi, M., Appavuravther, E. Z., Appert, S., Apple, S. K., Arai, K., Araya, A., Araya, M. C., Areeda, J. S., Argianas, L., Aritomi, N., Armato, F., Arnaud, N., Arogeti, M., Aronson, S. M., Ashton, G., Aso, Y., Assiduo, M., Melo, S. Assis de Souza, Aston, S. M., Astone, P., Attadio, F., Aubin, F., AultONeal, K., Avallone, G., Babak, S., Badaracco, F., Badger, C., Bae, S., Bagnasco, S., Bagui, E., Baier, J. G., Baiotti, L., Bajpai, R., Baka, T., Ball, M., Ballardin, G., Ballmer, S. W., Banagiri, S., Banerjee, B., Bankar, D., Baral, P., Barayoga, J. C., Barish, B. C., Barker, D., Barneo, P., Barone, F., Barr, B., Barsotti, L., Barsuglia, M., Barta, D., Bartoletti, A. M., Barton, M. A., Bartos, I., Basak, S., Basalaev, A., Bassiri, R., Basti, A., Bates, D. E., Bawaj, M., Baxi, P., Bayley, J. C., Baylor, A. C., Baynard II, P. A., Bazzan, M., Bedakihale, V. M., Beirnaert, F., Bejger, M., Belardinelli, D., Bell, A. S., Benedetto, V., Benoit, W., Bentley, J. D., Yaala, M. Ben, Bera, S., Berbel, M., Bergamin, F., Berger, B. K., Bernuzzi, S., Beroiz, M., Bersanetti, D., Bertolini, A., Betzwieser, J., Beveridge, D., Bevins, N., Bhandare, R., Bhardwaj, U., Bhatt, R., Bhattacharjee, D., Bhaumik, S., Bhowmick, S., Bianchi, A., Bilenko, I. A., Billingsley, G., Binetti, A., Bini, S., Birnholtz, O., Biscoveanu, S., Bisht, A., Bitossi, M., Bizouard, M. -A., Blackburn, J. K., Blagg, L. A., Blair, C. D., Blair, D. G., Bobba, F., Bode, N., Boileau, G., Boldrini, M., Bolingbroke, G. N., Bolliand, A., Bonavena, L. D., Bondarescu, R., Bondu, F., Bonilla, E., Bonilla, M. S., Bonino, A., Bonnand, R., Booker, P., Borchers, A., Boschi, V., Bose, S., Bossilkov, V., Boudart, V., Boudon, A., Bozzi, A., Bradaschia, C., Brady, P. R., Braglia, M., Branch, A., Branchesi, M., Brandt, J., Braun, I., Breschi, M., Briant, T., Brillet, A., Brinkmann, M., Brockill, P., Brockmueller, E., Brooks, A. F., Brown, B. C., Brown, D. D., Brozzetti, M. L., Brunett, S., Bruno, G., Bruntz, R., Bryant, J., Bucci, F., Buchanan, J., Bulashenko, O., Bulik, T., Bulten, H. J., Buonanno, A., Burtnyk, K., Buscicchio, R., Buskulic, D., Buy, C., Byer, R. L., Davies, G. S. Cabourn, Cabras, G., Cabrita, R., Cáceres-Barbosa, V., Cadonati, L., Cagnoli, G., Cahillane, C., Bustillo, J. Calderón, Callister, T. A., Calloni, E., Camp, J. B., Canepa, M., Santoro, G. Caneva, Cannon, K. C., Cao, H., Capistran, L. A., Capocasa, E., Capote, E., Carapella, G., Carbognani, F., Carlassara, M., Carlin, J. B., Carpinelli, M., Carrillo, G., Carter, J. J., Carullo, G., Diaz, J. Casanueva, Casentini, C., Castro-Lucas, S. Y., Caudill, S., Cavaglià, M., Cavalieri, R., Cella, G., Cerdá-Durán, P., Cesarini, E., Chaibi, W., Chakraborty, P., Subrahmanya, S. Chalathadka, Chan, J. C. L., Chan, M., Chandra, K., Chang, R. -J., Chao, S., Charlton, E. L., Charlton, P., Chassande-Mottin, E., Chatterjee, C., Chatterjee, Debarati, Chatterjee, Deep, Chaturvedi, M., Chaty, S., Chen, A., Chen, A. H. -Y., Chen, D., Chen, H., Chen, H. Y., Chen, J., Chen, K. H., Chen, Y., Chen, Yanbei, Chen, Yitian, Cheng, H. P., Chessa, P., Cheung, H. T., Cheung, S. Y., Chiadini, F., Chiarini, G., Chierici, R., Chincarini, A., Chiofalo, M. L., Chiummo, A., Chou, C., Choudhary, S., Christensen, N., Chua, S. S. Y., Chugh, P., Ciani, G., Ciecielag, P., Cieślar, M., Cifaldi, M., Ciolfi, R., Clara, F., Clark, J. A., Clarke, J., Clarke, T. A., Clearwater, P., Clesse, S., Coccia, E., Codazzo, E., Cohadon, P. -F., Colace, S., Colleoni, M., Collette, C. G., Collins, J., Colloms, S., Colombo, A., Colpi, M., Compton, C. M., Connolly, G., Conti, L., Corbitt, T. R., Cordero-Carrión, I., Corezzi, S., Cornish, N. J., Corsi, A., Cortese, S., Costa, C. A., Cottingham, R., Coughlin, M. W., Couineaux, A., Coulon, J. -P., Countryman, S. T., Coupechoux, J. -F., Couvares, P., Coward, D. M., Cowart, M. J., Coyne, R., Craig, K., Creed, R., Creighton, J. D. E., Creighton, T. D., Cremonese, P., Criswell, A. W., Crockett-Gray, J. C. G., Crook, S., Crouch, R., Csizmazia, J., Cudell, J. R., Cullen, T. J., Cumming, A., Cuoco, E., Cusinato, M., Dabadie, P., Canton, T. Dal, Dall'Osso, S., Pra, S. Dal, Dálya, G., D'Angelo, B., Danilishin, S., D'Antonio, S., Danzmann, K., Darroch, K. E., Dartez, L. P., Dasgupta, A., Datta, S., Dattilo, V., Daumas, A., Davari, N., Dave, I., Davenport, A., Davier, M., Davies, T. F., Davis, D., Davis, L., Davis, M. C., Davis, P. J., Dax, M., De Bolle, J., Deenadayalan, M., Degallaix, J., De Laurentis, M., Deléglise, S., De Lillo, F., Dell'Aquila, D., Del Pozzo, W., De Marco, F., De Matteis, F., D'Emilio, V., Demos, N., Dent, T., Depasse, A., DePergola, N., De Pietri, R., De Rosa, R., De Rossi, C., DeSalvo, R., De Simone, R., Dhani, A., Diab, R., Díaz, M. C., Di Cesare, M., Dideron, G., Didio, N. A., Dietrich, T., Di Fiore, L., Di Fronzo, C., Di Giovanni, M., Di Girolamo, T., Diksha, D., Di Michele, A., Ding, J., Di Pace, S., Di Palma, I., Di Renzo, F., Divyajyoti, Dmitriev, A., Doctor, Z., Dohmen, E., Doleva, P. P., Dominguez, D., D'Onofrio, L., Donovan, F., Dooley, K. L., Dooney, T., Doravari, S., Dorosh, O., Drago, M., Driggers, J. C., Ducoin, J. -G., Dunn, L., Dupletsa, U., D'Urso, D., Duval, H., Duverne, P. -A., Dwyer, S. E., Eassa, C., Ebersold, M., Eckhardt, T., Eddolls, G., Edelman, B., Edo, T. B., Edy, O., Effler, A., Eichholz, J., Einsle, H., Eisenmann, M., Eisenstein, R. A., Ejlli, A., Eleveld, R. M., Emma, M., Endo, K., Engl, A. J., Enloe, E., Errico, L., Essick, R. C., Estellés, H., Estevez, D., Etzel, T., Evans, M., Evstafyeva, T., Ewing, B. E., Ezquiaga, J. M., Fabrizi, F., Faedi, F., Fafone, V., Fairhurst, S., Farah, A. M., Farr, B., Farr, W. M., Favaro, G., Favata, M., Fays, M., Fazio, M., Feicht, J., Fejer, M. M., Felicetti, R., Fenyvesi, E., Ferguson, D. L., Ferraiuolo, S., Ferrante, I., Ferreira, T. A., Fidecaro, F., Figura, P., Fiori, A., Fiori, I., Fishbach, M., Fisher, R. P., Fittipaldi, R., Fiumara, V., Flaminio, R., Fleischer, S. M., Fleming, L. S., Floden, E., Foley, E. M., Fong, H., Font, J. A., Fornal, B., Forsyth, P. W. F., Franceschetti, K., Franchini, N., Frasca, S., Frasconi, F., Mascioli, A. Frattale, Frei, Z., Freise, A., Freitas, O., Frey, R., Frischhertz, W., Fritschel, P., Frolov, V. V., Fronzé, G. G., Fuentes-Garcia, M., Fujii, S., Fujimori, T., Fulda, P., Fyffe, M., Gadre, B., Gair, J. R., Galaudage, S., Galdi, V., Gallagher, H., Gallardo, S., Gallego, B., Gamba, R., Gamboa, A., Ganapathy, D., Ganguly, A., Garaventa, B., García-Bellido, J., Núñez, C. García, García-Quirós, C., Gardner, J. W., Gardner, K. A., Gargiulo, J., Garron, A., Garufi, F., Gasbarra, C., Gateley, B., Gayathri, V., Gemme, G., Gennai, A., Gennari, V., George, J., George, R., Gerberding, O., Gergely, L., Ghosh, Archisman, Ghosh, Sayantan, Ghosh, Shaon, Ghosh, Shrobana, Ghosh, Suprovo, Ghosh, Tathagata, Giacoppo, L., Giaime, J. A., Giardina, K. D., Gibson, D. R., Gibson, D. T., Gier, C., Giri, P., Gissi, F., Gkaitatzis, S., Glanzer, J., Glotin, F., Godfrey, J., Godwin, P., Goebbels, N. L., Goetz, E., Golomb, J., Lopez, S. Gomez, Goncharov, B., Gong, Y., González, G., Goodarzi, P., Goode, S., Goodwin-Jones, A. W., Gosselin, M., Göttel, A. S., Gouaty, R., Gould, D. W., Govorkova, K., Goyal, S., Grace, B., Grado, A., Graham, V., Granados, A. E., Granata, M., Granata, V., Gras, S., Grassia, P., Gray, A., Gray, C., Gray, R., Greco, G., Green, A. C., Green, S. M., Green, S. R., Gretarsson, A. M., Gretarsson, E. M., Griffith, D., Griffiths, W. L., Griggs, H. L., Grignani, G., Grimaldi, A., Grimaud, C., Grote, H., Guerra, D., Guetta, D., Guidi, G. M., Guimaraes, A. R., Gulati, H. K., Gulminelli, F., Gunny, A. M., Guo, H., Guo, W., Guo, Y., Gupta, Anchal, Gupta, Anuradha, Gupta, Ish, Gupta, N. C., Gupta, P., Gupta, S. K., Gupta, T., Gupte, N., Gurs, J., Gutierrez, N., Guzman, F., H, H. -Y., Haba, D., Haberland, M., Haino, S., Hall, E. D., Hamilton, E. Z., Hammond, G., Han, W. -B., Haney, M., Hanks, J., Hanna, C., Hannam, M. D., Hannuksela, O. A., Hanselman, A. G., Hansen, H., Hanson, J., Harada, R., Hardison, A. R., Haris, K., Harmark, T., Harms, J., Harry, G. M., Harry, I. W., Hart, J., Haskell, B., Haster, C. -J., Hathaway, J. S., Haughian, K., Hayakawa, H., Hayama, K., Hayes, R., Heffernan, A., Heidmann, A., Heintze, M. C., Heinze, J., Heinzel, J., Heitmann, H., Hellman, F., Hello, P., Helmling-Cornell, A. F., Hemming, G., Henderson-Sapir, O., Hendry, M., Heng, I. S., Hennes, E., Henshaw, C., Hertog, T., Heurs, M., Hewitt, A. L., Heyns, J., Higginbotham, S., Hild, S., Hill, S., Himemoto, Y., Hirata, N., Hirose, C., Hoang, S., Hochheim, S., Hofman, D., Holland, N. A., Holley-Bockelmann, K., Holmes, Z. J., Holz, D. E., Honet, L., Hong, C., Hornung, J., Hoshino, S., Hough, J., Hourihane, S., Howell, E. J., Hoy, C. G., Hrishikesh, C. A., Hsieh, H. -F., Hsiung, C., Hsu, H. C., Hsu, W. -F., Hu, P., Hu, Q., Huang, H. Y., Huang, Y. -J., Huddart, A. D., Hughey, B., Hui, D. C. Y., Hui, V., Husa, S., Huxford, R., Huynh-Dinh, T., Iampieri, L., Iandolo, G. A., Ianni, M., Iess, A., Imafuku, H., Inayoshi, K., Inoue, Y., Iorio, G., Iqbal, M. H., Irwin, J., Ishikawa, R., Isi, M., Ismail, M. A., Itoh, Y., Iwanaga, H., Iwaya, M., Iyer, B. R., JaberianHamedan, V., Jacquet, C., Jacquet, P. -E., Jadhav, S. J., Jadhav, S. P., Jain, T., James, A. L., James, P. A., Jamshidi, R., Janquart, J., Janssens, K., Janthalur, N. N., Jaraba, S., Jaranowski, P., Jaume, R., Javed, W., Jennings, A., Jia, W., Jiang, J., Kubisz, J., Johanson, C., Johns, G. R., Johnson, N. A., Johnston, M. C., Johnston, R., Johny, N., Jones, D. H., Jones, D. I., Jones, R., Jose, S., Joshi, P., Ju, L., Jung, K., Junker, J., Juste, V., Kajita, T., Kaku, I., Kalaghatgi, C., Kalogera, V., Kamiizumi, M., Kanda, N., Kandhasamy, S., Kang, G., Kanner, J. B., Kapadia, S. J., Kapasi, D. P., Karat, S., Karathanasis, C., Kashyap, R., Kasprzack, M., Kastaun, W., Kato, T., Katsavounidis, E., Katzman, W., Kaushik, R., Kawabe, K., Kawamoto, R., Kazemi, A., Keitel, D., Kelley-Derzon, J., Kennington, J., Kesharwani, R., Key, J. S., Khadela, R., Khadka, S., Khalili, F. Y., Khan, F., Khan, I., Khanam, T., Khursheed, M., Khusid, N. M., Kiendrebeogo, W., Kijbunchoo, N., Kim, C., Kim, J. C., Kim, K., Kim, M. H., Kim, S., Kim, Y. -M., Kimball, C., Kinley-Hanlon, M., Kinnear, M., Kissel, J. S., Klimenko, S., Knee, A. M., Knust, N., Kobayashi, K., Obergaulinger, M., Koch, P., Koehlenbeck, S. M., Koekoek, G., Kohri, K., Kokeyama, K., Koley, S., Kolitsidou, P., Kolstein, M., Komori, K., Kong, A. K. H., Kontos, A., Korobko, M., Kossak, R. V., Kou, X., Koushik, A., Kouvatsos, N., Kovalam, M., Kozak, D. B., Kranzhoff, S. L., Kringel, V., Krishnendu, N. V., Królak, A., Kruska, K., Kuehn, G., Kuijer, P., Kulkarni, S., Ramamohan, A. Kulur, Kumar, A., Kumar, Praveen, Kumar, Prayush, Kumar, Rahul, Kumar, Rakesh, Kume, J., Kuns, K., Kuntimaddi, N., Kuroyanagi, S., Kurth, N. J., Kuwahara, S., Kwak, K., Kwan, K., Kwok, J., Lacaille, G., Lagabbe, P., Laghi, D., Lai, S., Laity, A. H., Lakkis, M. H., Lalande, E., Lalleman, M., Lalremruati, P. C., Landry, M., Lane, B. B., Lang, R. N., Lange, J., Lantz, B., La Rana, A., La Rosa, I., Lartaux-Vollard, A., Lasky, P. D., Lawrence, J., Lawrence, M. N., Laxen, M., Lazzarini, A., Lazzaro, C., Leaci, P., Lecoeuche, Y. K., Lee, H. M., Lee, H. W., Lee, K., Lee, R. -K., Lee, R., Lee, S., Lee, Y., Legred, I. N., Lehmann, J., Lehner, L., Jean, M. Le, Lemaître, A., Lenti, M., Leonardi, M., Lequime, M., Leroy, N., Lesovsky, M., Letendre, N., Lethuillier, M., Levin, S. E., Levin, Y., Leyde, K., Li, A. K. Y., Li, K. L., Li, T. G. F., Li, X., Li, Z., Lihos, A., Lin, C-Y., Lin, C. -Y., Lin, E. T., Lin, F., Lin, H., Lin, L. C. -C., Lin, Y. -C., Linde, F., Linker, S. D., Littenberg, T. B., Liu, A., Liu, G. C., Liu, Jian, Villarreal, F. Llamas, Llobera-Querol, J., Lo, R. K. L., Locquet, J. -P., London, L. T., Longo, A., Lopez, D., Portilla, M. Lopez, Lorenzini, M., Lorenzo-Medina, A., Loriette, V., Lormand, M., Losurdo, G., Lott IV, T. P., Lough, J. D., Loughlin, H. A., Lousto, C. O., Lowry, M. J., Lu, N., Lück, H., Lumaca, D., Lundgren, A. P., Lussier, A. W., Ma, L. -T., Ma, S., Ma'arif, M., Macas, R., Macedo, A., MacInnis, M., Maciy, R. R., Macleod, D. M., MacMillan, I. A. O., Macquet, A., Macri, D., Maeda, K., Maenaut, S., Hernandez, I. Magaña, Magare, S. S., Magazzù, C., Magee, R. M., Maggio, E., Maggiore, R., Magnozzi, M., Mahesh, M., Mahesh, S., Maini, M., Majhi, S., Majorana, E., Makarem, C. N., Makelele, E., Malaquias-Reis, J. A., Mali, U., Maliakal, S., Malik, A., Man, N., Mandic, V., Mangano, V., Mannix, B., Mansell, G. L., Mansingh, G., Manske, M., Mantovani, M., Mapelli, M., Marchesoni, F., Pina, D. Marín, Marion, F., Márka, S., Márka, Z., Markosyan, A. S., Markowitz, A., Maros, E., Marsat, S., Martelli, F., Martin, I. W., Martin, R. M., Martinez, B. B., Martinez, M., Martinez, V., Martini, A., Martinovic, K., Martins, J. C., Martynov, D. V., Marx, E. J., Massaro, L., Masserot, A., Masso-Reid, M., Mastrodicasa, M., Mastrogiovanni, S., Matcovich, T., Matiushechkina, M., Matsuyama, M., Mavalvala, N., Maxwell, N., McCarrol, G., McCarthy, R., McClelland, D. E., McCormick, S., McCuller, L., McEachin, S., McElhenny, C., McGhee, G. I., McGinn, J., McGowan, K. B. M., McIver, J., McLeod, A., McRae, T., Meacher, D., Meijer, Q., Melatos, A., Mellaerts, S., Menendez-Vazquez, A., Menoni, C. S., Mera, F., Mercer, R. A., Mereni, L., Merfeld, K., Merilh, E. L., Mérou, J. R., Merritt, J. D., Merzougui, M., Messenger, C., Messick, C., Meyer-Conde, M., Meylahn, F., Mhaske, A., Miani, A., Miao, H., Michaloliakos, I., Michel, C., Michimura, Y., Middleton, H., Miller, A. L., Miller, S., Millhouse, M., Milotti, E., Milotti, V., Minenkov, Y., Mio, N., Mir, Ll. M., Mirasola, L., Miravet-Tenés, M., Miritescu, C. -A., Mishra, A. K., Mishra, A., Mishra, C., Mishra, T., Mitchell, A. L., Mitchell, J. G., Mitra, S., Mitrofanov, V. P., Mittleman, R., Miyakawa, O., Miyamoto, S., Miyoki, S., Mo, G., Mobilia, L., Mohapatra, S. R. P., Mohite, S. R., Molina-Ruiz, M., Mondal, C., Mondin, M., Montani, M., Moore, C. J., Moraru, D., More, A., More, S., Moreno, G., Morgan, C., Morisaki, S., Moriwaki, Y., Morras, G., Moscatello, A., Mourier, P., Mours, B., Mow-Lowry, C. M., Muciaccia, F., Mukherjee, Arunava, Mukherjee, D., Mukherjee, Samanwaya, Mukherjee, Soma, Mukherjee, Subroto, Mukherjee, Suvodip, Mukund, N., Mullavey, A., Munch, J., Mundi, J., Mungioli, C. L., Oberg, W. R. Munn, Murakami, Y., Murakoshi, M., Murray, P. G., Muusse, S., Nabari, D., Nadji, S. L., Nagar, A., Nagarajan, N., Nagler, K. N., Nakagaki, K., Nakamura, K., Nakano, H., Nakano, M., Nandi, D., Napolano, V., Narayan, P., Nardecchia, I., Narikawa, T., Narola, H., Naticchioni, L., Nayak, R. K., Neilson, J., Nelson, A., Nelson, T. J. N., Nery, M., Neunzert, A., Ng, S., Quynh, L. Nguyen, Nichols, S. A., Nielsen, A. B., Nieradka, G., Niko, A., Nishino, Y., Nishizawa, A., Nissanke, S., Nitoglia, E., Niu, W., Nocera, F., Norman, M., North, C., Novak, J., Siles, J. F. Nuño, Nuttall, L. K., Obayashi, K., Oberling, J., O'Dell, J., Oertel, M., Offermans, A., Oganesyan, G., Oh, J. J., Oh, K., O'Hanlon, T., Ohashi, M., Ohkawa, M., Ohme, F., Oliveira, A. S., Oliveri, R., O'Neal, B., Oohara, K., O'Reilly, B., Ormsby, N. D., Orselli, M., O'Shaughnessy, R., O'Shea, S., Oshima, Y., Oshino, S., Ossokine, S., Osthelder, C., Ota, I., Ottaway, D. J., Ouzriat, A., Overmier, H., Owen, B. J., Pace, A. E., Pagano, R., Page, M. A., Pai, A., Pal, A., Pal, S., Palaia, M. A., Pálfi, M., Palma, P. P., Palomba, C., Palud, P., Pan, H., Pan, J., Pan, K. C., Panai, R., Panda, P. K., Pandey, S., Panebianco, L., Pang, P. T. H., Pannarale, F., Pannone, K. A., Pant, B. C., Panther, F. H., Paoletti, F., Paolone, A., Papalexakis, E. E., Papalini, L., Papigkiotis, G., Paquis, A., Parisi, A., Park, B. -J., Park, J., Parker, W., Pascale, G., Pascucci, D., Pasqualetti, A., Passaquieti, R., Passenger, L., Passuello, D., Patane, O., Pathak, D., Pathak, M., Patra, A., Patricelli, B., Patron, A. S., Paul, K., Paul, S., Payne, E., Pearce, T., Pedraza, M., Pegna, R., Pele, A., Arellano, F. E. Peña, Penn, S., Penuliar, M. D., Perego, A., Pereira, Z., Perez, J. J., Périgois, C., Perna, G., Perreca, A., Perret, J., Perriès, S., Perry, J. W., Pesios, D., Petracca, S., Petrillo, C., Pfeiffer, H. P., Pham, H., Pham, K. A., Phukon, K. S., Phurailatpam, H., Piarulli, M., Piccari, L., Piccinni, O. J., Pichot, M., Piendibene, M., Piergiovanni, F., Pierini, L., Pierra, G., Pierro, V., Pietrzak, M., Pillas, M., Pilo, F., Pinard, L., Pinto, I. M., Pinto, M., Piotrzkowski, B. J., Pirello, M., Pitkin, M. D., Placidi, A., Placidi, E., Planas, M. L., Plastino, W., Poggiani, R., Polini, E., Pompili, L., Poon, J., Porcelli, E., Porter, E. K., Posnansky, C., Poulton, R., Powell, J., Pracchia, M., Pradhan, B. K., Pradier, T., Prajapati, A. K., Prasai, K., Prasanna, R., Prasia, P., Pratten, G., Principe, G., Principe, M., Prodi, G. A., Prokhorov, L., Prosposito, P., Puecher, A., Pullin, J., Punturo, M., Puppo, P., Pürrer, M., Qi, H., Qin, J., Quéméner, G., Quetschke, V., Quigley, C., Quinonez, P. J., Raab, F. J., Raabith, S. S., Raaijmakers, G., Raja, S., Rajan, C., Rajbhandari, B., Ramirez, K. E., Vidal, F. A. Ramis, Ramos-Buades, A., Rana, D., Ranjan, S., Ransom, K., Rapagnani, P., Ratto, B., Rawat, S., Ray, A., Raymond, V., Razzano, M., Read, J., Payo, M. Recaman, Regimbau, T., Rei, L., Reid, S., Reitze, D. H., Relton, P., Renzini, A. I., Rettegno, P., Revenu, B., Reyes, R., Rezaei, A. S., Ricci, F., Ricci, M., Ricciardone, A., Richardson, J. W., Richardson, M., Rijal, A., Riles, K., Riley, H. K., Rinaldi, S., Rittmeyer, J., Robertson, C., Robinet, F., Robinson, M., Rocchi, A., Rolland, L., Rollins, J. G., Romano, A. E., Romano, R., Romero, A., Romero-Shaw, I. M., Romie, J. H., Ronchini, S., Roocke, T. J., Rosa, L., Rosauer, T. J., Rose, C. A., Rosińska, D., Ross, M. P., Rossello, M., Rowan, S., Roy, S. K., Roy, S., Rozza, D., Ruggi, P., Ruhama, N., Morales, E. Ruiz, Ruiz-Rocha, K., Sachdev, S., Sadecki, T., Sadiq, J., Saffarieh, P., Sah, M. R., Saha, S. S., Saha, S., Sainrat, T., Menon, S. Sajith, Sakai, K., Sakellariadou, M., Sakon, S., Salafia, O. S., Salces-Carcoba, F., Salconi, L., Saleem, M., Salemi, F., Sallé, M., Salvador, S., Sanchez, A., Sanchez, E. J., Sanchez, J. H., Sanchez, L. E., Sanchis-Gual, N., Sanders, J. R., Sänger, E. M., Santoliquido, F., Saravanan, T. R., Sarin, N., Sasaoka, S., Sasli, A., Sassi, P., Sassolas, B., Satari, H., Sato, R., Sato, Y., Sauter, O., Savage, R. L., Sawada, T., Sawant, H. L., Sayah, S., Scacco, V., Schaetzl, D., Scheel, M., Schiebelbein, A., Schiworski, M. G., Schmidt, P., Schmidt, S., Schnabel, R., Schneewind, M., Schofield, R. M. S., Schouteden, K., Schulte, B. W., Schutz, B. F., Schwartz, E., Scialpi, M., Scott, J., Scott, S. M., Seetharamu, T. C., Seglar-Arroyo, M., Sekiguchi, Y., Sellers, D., Sengupta, A. S., Sentenac, D., Seo, E. G., Seo, J. W., Sequino, V., Serra, M., Servignat, G., Sevrin, A., Shaffer, T., Shah, U. S., Shaikh, M. A., Shao, L., Sharma, A. K., Sharma, P., Sharma-Chaudhary, S., Shaw, M. R., Shawhan, P., Shcheblanov, N. S., Sheridan, E., Shikano, Y., Shikauchi, M., Shimode, K., Shinkai, H., Shiota, J., Shoemaker, D. H., Shoemaker, D. M., Short, R. W., ShyamSundar, S., Sider, A., Siegel, H., Sieniawska, M., Sigg, D., Silenzi, L., Simmonds, M., Singer, L. P., Singh, A., Singh, D., Singh, M. K., Singh, S., Singha, A., Sintes, A. M., Sipala, V., Skliris, V., Slagmolen, B. J. J., Slaven-Blair, T. J., Smetana, J., Smith, J. R., Smith, L., Smith, R. J. E., Smith, W. J., Soldateschi, J., Somiya, K., Song, I., Soni, K., Soni, S., Sordini, V., Sorrentino, F., Sorrentino, N., Sotani, H., Soulard, R., Southgate, A., Spagnuolo, V., Spencer, A. P., Spera, M., Spinicelli, P., Spoon, J. B., Sprague, C. A., Srivastava, A. K., Stachurski, F., Steer, D. A., Steinlechner, J., Steinlechner, S., Stergioulas, N., Stevens, P., StPierre, M., Stratta, G., Strong, M. D., Strunk, A., Sturani, R., Stuver, A. L., Suchenek, M., Sudhagar, S., Sueltmann, N., Suleiman, L., Sullivan, K. D., Sun, L., Sunil, S., Suresh, J., Sutton, P. J., Suzuki, T., Suzuki, Y., Swinkels, B. L., Syx, A., Szczepańczyk, M. J., Szewczyk, P., Tacca, M., Tagoshi, H., Tait, S. C., Takahashi, H., Takahashi, R., Takamori, A., Takase, T., Takatani, K., Takeda, H., Takeshita, K., Talbot, C., Tamaki, M., Tamanini, N., Tanabe, D., Tanaka, K., Tanaka, S. J., Tanaka, T., Tang, D., Tanioka, S., Tanner, D. B., Tao, L., Tapia, R. D., Martín, E. N. Tapia San, Tarafder, R., Taranto, C., Taruya, A., Tasson, J. D., Teloi, M., Tenorio, R., Themann, H., Theodoropoulos, A., Thirugnanasambandam, M. P., Thomas, L. M., Thomas, M., Thomas, P., Thompson, J. E., Thondapu, S. R., Thorne, K. A., Thrane, E., Tissino, J., Tiwari, A., Tiwari, P., Tiwari, S., Tiwari, V., Todd, M. R., Toivonen, A. M., Toland, K., Tolley, A. E., Tomaru, T., Tomita, K., Tomura, T., Tong-Yu, C., Toriyama, A., Toropov, N., Torres-Forné, A., Torrie, C. I., Toscani, M., Melo, I. Tosta e, Tournefier, E., Trapananti, A., Travasso, F., Traylor, G., Trevor, M., Tringali, M. C., Tripathee, A., Troian, G., Troiano, L., Trovato, A., Trozzo, L., Trudeau, R. J., Tsang, T. T. L., Tso, R., Tsuchida, S., Tsukada, L., Tsutsui, T., Turbang, K., Turconi, M., Turski, C., Ubach, H., Uchikata, N., Uchiyama, T., Udall, R. P., Uehara, T., Uematsu, M., Ueno, K., Ueno, S., Undheim, V., Ushiba, T., Vacatello, M., Vahlbruch, H., Vaidya, N., Vajente, G., Vajpeyi, A., Valdes, G., Valencia, J., Valentini, M., Vallejo-Peña, S. A., Vallero, S., Valsan, V., van Bakel, N., van Beuzekom, M., van Dael, M., Brand, J. F. J. van den, Broeck, C. Van Den, Vander-Hyde, D. C., van der Sluys, M., Van de Walle, A., van Dongen, J., Vandra, K., van Haevermaet, H., van Heijningen, J. V., Van Hove, P., VanKeuren, M., Vanosky, J., van Putten, M. H. P. M., van Ranst, Z., van Remortel, N., Vardaro, M., Vargas, A. F., Varghese, J. J., Varma, V., Vasúth, M., Vecchio, A., Vedovato, G., Veitch, J., Veitch, P. J., Venikoudis, S., Venneberg, J., Verdier, P., Verkindt, D., Verma, B., Verma, P., Verma, Y., Vermeulen, S. M., Vetrano, F., Veutro, A., Vibhute, A. M., Viceré, A., Vidyant, S., Viets, A. D., Vijaykumar, A., Vilkha, A., Villa-Ortega, V., Vincent, E. T., Vinet, J. -Y., Viret, S., Virtuoso, A., Vitale, S., Vives, A., Vocca, H., Voigt, D., von Reis, E. R. G., von Wrangel, J. S. A., Vyatchanin, S. P., Wade, L. E., Wade, M., Wagner, K. J., Wajid, A., Walker, M., Wallace, G. S., Wallace, L., Wang, H., Wang, J. Z., Wang, W. H., Wang, Z., Waratkar, G., Warner, J., Was, M., Washimi, T., Washington, N. Y., Watarai, D., Wayt, K. E., Weaver, B. R., Weaver, B., Weaving, C. R., Webster, S. A., Weinert, M., Weinstein, A. J., Weiss, R., Wellmann, F., Wen, L., Weßels, P., Wette, K., Whelan, J. T., Whiting, B. F., Whittle, C., Wildberger, J. B., Wilk, O. S., Wilken, D., Wilkin, A. T., Willadsen, D. J., Willetts, K., Williams, D., Williams, M. J., Williams, N. S., Willis, J. L., Willke, B., Wils, M., Winterflood, J., Wipf, C. C., Woan, G., Woehler, J., Wofford, J. K., Wolfe, N. E., Wong, H. T., Wong, H. W. Y., Wong, I. C. F., Wright, J. L., Wright, M., Wu, C., Wu, D. S., Wu, H., Wuchner, E., Wysocki, D. M., Xu, V. A., Xu, Y., Yadav, N., Yamamoto, H., Yamamoto, K., Yamamoto, T. S., Yamamoto, T., Yamamura, S., Yamazaki, R., Yan, S., Yan, T., Yang, F. W., Yang, F., Yang, K. Z., Yang, Y., Yarbrough, Z., Yasui, H., Yeh, S. -W., Yelikar, A. B., Yin, X., Yokoyama, J., Yokozawa, T., Yoo, J., Yu, H., Yuan, S., Yuzurihara, H., Zadrożny, A., Zanolin, M., Zeeshan, M., Zelenova, T., Zendri, J. -P., Zeoli, M., Zerrad, M., Zevin, M., Zhang, A. C., Zhang, L., Zhang, R., Zhang, T., Zhang, Y., Zhao, C., Zhao, Yue, Zhao, Yuhang, Zheng, Y., Zhong, H., Zhou, R., Zhu, X. -J., Zhu, Z. -H., Zimmerman, A. B., Zucker, M. E., and Zweizig, J.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
We present the results of a search for gravitational-wave transients associated with core-collapse supernova SN 2023ixf, which was observed in the galaxy Messier 101 via optical emission on 2023 May 19th, during the LIGO-Virgo-KAGRA 15th Engineering Run. We define a five-day on-source window during which an accompanying gravitational-wave signal may have occurred. No gravitational waves have been identified in data when at least two gravitational-wave observatories were operating, which covered $\sim 14\%$ of this five-day window. We report the search detection efficiency for various possible gravitational-wave emission models. Considering the distance to M101 (6.7 Mpc), we derive constraints on the gravitational-wave emission mechanism of core-collapse supernovae across a broad frequency spectrum, ranging from 50 Hz to 2 kHz where we assume the GW emission occurred when coincident data are available in the on-source window. Considering an ellipsoid model for a rotating proto-neutron star, our search is sensitive to gravitational-wave energy $1 \times 10^{-5} M_{\odot} c^2$ and luminosity $4 \times 10^{-5} M_{\odot} c^2/\text{s}$ for a source emitting at 50 Hz. These constraints are around an order of magnitude more stringent than those obtained so far with gravitational-wave data. The constraint on the ellipticity of the proto-neutron star that is formed is as low as $1.04$, at frequencies above $1200$ Hz, surpassing results from SN 2019ejj., Comment: Main paper: 6 pages, 4 figures and 1 table. Total with appendices: 20 pages, 4 figures, and 1 table
- Published
- 2024
30. Visible-Light High-Contrast Imaging and Polarimetry with SCExAO/VAMPIRES
- Author
-
Lucas, Miles, Norris, Barnaby, Guyon, Olivier, Bottom, Michael, Deo, Vincent, Vievard, Sébastian, Lozi, Julien, Ahn, Kyohoon, Ashcraft, Jaren, Currie, Thayne, Doelman, David, Kudo, Tomoyuki, Leboulleux, Lucie, Lilley, Lucinda, Millar-Blanchaer, Maxwell, Safonov, Boris, Tuthill, Peter, Uyama, Taichi, Walk, Aidan, and Zhang, Manxuan
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
We present significant upgrades to the VAMPIRES instrument, a visible-light (600 nm to 800 nm) high-contrast imaging polarimeter integrated within SCExAO on the Subaru telescope. Key enhancements include new qCMOS detectors, coronagraphs, polarization optics, and a multiband imaging mode, improving sensitivity, resolution, and efficiency. These upgrades position VAMPIRES as a powerful tool for studying sub-stellar companions, accreting protoplanets, circumstellar disks, stellar jets, stellar mass-loss shells, and solar system objects. The instrument achieves angular resolutions from 17 mas to 21 mas and Strehl ratios up to 60\%, with 5$\sigma$ contrast limits of $10^{\text{-}4}$ at 0.1'' to $10^{\text{-}6}$ beyond 0.5''. We demonstrate these capabilities through spectro-polarimetric coronagraphic imaging of the HD 169142 circumstellar disk, ADI+SDI imaging of the sub-stellar companion HD 1160B, narrowband H$\alpha$ imaging of the R Aqr emission nebula, and spectro-polarimetric imaging of Neptune., Comment: 36 pages, 33 figures, accepted to PASP
- Published
- 2024
31. Browsing without Third-Party Cookies: What Do You See?
- Author
-
Lin, Maxwell, Lin, Shihan, Wu, Helen, Wang, Karen, and Yang, Xiaowei
- Subjects
Computer Science - Cryptography and Security - Abstract
Third-party web cookies are often used for privacy-invasive behavior tracking. Partly due to privacy concerns, browser vendors have started to block all third-party cookies in recent years. To understand the effects of such third-party cookieless browsing, we crawled and measured the top 10,000 Tranco websites. We developed a framework to remove third-party cookies and analyze the differences between the appearance of web pages with and without these cookies. We find that disabling third-party cookies has no substantial effect on website appearance including layouts, text, and images. This validates the industry-wide shift towards cookieless browsing as a way to protect user privacy without compromising on the user experience., Comment: To appear in IMC '24
- Published
- 2024
- Full Text
- View/download PDF
32. SeedLM: Compressing LLM Weights into Seeds of Pseudo-Random Generators
- Author
-
Shafipour, Rasoul, Harrison, David, Horton, Maxwell, Marker, Jeffrey, Bedayat, Houman, Mehta, Sachin, Rastegari, Mohammad, Najibi, Mahyar, and Naderiparizi, Saman
- Subjects
Computer Science - Machine Learning ,Computer Science - Artificial Intelligence - Abstract
Large Language Models (LLMs) have transformed natural language processing, but face significant challenges in widespread deployment due to their high runtime cost. In this paper, we introduce SeedLM, a novel post-training compression method that uses seeds of pseudo-random generators to encode and compress model weights. Specifically, for each block of weights, we find a seed that is fed into a Linear Feedback Shift Register (LFSR) during inference to efficiently generate a random matrix. This matrix is then linearly combined with compressed coefficients to reconstruct the weight block. SeedLM reduces memory access and leverages idle compute cycles during inference, effectively speeding up memory-bound tasks by trading compute for fewer memory accesses. Unlike state-of-the-art compression methods that rely on calibration data, our approach is data-free and generalizes well across diverse tasks. Our experiments with Llama 3 70B, which is particularly challenging to compress, show that SeedLM achieves significantly better zero-shot accuracy retention at 4- and 3-bit than state-of-the-art techniques, while maintaining performance comparable to FP16 baselines. Additionally, FPGA-based tests demonstrate that 4-bit SeedLM, as model size increases to 70B, approaches a 4x speed-up over an FP16 Llama 2/3 baseline.
- Published
- 2024
33. Oogway: Designing, Implementing, and Testing an AUV for RoboSub 2023
- Author
-
Denton, Will, Chiavetta, Lilly, Bryant, Michael, Shah, Vedarsh, Zhu, Rico, Weerts, Ricky, Xue, Phillip, Chen, Vincent, Le, Hung, Lin, Maxwell, Camacho, Austin, Council, Drew, Horowitz, Ethan, Ong, Jackie, Chu, Morgan, and Pool, Alex
- Subjects
Computer Science - Robotics - Abstract
The Duke Robotics Club is proud to present our robot for the 2023 RoboSub Competition: Oogway. Oogway marks one of the largest design overhauls in club history. Beyond a revamped formfactor, some of Oogway's notable features include all-new computer vision software, advanced sonar integration, novel acoustics hardware processing, and upgraded stereoscopic cameras. Oogway was built on the principle of independent, well-integrated, and reliable subsystems. Individual components and subsystems were tested and designed separately. Oogway's most advanced capabilities are a result of the tight integration between these subsystems. Such examples include sonar-assisted computer vision algorithms and robot-agnostic controls configured in part through the robot's 3D model. The success of constructing and testing Oogway in under 2 year's time can be attributed to 20+ contributing club members, supporters within Duke's Pratt School of Engineering, and outside sponsors., Comment: arXiv admin note: text overlap with arXiv:2410.09684
- Published
- 2024
34. Technical Design Review of Duke Robotics Club's Oogway: An AUV for RoboSub 2024
- Author
-
Denton, Will, Bryant, Michael, Chiavetta, Lilly, Shah, Vedarsh, Zhu, Rico, Xue, Philip, Chen, Vincent, Lin, Maxwell, Le, Hung, Camacho, Austin, Galvez, Raul, Yang, Nathan, Ren, Nathanael, Rose, Tyler, Chu, Mathew, Ergashev, Amir, Arya, Saagar, Pieter, Kaelyn, Horowitz, Ethan, Allampallam, Maanav, Zheng, Patrick, Kaarls, Mia, and Wood, June
- Subjects
Computer Science - Robotics - Abstract
The Duke Robotics Club is proud to present our robot for the 2024 RoboSub Competition: Oogway. Now in its second year, Oogway has been dramatically upgraded in both its capabilities and reliability. Oogway was built on the principle of independent, well-integrated, and reliable subsystems. Individual components and subsystems were tested and designed separately. Oogway's most advanced capabilities are a result of the tight integration between these subsystems. Such examples include a re-envisioned controls system, an entirely new electrical stack, advanced sonar integration, additional cameras and system monitoring, a new marker dropper, and a watertight capsule mechanism. These additions enabled Oogway to prequalify for Robosub 2024.
- Published
- 2024
35. On The MCMC Performance In Bernoulli Group Testing And The Random Max Set-Cover Problem
- Author
-
Lovig, Maxwell and Zadik, Ilias
- Subjects
Mathematics - Statistics Theory ,Computer Science - Data Structures and Algorithms ,Mathematics - Probability - Abstract
The group testing problem is a canonical inference task where one seeks to identify $k$ infected individuals out of a population of $n$ people, based on the outcomes of $m$ group tests. Of particular interest is the case of Bernoulli group testing (BGT), where each individual participates in each test independently and with a fixed probability. BGT is known to be an "information-theoretically" optimal design, as there exists a decoder that can identify with high probability as $n$ grows the infected individuals using $m^*=\log_2 \binom{n}{k}$ BGT tests, which is the minimum required number of tests among \emph{all} group testing designs. An important open question in the field is if a polynomial-time decoder exists for BGT which succeeds also with $m^*$ samples. In a recent paper (Iliopoulos, Zadik COLT '21) some evidence was presented (but no proof) that a simple low-temperature MCMC method could succeed. The evidence was based on a first-moment (or "annealed") analysis of the landscape, as well as simulations that show the MCMC success for $n \approx 1000s$. In this work, we prove that, despite the intriguing success in simulations for small $n$, the class of MCMC methods proposed in previous work for BGT with $m^*$ samples takes super-polynomial-in-$n$ time to identify the infected individuals, when $k=n^{\alpha}$ for $\alpha \in (0,1)$ small enough. Towards obtaining our results, we establish the tight max-satisfiability thresholds of the random $k$-set cover problem, a result of potentially independent interest in the study of random constraint satisfaction problems., Comment: 71 pages
- Published
- 2024
36. A search using GEO600 for gravitational waves coincident with fast radio bursts from SGR 1935+2154
- Author
-
The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, Abac, A. G., Abbott, R., Abouelfettouh, I., Acernese, F., Ackley, K., Adhicary, S., Adhikari, N., Adhikari, R. X., Adkins, V. K., Agarwal, D., Agathos, M., Abchouyeh, M. Aghaei, Aguiar, O. D., Aguilar, I., Aiello, L., Ain, A., Ajith, P., Akutsu, T., Albanesi, S., Alfaidi, R. A., Al-Jodah, A., Alléné, C., Allocca, A., Al-Shammari, S., Altin, P. A., Alvarez-Lopez, S., Amato, A., Amez-Droz, L., Amorosi, A., Amra, C., Ananyeva, A., Anderson, S. B., Anderson, W. G., Andia, M., Ando, M., Andrade, T., Andres, N., Andrés-Carcasona, M., Andrić, T., Anglin, J., Ansoldi, S., Antelis, J. M., Antier, S., Aoumi, M., Appavuravther, E. Z., Appert, S., Apple, S. K., Arai, K., Araya, A., Araya, M. C., Areeda, J. S., Argianas, L., Aritomi, N., Armato, F., Arnaud, N., Arogeti, M., Aronson, S. M., Ashton, G., Aso, Y., Assiduo, M., Melo, S. Assis de Souza, Aston, S. M., Astone, P., Attadio, F., Aubin, F., AultONeal, K., Avallone, G., Azrad, D., Babak, S., Badaracco, F., Badger, C., Bae, S., Bagnasco, S., Bagui, E., Baier, J. G., Baiotti, L., Bajpai, R., Baka, T., Ball, M., Ballardin, G., Ballmer, S. W., Banagiri, S., Banerjee, B., Bankar, D., Baral, P., Barayoga, J. C., Barish, B. C., Barker, D., Barneo, P., Barone, F., Barr, B., Barsotti, L., Barsuglia, M., Barta, D., Bartoletti, A. M., Barton, M. A., Bartos, I., Basak, S., Basalaev, A., Bassiri, R., Basti, A., Bates, D. E., Bawaj, M., Baxi, P., Bayley, J. C., Baylor, A. C., Baynard II, P. A., Bazzan, M., Bedakihale, V. M., Beirnaert, F., Bejger, M., Belardinelli, D., Bell, A. S., Benedetto, V., Benoit, W., Bentley, J. D., Yaala, M. Ben, Bera, S., Berbel, M., Bergamin, F., Berger, B. K., Bernuzzi, S., Beroiz, M., Bersanetti, D., Bertolini, A., Betzwieser, J., Beveridge, D., Bevins, N., Bhandare, R., Bhardwaj, U., Bhatt, R., Bhattacharjee, D., Bhaumik, S., Bhowmick, S., Bianchi, A., Bilenko, I. A., Billingsley, G., Binetti, A., Bini, S., Birnholtz, O., Biscoveanu, S., Bisht, A., Bitossi, M., Bizouard, M. -A., Blackburn, J. K., Blagg, L. A., Blair, C. D., Blair, D. G., Bobba, F., Bode, N., Boileau, G., Boldrini, M., Bolingbroke, G. N., Bolliand, A., Bonavena, L. D., Bondarescu, R., Bondu, F., Bonilla, E., Bonilla, M. S., Bonino, A., Bonnand, R., Booker, P., Borchers, A., Boschi, V., Bose, S., Bossilkov, V., Boudart, V., Boudon, A., Bozzi, A., Bradaschia, C., Brady, P. R., Braglia, M., Branch, A., Branchesi, M., Brandt, J., Braun, I., Breschi, M., Briant, T., Brillet, A., Brinkmann, M., Brockill, P., Brockmueller, E., Brooks, A. F., Brown, B. C., Brown, D. D., Brozzetti, M. L., Brunett, S., Bruno, G., Bruntz, R., Bryant, J., Bucci, F., Buchanan, J., Bulashenko, O., Bulik, T., Bulten, H. J., Buonanno, A., Burtnyk, K., Buscicchio, R., Buskulic, D., Buy, C., Byer, R. L., Davies, G. S. Cabourn, Cabras, G., Cabrita, R., Cáceres-Barbosa, V., Cadonati, L., Cagnoli, G., Cahillane, C., Bustillo, J. Calderón, Callister, T. A., Calloni, E., Camp, J. B., Canepa, M., Santoro, G. Caneva, Cannon, K. C., Cao, H., Capistran, L. A., Capocasa, E., Capote, E., Carapella, G., Carbognani, F., Carlassara, M., Carlin, J. B., Carpinelli, M., Carrillo, G., Carter, J. J., Carullo, G., Diaz, J. Casanueva, Casentini, C., Castro-Lucas, S. Y., Caudill, S., Cavaglià, M., Cavalieri, R., Cella, G., Cerdá-Durán, P., Cesarini, E., Chaibi, W., Chakraborty, P., Subrahmanya, S. Chalathadka, Chan, J. C. L., Chan, M., Chandra, K., Chang, R. -J., Chao, S., Charlton, E. L., Charlton, P., Chassande-Mottin, E., Chatterjee, C., Chatterjee, Debarati, Chatterjee, Deep, Chaturvedi, M., Chaty, S., Chen, A., Chen, A. H. -Y., Chen, D., Chen, H., Chen, H. Y., Chen, J., Chen, K. H., Chen, Y., Chen, Yanbei, Chen, Yitian, Cheng, H. P., Chessa, P., Cheung, H. T., Cheung, S. Y., Chiadini, F., Chiarini, G., Chierici, R., Chincarini, A., Chiofalo, M. L., Chiummo, A., Chou, C., Choudhary, S., Christensen, N., Chua, S. S. Y., Chugh, P., Ciani, G., Ciecielag, P., Cieślar, M., Cifaldi, M., Ciolfi, R., Clara, F., Clark, J. A., Clarke, J., Clarke, T. A., Clearwater, P., Clesse, S., Coccia, E., Codazzo, E., Cohadon, P. -F., Colace, S., Colleoni, M., Collette, C. G., Collins, J., Colloms, S., Colombo, A., Colpi, M., Compton, C. M., Connolly, G., Conti, L., Corbitt, T. R., Cordero-Carrión, I., Corezzi, S., Cornish, N. J., Corsi, A., Cortese, S., Costa, C. A., Cottingham, R., Coughlin, M. W., Couineaux, A., Coulon, J. -P., Countryman, S. T., Coupechoux, J. -F., Couvares, P., Coward, D. M., Cowart, M. J., Coyne, R., Craig, K., Creed, R., Creighton, J. D. E., Creighton, T. D., Cremonese, P., Criswell, A. W., Crockett-Gray, J. C. G., Crook, S., Crouch, R., Csizmazia, J., Cudell, J. R., Cullen, T. J., Cumming, A., Cuoco, E., Cusinato, M., Dabadie, P., Canton, T. Dal, Dall'Osso, S., Pra, S. Dal, Dálya, G., D'Angelo, B., Danilishin, S., D'Antonio, S., Danzmann, K., Darroch, K. E., Dartez, L. P., Dasgupta, A., Datta, S., Dattilo, V., Daumas, A., Davari, N., Dave, I., Davenport, A., Davier, M., Davies, T. F., Davis, D., Davis, L., Davis, M. C., Davis, P. J., Dax, M., De Bolle, J., Deenadayalan, M., Degallaix, J., De Laurentis, M., Deléglise, S., De Lillo, F., Dell'Aquila, D., Del Pozzo, W., De Marco, F., De Matteis, F., D'Emilio, V., Demos, N., Dent, T., Depasse, A., DePergola, N., De Pietri, R., De Rosa, R., De Rossi, C., DeSalvo, R., De Simone, R., Dhani, A., Diab, R., Díaz, M. C., Di Cesare, M., Dideron, G., Didio, N. A., Dietrich, T., Di Fiore, L., Di Fronzo, C., Di Giovanni, M., Di Girolamo, T., Diksha, D., Di Michele, A., Ding, J., Di Pace, S., Di Palma, I., Di Renzo, F., Divyajyoti, Dmitriev, A., Doctor, Z., Dohmen, E., Doleva, P. P., Dominguez, D., D'Onofrio, L., Donovan, F., Dooley, K. L., Dooney, T., Doravari, S., Dorosh, O., Drago, M., Driggers, J. C., Ducoin, J. -G., Dunn, L., Dupletsa, U., D'Urso, D., Duval, H., Duverne, P. -A., Dwyer, S. E., Eassa, C., Ebersold, M., Eckhardt, T., Eddolls, G., Edelman, B., Edo, T. B., Edy, O., Effler, A., Eichholz, J., Einsle, H., Eisenmann, M., Eisenstein, R. A., Ejlli, A., Eleveld, R. M., Emma, M., Endo, K., Engl, A. J., Enloe, E., Errico, L., Essick, R. C., Estellés, H., Estevez, D., Etzel, T., Evans, M., Evstafyeva, T., Ewing, B. E., Ezquiaga, J. M., Fabrizi, F., Faedi, F., Fafone, V., Fairhurst, S., Farah, A. M., Farr, B., Farr, W. M., Favaro, G., Favata, M., Fays, M., Fazio, M., Feicht, J., Fejer, M. M., Felicetti, R. ., Fenyvesi, E., Ferguson, D. L., Ferraiuolo, S., Ferrante, I., Ferreira, T. A., Fidecaro, F., Figura, P., Fiori, A., Fiori, I., Fishbach, M., Fisher, R. P., Fittipaldi, R., Fiumara, V., Flaminio, R., Fleischer, S. M., Fleming, L. S., Floden, E., Foley, E. M., Fong, H., Font, J. A., Fornal, B., Forsyth, P. W. F., Franceschetti, K., Franchini, N., Frasca, S., Frasconi, F., Mascioli, A. Frattale, Frei, Z., Freise, A., Freitas, O., Frey, R., Frischhertz, W., Fritschel, P., Frolov, V. V., Fronzé, G. G., Fuentes-Garcia, M., Fujii, S., Fujimori, T., Fulda, P., Fyffe, M., Gadre, B., Gair, J. R., Galaudage, S., Galdi, V., Gallagher, H., Gallardo, S., Gallego, B., Gamba, R., Gamboa, A., Ganapathy, D., Ganguly, A., Garaventa, B., García-Bellido, J., Núñez, C. García, García-Quirós, C., Gardner, J. W., Gardner, K. A., Gargiulo, J., Garron, A., Garufi, F., Gasbarra, C., Gateley, B., Gayathri, V., Gemme, G., Gennai, A., Gennari, V., George, J., George, R., Gerberding, O., Gergely, L., Ghonge, S., Ghosh, Archisman, Ghosh, Sayantan, Ghosh, Shaon, Ghosh, Shrobana, Ghosh, Suprovo, Ghosh, Tathagata, Giacoppo, L., Giaime, J. A., Giardina, K. D., Gibson, D. R., Gibson, D. T., Gier, C., Giri, P., Gissi, F., Gkaitatzis, S., Glanzer, J., Glotin, F., Godfrey, J., Godwin, P., Goebbels, N. L., Goetz, E., Golomb, J., Lopez, S. Gomez, Goncharov, B., Gong, Y., González, G., Goodarzi, P., Goode, S., Goodwin-Jones, A. W., Gosselin, M., Göttel, A. S., Gouaty, R., Gould, D. W., Govorkova, K., Goyal, S., Grace, B., Grado, A., Graham, V., Granados, A. E., Granata, M., Granata, V., Gras, S., Grassia, P., Gray, A., Gray, C., Gray, R., Greco, G., Green, A. C., Green, S. M., Green, S. R., Gretarsson, A. M., Gretarsson, E. M., Griffith, D., Griffiths, W. L., Griggs, H. L., Grignani, G., Grimaldi, A., Grimaud, C., Grote, H., Guerra, D., Guetta, D., Guidi, G. M., Guimaraes, A. R., Gulati, H. K., Gulminelli, F., Gunny, A. M., Guo, H., Guo, W., Guo, Y., Gupta, Anchal, Gupta, Anuradha, Gupta, Ish, Gupta, N. C., Gupta, P., Gupta, S. K., Gupta, T., Gupte, N., Gurs, J., Gutierrez, N., Guzman, F., H, H. -Y., Haba, D., Haberland, M., Haino, S., Hall, E. D., Hamilton, E. Z., Hammond, G., Han, W. -B., Haney, M., Hanks, J., Hanna, C., Hannam, M. D., Hannuksela, O. A., Hanselman, A. G., Hansen, H., Hanson, J., Harada, R., Hardison, A. R., Haris, K., Harmark, T., Harms, J., Harry, G. M., Harry, I. W., Hart, J., Haskell, B., Haster, C. -J., Hathaway, J. S., Haughian, K., Hayakawa, H., Hayama, K., Hayes, R., Heffernan, A., Heidmann, A., Heintze, M. C., Heinze, J., Heinzel, J., Heitmann, H., Hellman, F., Hello, P., Helmling-Cornell, A. F., Hemming, G., Henderson-Sapir, O., Hendry, M., Heng, I. S., Hennes, E., Henshaw, C., Hertog, T., Heurs, M., Hewitt, A. L., Heyns, J., Higginbotham, S., Hild, S., Hill, S., Himemoto, Y., Hirata, N., Hirose, C., Ho, W. C. G., Hoang, S., Hochheim, S., Hofman, D., Holland, N. A., Holley-Bockelmann, K., Holmes, Z. J., Holz, D. E., Honet, L., Hong, C., Hornung, J., Hoshino, S., Hough, J., Hourihane, S., Howell, E. J., Hoy, C. G., Hrishikesh, C. A., Hsieh, H. -F., Hsiung, C., Hsu, H. C., Hsu, W. -F., Hu, P., Hu, Q., Huang, H. Y., Huang, Y. -J., Huddart, A. D., Hughey, B., Hui, D. C. Y., Hui, V., Husa, S., Huxford, R., Huynh-Dinh, T., Iampieri, L., Iandolo, G. A., Ianni, M., Iess, A., Imafuku, H., Inayoshi, K., Inoue, Y., Iorio, G., Iqbal, M. H., Irwin, J., Ishikawa, R., Isi, M., Ismail, M. A., Itoh, Y., Iwanaga, H., Iwaya, M., Iyer, B. R., JaberianHamedan, V., Jacquet, C., Jacquet, P. -E., Jadhav, S. J., Jadhav, S. P., Jain, T., James, A. L., James, P. A., Jamshidi, R., Janquart, J., Janssens, K., Janthalur, N. N., Jaraba, S., Jaranowski, P., Jaume, R., Javed, W., Jennings, A., Jia, W., Jiang, J., Kubisz, J., Johanson, C., Johns, G. R., Johnson, N. A., Johnston, M. C., Johnston, R., Johny, N., Jones, D. H., Jones, D. I., Jones, R., Jose, S., Joshi, P., Ju, L., Jung, K., Junker, J., Juste, V., Kajita, T., Kaku, I., Kalaghatgi, C., Kalogera, V., Kamiizumi, M., Kanda, N., Kandhasamy, S., Kang, G., Kanner, J. B., Kapadia, S. J., Kapasi, D. P., Karat, S., Karathanasis, C., Kashyap, R., Kasprzack, M., Kastaun, W., Kato, T., Katsavounidis, E., Katzman, W., Kaushik, R., Kawabe, K., Kawamoto, R., Kazemi, A., Keitel, D., Kelley-Derzon, J., Kennington, J., Kesharwani, R., Key, J. S., Khadela, R., Khadka, S., Khalili, F. Y., Khan, F., Khan, I., Khanam, T., Khursheed, M., Khusid, N. M., Kiendrebeogo, W., Kijbunchoo, N., Kim, C., Kim, J. C., Kim, K., Kim, M. H., Kim, S., Kim, Y. -M., Kimball, C., Kinley-Hanlon, M., Kinnear, M., Kissel, J. S., Klimenko, S., Knee, A. M., Knust, N., Kobayashi, K., Koch, P., Koehlenbeck, S. M., Koekoek, G., Kohri, K., Kokeyama, K., Koley, S., Kolitsidou, P., Kolstein, M., Komori, K., Kong, A. K. H., Kontos, A., Korobko, M., Kossak, R. V., Kou, X., Koushik, A., Kouvatsos, N., Kovalam, M., Kozak, D. B., Kranzhoff, S. L., Kringel, V., Krishnendu, N. V., Królak, A., Kruska, K., Kuehn, G., Kuijer, P., Kulkarni, S., Ramamohan, A. Kulur, Kumar, A., Kumar, Praveen, Kumar, Prayush, Kumar, Rahul, Kumar, Rakesh, Kume, J., Kuns, K., Kuntimaddi, N., Kuroyanagi, S., Kurth, N. J., Kuwahara, S., Kwak, K., Kwan, K., Kwok, J., Lacaille, G., Lagabbe, P., Laghi, D., Lai, S., Laity, A. H., Lakkis, M. H., Lalande, E., Lalleman, M., Lalremruati, P. C., Landry, M., Lane, B. B., Lang, R. N., Lange, J., Lantz, B., La Rana, A., La Rosa, I., Lartaux-Vollard, A., Lasky, P. D., Lawrence, J., Lawrence, M. N., Laxen, M., Lazzarini, A., Lazzaro, C., Leaci, P., Lecoeuche, Y. K., Lee, H. M., Lee, H. W., Lee, K., Lee, R. -K., Lee, R., Lee, S., Lee, Y., Legred, I. N., Lehmann, J., Lehner, L., Jean, M. Le, Lemaître, A., Lenti, M., Leonardi, M., Lequime, M., Leroy, N., Lesovsky, M., Letendre, N., Lethuillier, M., Levin, S. E., Levin, Y., Leyde, K., Li, A. K. Y., Li, K. L., Li, T. G. F., Li, X., Li, Z., Lihos, A., Lin, C-Y., Lin, C. -Y., Lin, E. T., Lin, F., Lin, H., Lin, L. C. -C., Lin, Y. -C., Linde, F., Linker, S. D., Littenberg, T. B., Liu, A., Liu, G. C., Liu, Jian, Villarreal, F. Llamas, Llobera-Querol, J., Lo, R. K. L., Locquet, J. -P., London, L. T., Longo, A., Lopez, D., Portilla, M. Lopez, Lorenzini, M., Lorenzo-Medina, A., Loriette, V., Lormand, M., Losurdo, G., Lott IV, T. P., Lough, J. D., Loughlin, H. A., Lousto, C. O., Lowry, M. J., Lu, N., Lück, H., Lumaca, D., Lundgren, A. P., Lussier, A. W., Ma, L. -T., Ma, S., Ma'arif, M., Macas, R., Macedo, A., MacInnis, M., Maciy, R. R., Macleod, D. M., MacMillan, I. A. O., Macquet, A., Macri, D., Maeda, K., Maenaut, S., Hernandez, I. Magaña, Magare, S. S., Magazzù, C., Magee, R. M., Maggio, E., Maggiore, R., Magnozzi, M., Mahesh, M., Mahesh, S., Maini, M., Majhi, S., Majorana, E., Makarem, C. N., Makelele, E., Malaquias-Reis, J. A., Mali, U., Maliakal, S., Malik, A., Man, N., Mandic, V., Mangano, V., Mannix, B., Mansell, G. L., Mansingh, G., Manske, M., Mantovani, M., Mapelli, M., Marchesoni, F., Pina, D. Marín, Marion, F., Márka, S., Márka, Z., Markosyan, A. S., Markowitz, A., Maros, E., Marsat, S., Martelli, F., Martin, I. W., Martin, R. M., Martinez, B. B., Martinez, M., Martinez, V., Martini, A., Martinovic, K., Martins, J. C., Martynov, D. V., Marx, E. J., Massaro, L., Masserot, A., Masso-Reid, M., Mastrodicasa, M., Mastrogiovanni, S., Matcovich, T., Matiushechkina, M., Matsuyama, M., Mavalvala, N., Maxwell, N., McCarrol, G., McCarthy, R., McCormick, S., McCuller, L., McEachin, S., McElhenny, C., McGhee, G. I., McGinn, J., McGowan, K. B. M., McIver, J., McLeod, A., McRae, T., Meacher, D., Meijer, Q., Melatos, A., Mellaerts, S., Menendez-Vazquez, A., Menoni, C. S., Mera, F., Mercer, R. A., Mereni, L., Merfeld, K., Merilh, E. L., Mérou, J. R., Merritt, J. D., Merzougui, M., Messenger, C., Messick, C., Meyer-Conde, M., Meylahn, F., Mhaske, A., Miani, A., Miao, H., Michaloliakos, I., Michel, C., Michimura, Y., Middleton, H., Miller, A. L., Miller, S., Millhouse, M., Milotti, E., Milotti, V., Minenkov, Y., Mio, N., Mir, Ll. M., Mirasola, L., Miravet-Tenés, M., Miritescu, C. -A., Mishra, A. K., Mishra, A., Mishra, C., Mishra, T., Mitchell, A. L., Mitchell, J. G., Mitra, S., Mitrofanov, V. P., Mittleman, R., Miyakawa, O., Miyamoto, S., Miyoki, S., Mo, G., Mobilia, L., Mohapatra, S. R. P., Mohite, S. R., Molina-Ruiz, M., Mondal, C., Mondin, M., Montani, M., Moore, C. J., Moraru, D., More, A., More, S., Moreno, G., Morgan, C., Morisaki, S., Moriwaki, Y., Morras, G., Moscatello, A., Mourier, P., Mours, B., Mow-Lowry, C. M., Muciaccia, F., Mukherjee, Arunava, Mukherjee, D., Mukherjee, Samanwaya, Mukherjee, Soma, Mukherjee, Subroto, Mukherjee, Suvodip, Mukund, N., Mullavey, A., Munch, J., Mundi, J., Mungioli, C. L., Oberg, W. R. Munn, Murakami, Y., Murakoshi, M., Murray, P. G., Muusse, S., Nabari, D., Nadji, S. L., Nagar, A., Nagarajan, N., Nagler, K. N., Nakagaki, K., Nakamura, K., Nakano, H., Nakano, M., Nandi, D., Napolano, V., Narayan, P., Nardecchia, I., Narola, H., Naticchioni, L., Nayak, R. K., Neilson, J., Nelson, A., Nelson, T. J. N., Nery, M., Neunzert, A., Ng, S., Quynh, L. Nguyen, Nichols, S. A., Nielsen, A. B., Nieradka, G., Niko, A., Nishino, Y., Nishizawa, A., Nissanke, S., Nitoglia, E., Niu, W., Nocera, F., Norman, M., North, C., Novak, J., Siles, J. F. Nuño, Nuttall, L. K., Obayashi, K., Oberling, J., O'Dell, J., Oertel, M., Offermans, A., Oganesyan, G., Oh, J. J., Oh, K., O'Hanlon, T., Ohashi, M., Ohkawa, M., Ohme, F., Oliveira, A. S., Oliveri, R., O'Neal, B., Oohara, K., O'Reilly, B., Ormsby, N. D., Orselli, M., O'Shaughnessy, R., O'Shea, S., Oshima, Y., Oshino, S., Ossokine, S., Osthelder, C., Ota, I., Ottaway, D. J., Ouzriat, A., Overmier, H., Owen, B. J., Pace, A. E., Pagano, R., Page, M. A., Pai, A., Pal, A., Pal, S., Palaia, M. A., Pálfi, M., Palma, P. P., Palomba, C., Palud, P., Pan, H., Pan, J., Pan, K. C., Panai, R., Panda, P. K., Pandey, S., Panebianco, L., Pang, P. T. H., Pannarale, F., Pannone, K. A., Pant, B. C., Panther, F. H., Paoletti, F., Paolone, A., Papalexakis, E. E., Papalini, L., Papigkiotis, G., Paquis, A., Parisi, A., Park, B. -J., Park, J., Parker, W., Pascale, G., Pascucci, D., Pasqualetti, A., Passaquieti, R., Passenger, L., Passuello, D., Patane, O., Pathak, D., Pathak, M., Patra, A., Patricelli, B., Patron, A. S., Paul, K., Paul, S., Payne, E., Pearce, T., Pedraza, M., Pegna, R., Pele, A., Arellano, F. E. Peña, Penn, S., Penuliar, M. D., Perego, A., Pereira, Z., Perez, J. J., Périgois, C., Perna, G., Perreca, A., Perret, J., Perriès, S., Perry, J. W., Pesios, D., Petracca, S., Petrillo, C., Pfeiffer, H. P., Pham, H., Pham, K. A., Phukon, K. S., Phurailatpam, H., Piarulli, M., Piccari, L., Piccinni, O. J., Pichot, M., Piendibene, M., Piergiovanni, F., Pierini, L., Pierra, G., Pierro, V., Pietrzak, M., Pillas, M., Pilo, F., Pinard, L., Pinto, I. M., Pinto, M., Piotrzkowski, B. J., Pirello, M., Pitkin, M. D., Placidi, A., Placidi, E., Planas, M. L., Plastino, W., Poggiani, R., Polini, E., Pompili, L., Poon, J., Porcelli, E., Porter, E. K., Posnansky, C., Poulton, R., Powell, J., Pracchia, M., Pradhan, B. K., Pradier, T., Prajapati, A. K., Prasai, K., Prasanna, R., Prasia, P., Pratten, G., Principe, G., Principe, M., Prodi, G. A., Prokhorov, L., Prosposito, P., Puecher, A., Pullin, J., Punturo, M., Puppo, P., Pürrer, M., Qi, H., Qin, J., Quéméner, G., Quetschke, V., Quigley, C., Quinonez, P. J., Quitzow-James, R., Raab, F. J., Raabith, S. S., Raaijmakers, G., Raja, S., Rajan, C., Rajbhandari, B., Ramirez, K. E., Vidal, F. A. Ramis, Ramos-Buades, A., Rana, D., Ranjan, S., Ransom, K., Rapagnani, P., Ratto, B., Rawat, S., Ray, A., Raymond, V., Razzano, M., Read, J., Payo, M. Recaman, Regimbau, T., Rei, L., Reid, S., Reitze, D. H., Relton, P., Renzini, A. I., Rettegno, P., Revenu, B., Reyes, R., Rezaei, A. S., Ricci, F., Ricci, M., Ricciardone, A., Richardson, J. W., Richardson, M., Rijal, A., Riles, K., Riley, H. K., Rinaldi, S., Rittmeyer, J., Robertson, C., Robinet, F., Robinson, M., Rocchi, A., Rolland, L., Rollins, J. G., Romano, A. E., Romano, R., Romero, A., Romero-Shaw, I. M., Romie, J. H., Ronchini, S., Roocke, T. J., Rosa, L., Rosauer, T. J., Rose, C. A., Rosińska, D., Ross, M. P., Rossello, M., Rowan, S., Roy, S. K., Roy, S., Rozza, D., Ruggi, P., Ruhama, N., Morales, E. Ruiz, Ruiz-Rocha, K., Sachdev, S., Sadecki, T., Sadiq, J., Saffarieh, P., Sah, M. R., Saha, S. S., Saha, S., Sainrat, T., Menon, S. Sajith, Sakai, K., Sakellariadou, M., Sakon, S., Salafia, O. S., Salces-Carcoba, F., Salconi, L., Saleem, M., Salemi, F., Sallé, M., Salvador, S., Sanchez, A., Sanchez, E. J., Sanchez, J. H., Sanchez, L. E., Sanchis-Gual, N., Sanders, J. R., Sänger, E. M., Santoliquido, F., Saravanan, T. R., Sarin, N., Sasaoka, S., Sasli, A., Sassi, P., Sassolas, B., Satari, H., Sato, R., Sato, Y., Sauter, O., Savage, R. L., Sawada, T., Sawant, H. L., Sayah, S., Scacco, V., Schaetzl, D., Scheel, M., Schiebelbein, A., Schiworski, M. G., Schmidt, P., Schmidt, S., Schnabel, R., Schneewind, M., Schofield, R. M. S., Schouteden, K., Schulte, B. W., Schutz, B. F., Schwartz, E., Scialpi, M., Scott, J., Scott, S. M., Seetharamu, T. C., Seglar-Arroyo, M., Sekiguchi, Y., Sellers, D., Sengupta, A. S., Sentenac, D., Seo, E. G., Seo, J. W., Sequino, V., Serra, M., Servignat, G., Sevrin, A., Shaffer, T., Shah, U. S., Shaikh, M. A., Shao, L., Sharma, A. K., Sharma, P., Sharma-Chaudhary, S., Shaw, M. R., Shawhan, P., Shcheblanov, N. S., Sheridan, E., Shikano, Y., Shikauchi, M., Shimode, K., Shinkai, H., Shiota, J., Shoemaker, D. H., Shoemaker, D. M., Short, R. W., ShyamSundar, S., Sider, A., Siegel, H., Sieniawska, M., Sigg, D., Silenzi, L., Simmonds, M., Singer, L. P., Singh, A., Singh, D., Singh, M. K., Singh, S., Singha, A., Sintes, A. M., Sipala, V., Skliris, V., Slagmolen, B. J. J., Slaven-Blair, T. J., Smetana, J., Smith, J. R., Smith, L., Smith, R. J. E., Smith, W. J., Soldateschi, J., Somiya, K., Song, I., Soni, K., Soni, S., Sordini, V., Sorrentino, F., Sorrentino, N., Sotani, H., Soulard, R., Southgate, A., Spagnuolo, V., Spencer, A. P., Spera, M., Spinicelli, P., Spoon, J. B., Sprague, C. A., Srivastava, A. K., Stachurski, F., Steer, D. A., Steinlechner, J., Steinlechner, S., Stergioulas, N., Stevens, P., StPierre, M., Stratta, G., Strong, M. D., Strunk, A., Sturani, R., Stuver, A. L., Suchenek, M., Sudhagar, S., Sueltmann, N., Suleiman, L., Sullivan, K. D., Sun, L., Sunil, S., Suresh, J., Sutton, P. J., Suzuki, T., Suzuki, Y., Swinkels, B. L., Syx, A., Szczepańczyk, M. J., Szewczyk, P., Tacca, M., Tagoshi, H., Tait, S. C., Takahashi, H., Takahashi, R., Takamori, A., Takase, T., Takatani, K., Takeda, H., Takeshita, K., Talbot, C., Tamaki, M., Tamanini, N., Tanabe, D., Tanaka, K., Tanaka, S. J., Tanaka, T., Tang, D., Tanioka, S., Tanner, D. B., Tao, L., Tapia, R. D., Martín, E. N. Tapia San, Tarafder, R., Taranto, C., Taruya, A., Tasson, J. D., Teloi, M., Tenorio, R., Themann, H., Theodoropoulos, A., Thirugnanasambandam, M. P., Thomas, L. M., Thomas, M., Thomas, P., Thompson, J. E., Thondapu, S. R., Thorne, K. A., Thrane, E., Tissino, J., Tiwari, A., Tiwari, P., Tiwari, S., Tiwari, V., Todd, M. R., Toivonen, A. M., Toland, K., Tolley, A. E., Tomaru, T., Tomita, K., Tomura, T., Tong-Yu, C., Toriyama, A., Toropov, N., Torres-Forné, A., Torrie, C. I., Toscani, M., Melo, I. Tosta e, Tournefier, E., Trapananti, A., Travasso, F., Traylor, G., Trevor, M., Tringali, M. C., Tripathee, A., Troian, G., Troiano, L., Trovato, A., Trozzo, L., Trudeau, R. J., Tsang, T. T. L., Tso, R., Tsuchida, S., Tsukada, L., Tsutsui, T., Turbang, K., Turconi, M., Turski, C., Ubach, H., Uchiyama, T., Udall, R. P., Uehara, T., Uematsu, M., Ueno, K., Ueno, S., Undheim, V., Ushiba, T., Vacatello, M., Vahlbruch, H., Vaidya, N., Vajente, G., Vajpeyi, A., Valdes, G., Valencia, J., Valentini, M., Vallejo-Peña, S. A., Vallero, S., Valsan, V., van Bakel, N., van Beuzekom, M., van Dael, M., Brand, J. F. J. van den, Broeck, C. Van Den, Vander-Hyde, D. C., van der Sluys, M., Van de Walle, A., van Dongen, J., Vandra, K., van Haevermaet, H., van Heijningen, J. V., Van Hove, P., VanKeuren, M., Vanosky, J., van Putten, M. H. P. M., van Ranst, Z., van Remortel, N., Vardaro, M., Vargas, A. F., Varghese, J. J., Varma, V., Vasúth, M., Vecchio, A., Vedovato, G., Veitch, J., Veitch, P. J., Venikoudis, S., Venneberg, J., Verdier, P., Verkindt, D., Verma, B., Verma, P., Verma, Y., Vermeulen, S. M., Vetrano, F., Veutro, A., Vibhute, A. M., Viceré, A., Vidyant, S., Viets, A. D., Vijaykumar, A., Vilkha, A., Villa-Ortega, V., Vincent, E. T., Vinet, J. -Y., Viret, S., Virtuoso, A., Vitale, S., Vives, A., Vocca, H., Voigt, D., von Reis, E. R. G., von Wrangel, J. S. A., Vyatchanin, S. P., Wade, L. E., Wade, M., Wagner, K. J., Wajid, A., Walker, M., Wallace, G. S., Wallace, L., Wang, H., Wang, J. Z., Wang, W. H., Wang, Z., Waratkar, G., Warner, J., Was, M., Washimi, T., Washington, N. Y., Watarai, D., Wayt, K. E., Weaver, B. R., Weaver, B., Weaving, C. R., Webster, S. A., Weinert, M., Weinstein, A. J., Weiss, R., Wellmann, F., Wen, L., Weßels, P., Wette, K., Whelan, J. T., Whiting, B. F., Whittle, C., Wildberger, J. B., Wilk, O. S., Wilken, D., Wilkin, A. T., Willadsen, D. J., Willetts, K., Williams, D., Williams, M. J., Williams, N. S., Willis, J. L., Willke, B., Wils, M., Winterflood, J., Wipf, C. C., Woan, G., Woehler, J., Wofford, J. K., Wolfe, N. E., Wong, H. T., Wong, H. W. Y., Wong, I. C. F., Wright, J. L., Wright, M., Wu, C., Wu, D. S., Wu, H., Wuchner, E., Wysocki, D. M., Xu, V. A., Xu, Y., Yadav, N., Yamamoto, H., Yamamoto, K., Yamamoto, T. S., Yamamoto, T., Yamamura, S., Yamazaki, R., Yan, S., Yan, T., Yang, F. W., Yang, F., Yang, K. Z., Yang, Y., Yarbrough, Z., Yasui, H., Yeh, S. -W., Yelikar, A. B., Yin, X., Yokoyama, J., Yokozawa, T., Yoo, J., Yu, H., Yuan, S., Yuzurihara, H., Zadrożny, A., Zanolin, M., Zeeshan, M., Zelenova, T., Zendri, J. -P., Zeoli, M., Zerrad, M., Zevin, M., Zhang, A. C., Zhang, L., Zhang, R., Zhang, T., Zhang, Y., Zhao, C., Zhao, Yue, Zhao, Yuhang, Zheng, Y., Zhong, H., Zhou, R., Zhu, X. -J., Zhu, Z. -H., Zucker, M. E., and Zweizig, J.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
The magnetar SGR 1935+2154 is the only known Galactic source of fast radio bursts (FRBs). FRBs from SGR 1935+2154 were first detected by CHIME/FRB and STARE2 in 2020 April, after the conclusion of the LIGO, Virgo, and KAGRA Collaborations' O3 observing run. Here we analyze four periods of gravitational wave (GW) data from the GEO600 detector coincident with four periods of FRB activity detected by CHIME/FRB, as well as X-ray glitches and X-ray bursts detected by NICER and NuSTAR close to the time of one of the FRBs. We do not detect any significant GW emission from any of the events. Instead, using a short-duration GW search (for bursts $\leq$ 1 s) we derive 50\% (90\%) upper limits of $10^{48}$ ($10^{49}$) erg for GWs at 300 Hz and $10^{49}$ ($10^{50}$) erg at 2 kHz, and constrain the GW-to-radio energy ratio to $\leq 10^{14} - 10^{16}$. We also derive upper limits from a long-duration search for bursts with durations between 1 and 10 s. These represent the strictest upper limits on concurrent GW emission from FRBs., Comment: 15 pages of text including references, 4 figures, 5 tables
- Published
- 2024
37. AgentHarm: A Benchmark for Measuring Harmfulness of LLM Agents
- Author
-
Andriushchenko, Maksym, Souly, Alexandra, Dziemian, Mateusz, Duenas, Derek, Lin, Maxwell, Wang, Justin, Hendrycks, Dan, Zou, Andy, Kolter, Zico, Fredrikson, Matt, Winsor, Eric, Wynne, Jerome, Gal, Yarin, and Davies, Xander
- Subjects
Computer Science - Machine Learning ,Computer Science - Artificial Intelligence ,Computer Science - Computation and Language - Abstract
The robustness of LLMs to jailbreak attacks, where users design prompts to circumvent safety measures and misuse model capabilities, has been studied primarily for LLMs acting as simple chatbots. Meanwhile, LLM agents -- which use external tools and can execute multi-stage tasks -- may pose a greater risk if misused, but their robustness remains underexplored. To facilitate research on LLM agent misuse, we propose a new benchmark called AgentHarm. The benchmark includes a diverse set of 110 explicitly malicious agent tasks (440 with augmentations), covering 11 harm categories including fraud, cybercrime, and harassment. In addition to measuring whether models refuse harmful agentic requests, scoring well on AgentHarm requires jailbroken agents to maintain their capabilities following an attack to complete a multi-step task. We evaluate a range of leading LLMs, and find (1) leading LLMs are surprisingly compliant with malicious agent requests without jailbreaking, (2) simple universal jailbreak templates can be adapted to effectively jailbreak agents, and (3) these jailbreaks enable coherent and malicious multi-step agent behavior and retain model capabilities. To enable simple and reliable evaluation of attacks and defenses for LLM-based agents, we publicly release AgentHarm at https://huggingface.co/datasets/ai-safety-institute/AgentHarm.
- Published
- 2024
38. Gauging generalised symmetries in linear gravity
- Author
-
Hull, Chris, Hutt, Maxwell L, and Lindström, Ulf
- Subjects
High Energy Physics - Theory ,General Relativity and Quantum Cosmology - Abstract
The theory of a free spin-2 field on Minkowski spacetime has 1-form and $(d-3)$-form symmetries associated with conserved currents formed by contractions of the linearised Riemann tensor with conformal Killing-Yano 2-forms. We show that a subset of these can be interpreted as Noether currents for specific shift symmetries of the graviton that involve a Killing vector and a closed 1-form parameter. We give a systematic method to gauge these 1-form symmetries by coupling the currents to background gauge fields and introducing a particular set of counter-terms involving the background fields. The simultaneous gauging of certain pairs of 1-form and $(d-3)$-form symmetries is obstructed by the presence of mixed 't Hooft anomalies. The anomalous pairs of symmetries are those which are related by gravitational duality. The implications of these anomalies are discussed., Comment: 25 pages + appendices
- Published
- 2024
39. KV Prediction for Improved Time to First Token
- Author
-
Horton, Maxwell, Cao, Qingqing, Sun, Chenfan, Jin, Yanzi, Mehta, Sachin, Rastegari, Mohammad, and Nabi, Moin
- Subjects
Computer Science - Computation and Language ,Computer Science - Artificial Intelligence - Abstract
Inference with transformer-based language models begins with a prompt processing step. In this step, the model generates the first output token and stores the KV cache needed for future generation steps. This prompt processing step can be computationally expensive, taking 10s of seconds or more for billion-parameter models on edge devices when prompt lengths or batch sizes rise. This degrades user experience by introducing significant latency into the model's outputs. To reduce the time spent producing the first output (known as the ``time to first token'', or TTFT) of a pretrained model, we introduce a novel method called KV Prediction. In our method, a small auxiliary model is used to process the prompt and produce an approximation of the KV cache used by a base model. This approximated KV cache is then used with the base model for autoregressive generation without the need to query the auxiliary model again. We demonstrate that our method produces a pareto-optimal efficiency-accuracy trade-off when compared to baselines. On TriviaQA, we demonstrate relative accuracy improvements in the range of $15\%-50\%$ across a range of TTFT FLOPs budgets. We also demonstrate accuracy improvements of up to $30\%$ on HumanEval python code completion at fixed TTFT FLOPs budgets. Additionally, we benchmark models on an Apple M2 Pro CPU and demonstrate that our improvement in FLOPs translates to a TTFT speedup on hardware. We release our code at https://github.com/apple/corenet/tree/main/projects/kv-prediction .
- Published
- 2024
40. An Accessible Planar Ion Trap for Experiential Learning in Quantum Technologies
- Author
-
Thomas, Robert E., Wolfram, Cole E., Warren, Noah B., Fouch, Isaac J., Blinov, Boris B., and Parsons, Maxwell F.
- Subjects
Quantum Physics ,Physics - Physics Education - Abstract
We describe an inexpensive and accessible instructional setup which explores ion trapping with a planar linear ion trap. The planar trap is constructed using standard printed circuit board manufacturing and is designed to trap macroscopic charged particles in air. Trapping, shuttling, and splitting is demonstrated to students using these particles, visible to the naked eye. Students have control over trap voltages and can compare properties of particle motion to an analytic model of the trap using a computer vision program for particle tracking. Learning outcomes include understanding the design considerations for planar RF traps, mechanisms underpinning ion ejection, the physics of micromotion, and methods of data analysis using standard computer vision libraries., Comment: 22 pages, 5 figures
- Published
- 2024
41. Unveiling the Face-Dependent Ice Growth Kinetics: Insights from Molecular Dynamics on the Basal and Prism Surfaces
- Author
-
Shi, Jihong, Fulford, Maxwell, Salvalaglio, Matteo, and Molteni, Carla
- Subjects
Condensed Matter - Materials Science ,Condensed Matter - Soft Condensed Matter - Abstract
Ice nucleation and growth are critical in many fields, including atmospheric science, cryobiology, and aviation. However, understanding the detailed mechanisms of ice crystal growth remains challenging. In this work, crystallization at the ice/quasi-liquid layer (QLL) interface of the basal and primary prism (prism1) surfaces of hexagonal ice (Ih) was investigated using molecular dynamics simulations across a wide range of temperatures for the TIP4P/Ice model, with comparisons to the mW coarse-grained model. Together with elucidating the temperature-dependent mechanisms of crystallization, face-specific growth rates were systematically estimated. While the prism surface generally exhibits faster growth rates than the basal surface, a temperature-dependent crossover in growth rates between the basal and prism surfaces is observed in TIP4P/Ice simulations, which correlates with a crossover in QLL thickness and with the well-known column to platelets transition in ice-crystal habits at low vapour pressure. This observation helps decode the complex dependence between crystal morphology and temperature in ice crystals., Comment: 12 pages, 6 figures
- Published
- 2024
42. Thermodynamic Bayesian Inference
- Author
-
Aifer, Maxwell, Duffield, Samuel, Donatella, Kaelan, Melanson, Denis, Klett, Phoebe, Belateche, Zach, Crooks, Gavin, Martinez, Antonio J., and Coles, Patrick J.
- Subjects
Condensed Matter - Statistical Mechanics ,Computer Science - Emerging Technologies ,Computer Science - Machine Learning - Abstract
A fully Bayesian treatment of complicated predictive models (such as deep neural networks) would enable rigorous uncertainty quantification and the automation of higher-level tasks including model selection. However, the intractability of sampling Bayesian posteriors over many parameters inhibits the use of Bayesian methods where they are most needed. Thermodynamic computing has emerged as a paradigm for accelerating operations used in machine learning, such as matrix inversion, and is based on the mapping of Langevin equations to the dynamics of noisy physical systems. Hence, it is natural to consider the implementation of Langevin sampling algorithms on thermodynamic devices. In this work we propose electronic analog devices that sample from Bayesian posteriors by realizing Langevin dynamics physically. Circuit designs are given for sampling the posterior of a Gaussian-Gaussian model and for Bayesian logistic regression, and are validated by simulations. It is shown, under reasonable assumptions, that the Bayesian posteriors for these models can be sampled in time scaling with $\ln(d)$, where $d$ is dimension. For the Gaussian-Gaussian model, the energy cost is shown to scale with $ d \ln(d)$. These results highlight the potential for fast, energy-efficient Bayesian inference using thermodynamic computing., Comment: 20 pages, 8 figures
- Published
- 2024
43. PyRIT: A Framework for Security Risk Identification and Red Teaming in Generative AI System
- Author
-
Munoz, Gary D. Lopez, Minnich, Amanda J., Lutz, Roman, Lundeen, Richard, Dheekonda, Raja Sekhar Rao, Chikanov, Nina, Jagdagdorj, Bolor-Erdene, Pouliot, Martin, Chawla, Shiven, Maxwell, Whitney, Bullwinkel, Blake, Pratt, Katherine, de Gruyter, Joris, Siska, Charlotte, Bryan, Pete, Westerhoff, Tori, Kawaguchi, Chang, Seifert, Christian, Kumar, Ram Shankar Siva, and Zunger, Yonatan
- Subjects
Computer Science - Cryptography and Security ,Computer Science - Artificial Intelligence ,Computer Science - Computation and Language - Abstract
Generative Artificial Intelligence (GenAI) is becoming ubiquitous in our daily lives. The increase in computational power and data availability has led to a proliferation of both single- and multi-modal models. As the GenAI ecosystem matures, the need for extensible and model-agnostic risk identification frameworks is growing. To meet this need, we introduce the Python Risk Identification Toolkit (PyRIT), an open-source framework designed to enhance red teaming efforts in GenAI systems. PyRIT is a model- and platform-agnostic tool that enables red teamers to probe for and identify novel harms, risks, and jailbreaks in multimodal generative AI models. Its composable architecture facilitates the reuse of core building blocks and allows for extensibility to future models and modalities. This paper details the challenges specific to red teaming generative AI systems, the development and features of PyRIT, and its practical applications in real-world scenarios.
- Published
- 2024
44. Essay X-Ray: Using an In-House Academic Writing Tool to Scaffold Academic Skills Support
- Author
-
Laura Key, Chris Till, and Joe Maxwell
- Abstract
This paper introduces a project to develop a digital academic writing tool at Leeds Beckett University (LBU). Essay X-ray is an interactive online tool designed to help students get to grips with the structure and style of academic writing and was developed using the Articulate Storyline 360 platform. The aim was to expand LBU's academic skills support for students tasked with essay assignments, especially at Level 4 (first year, undergraduate), enabling independent learning using a self-paced format available open access and 24/7. This would complement existing academic skills provision (one-to-ones, workshops, drop-ins, static online resources), with the interactive element facilitating active, hands-on learning (Lumpkin, Achen and Dodd, 2015). Following a successful development, review and rollout process, the utility of Essay X-ray as an independent learning tool but also as a classroom resource was reported by students and colleagues. Tentative talks about additional versions (Dissertation X-ray, Report X-ray) have taken place, indicating its potential for rollout to other subject areas and assessment types. Finally, in-house digital academic skills tools like Essay X-ray are posited as a potential response to the recent upsurge in Generative Artificial Intelligence (GenAI) tools. Essay X-ray requires users to think critically about essay structure, style and content to create their own original pieces of writing, thus responding to questions about the maintenance of academic integrity in a digital world. These features enable users to develop their essay writing skills, in contrast to passive engagement with a GenAI programme that merely writes an answer for them.
- Published
- 2024
45. Experiences of Diversity, Inclusion, and Belonging among Postgraduate Health Sciences Research Students at an Australian University: A Qualitative Study
- Author
-
Sarah J. Egan, Samantha Collegde-Frisby, Rose Stackpole, Caitlin Munro, Matthew McDonald, Bronwyn Myers, Rob Steuart, Anthony Kicic, Arazu Sharif, Chloe Maxwell-Smith, Andrew Maiorana, Timothy A. Carey, Rima Caccetta, Ben Milbourn, and Eleanor Quest
- Abstract
Postgraduate research students have poorer mental health than the general community. Improving their experiences of diversity, inclusion, and belonging at university may bolster their overall wellbeing and reduce poor mental health outcomes. The aim was to explore postgraduate research students' views on diversity, inclusion, and belonging, to understand how these experiences impact their mental health and wellbeing, and to identify ways to improve their experiences. Thirty-one postgraduate research students (aged 24-68 years, M = 35.78 years, SD = 10.38; 69% female), enrolled in health sciences degrees at a research-intensive Australian university, completed either an online qualitative survey or participated in a focus group. Content analysis was undertaken to identify core themes. The three main content areas included: diversity (promoting diversity, staff and student training), inclusion (support from supervisors and peers, support in the perinatal period) and belonging (social isolation, suggestions to improve a sense of belonging). Most participants had not received training in diversity, inclusion and belonging, and identified this as an important area of need. Strategies to reduce isolation may potentially improve students experience of inclusion and belonging.
- Published
- 2024
46. Primary School Learners' Age and Academic Achievement in Ghana. The Moderating Effects of School Types
- Author
-
Maxwell Kwesi Nyatsikor
- Abstract
The study explored the extent learners' age variances impacted their achievement in a national education assessment in Ghana and how these were moderated by the types of schools (i.e., private and public) they attended. A multistage sampling method was used, and the data were analyzed using a multilevel modeling technique. The sample comprised 19,210 primary grade 3 and 17,088 primary grade 6 learners from 525 and 499 schools, respectively. Relatively younger learners outperformed their older peers in both subjects except for primary 3 mathematics achievement. Schools marginally reduced the age effect on both subjects except primary 3 mathematics achievement, where there was an increase. Moreover, there was a statistically insignificant difference in private and public schools' impact on age-linked effects on subjects except for primary 3 mathematics. The study concludes that being relatively overage for a specific grade level is not beneficial, especially for English language achievement. Hence, enrolling learners at the prescribed age and school term is highly recommended.
- Published
- 2024
47. Advertising a School's Merits in Hong Kong: Weighing Academic Performance against Students Whole-Person Development
- Author
-
Chun Sing Maxwell Ho, Jiafang Lu, and Lucas Chiu Kit Liu
- Abstract
Against the background of expanding parental choices and declining global birth rates, schools are experiencing rising competition regarding student enrolment. Schools have responded by strategically presenting information about their students' academic achievement and whole-person development orientation in the hope of attracting parents' interest. However, few studies have investigated the impact of these factors on student enrollment, particularly in the context of diverse school types and educational orientations. Accordingly, this study utilized data from 327 secondary schools in Hong Kong to examine the effects of academic achievement orientation and whole-person development orientation on student intake. Using hierarchical regression analysis, we found a positive association between high whole-person development orientation and student intake in aided schools with a strong academic development orientation. The result implies parents are increasingly concerned about their children's academic achievement and whole-person development at school. The study contributes to a broader understanding of the factors influencing parental choice in high-performing education systems, providing valuable insights for policymakers and educators seeking to improve educational offerings, enhance school transparency, and be better aligned with parental expectations.
- Published
- 2024
- Full Text
- View/download PDF
48. Context-Dependent Social Comparison and Imposter Phenomenon: An Experimental Vignette Approach
- Author
-
Kate E. Snyder, Maxwell I. Bartley, and Allison Fowler
- Abstract
Recent research into imposter phenomenon, or internal feelings of questioning competence, has shifted away from conceptualizing the feeling as an individual characteristic that requires an individual solution toward instead examining the role of context. We used a 2 (Generational Status: First Generation vs. Continuing Generation) × 3 (Environment: Classroom vs. Peer vs. Administration) × 2 (Social Comparison: Present vs. Absent) experimental vignette design. Overall, we found that, for both first- and continuing-generation students, social comparison messages differentially impacted imposter feelings depending on context, with the most elevated levels in social comparison messages from administrators and peers. Findings contribute to a better understanding of structural conditions that exacerbate or lessen imposter feelings at highly selective post-secondary institutions.
- Published
- 2024
- Full Text
- View/download PDF
49. The lived experience of renal cachexia: An interpretive phenomenological analysis.
- Author
-
Blair, Carolyn, Shields, Joanne, Mullan, Robert, Johnston, William, Davenport, Andrew, Fouque, Denis, Kalantar-Zadeh, Kamyar, Maxwell, Peter, McKeaveney, Clare, Noble, Helen, Porter, Sam, Seres, David, Slee, Adrian, Swaine, Ian, Witham, Miles, and Reid, Joanne
- Subjects
Cachexia ,End-stage kidney disease ,Health ,Interpretative phenomenological analysis ,Kidney disease ,Lived experience ,Palliative care ,Qualitative - Abstract
BACKGROUND: Chronic kidney disease is common, affecting up to 13 % of the global population, and is predicted to become the fifth leading cause of life years lost by 2040. Individuals with end-stage kidney disease commonly develop complications such as protein-energy wasting and cachexia which further worsens their prognosis. The syndrome of renal cachexia is poorly understood, under-diagnosed and even if recognised has limited treatment options. OBJECTIVE: To explore the lived experience of renal cachexia for individuals with end-stage kidney disease and the interrelated experiences of their carers. DESIGN: This interpretive phenomenological study was designed to facilitate an in-depth exploration of how patients and carers experience of renal cachexia. To improve and document the quality, transparency, and consistency of patient and public involvement in this study the Guidance for Reporting Involvement of Patients and the Public-Short Format was followed. SETTING: The study was conducted across two nephrology directorates, within two healthcare trusts in the United Kingdom. PARTICIPANTS: Seven participants who met the inclusion criteria were recruited for this study, four patients (three female, one male) and three carers (two male, one female). METHODS: We employed a purposive sampling strategy. Data collection was conducted between July 2022 and December 2023. Interviews were semi-structured, audio-recorded, transcribed verbatim and analysed in six steps by two researchers using interpretive phenomenological analysis. Ethical approval was approved by the Office for Research Ethics Committees Northern Ireland (Reference: 22/NI/0107). RESULTS: Analysis generated six group experiential themes: the lived experience of appetite loss, functional decline and temporal coping, weight loss a visual metaphor of concern, social withdrawal and vulnerability, the emotional toll of eating challenges and psychological strain amidst a lack of information about cachexia. CONCLUSION: This is the first qualitative study exploring the lived experience of renal cachexia for patients and carers. Our study highlights that psycho-social and educational support is urgently needed. Additionally, healthcare professionals need better information provision to help them to recognise and respond to the needs of this population. Further research is required to develop models of holistic support which could help patients and carers cope with the impact of renal cachexia and optimally manage this syndrome within the family unit. REGISTRATION: N/A.
- Published
- 2024
50. kmerDB: A database encompassing the set of genomic and proteomic sequence information for each species.
- Author
-
Mouratidis, Ioannis, Baltoumas, Fotis, Chantzi, Nikol, Patsakis, Michail, Chan, Candace, Montgomery, Austin, Konnaris, Maxwell, Aplakidou, Eleni, Georgakopoulos, George, Das, Anshuman, Chartoumpekis, Dionysios, Kovac, Jasna, Pavlopoulos, Georgios, and Georgakopoulos-Soares, Ilias
- Subjects
Genome ,K-mer ,Nullomer ,Prime ,Proteome ,Quasi-prime - Abstract
The decrease in sequencing expenses has facilitated the creation of reference genomes and proteomes for an expanding array of organisms. Nevertheless, no established repository that details organism-specific genomic and proteomic sequences of specific lengths, referred to as kmers, exists to our knowledge. In this article, we present kmerDB, a database accessible through an interactive web interface that provides kmer-based information from genomic and proteomic sequences in a systematic way. kmerDB currently contains 202,340,859,107 base pairs and 19,304,903,356 amino acids, spanning 54,039 and 21,865 reference genomes and proteomes, respectively, as well as 6,905,362 and 149,305,183 genomic and proteomic species-specific sequences, termed quasi-primes. Additionally, we provide access to 5,186,757 nucleic and 214,904,089 peptide sequences absent from every genome and proteome, termed primes. kmerDB features a user-friendly interface offering various search options and filters for easy parsing and searching. The service is available at: www.kmerdb.com.
- Published
- 2024
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.