5 results on '"Maximum wall angle"'
Search Results
2. Experimental and numerical studies on formability of extra-deep drawing steel in incremental sheet metal forming
- Author
-
Suresh Kurra and Srinivasa Prakash Regalla
- Subjects
Incremental forming ,Formability ,Maximum wall angle ,Thickness distribution ,Finite element simulation ,EDD steel ,Mining engineering. Metallurgy ,TN1-997 - Abstract
This paper focuses on the formability and thickness distribution in incremental sheet forming (ISF) of extra-deep drawing steel (EDD). In ISF, the formability of the material is primarily measured by the maximum formable wall angle and maximum allowable thinning. The maximum wall angle is generally obtained by forming frustum of cones and square pyramids having different wall angles till fracture, which requires a large number of experiments. Therefore in the present study, a continuously varying wall angle conical frustum (VWACF) was used to predict the maximum wall angle to minimize the number of experiments. VWACF is generated using circular, parabolic, elliptical and exponential generatrices. In order to get the maximum allowable thinning, the thickness of the formed geometry has been measured at various points along the depth. In addition, the thickness distribution has been computed theoretically based on the sine law and also using finite element code LS-DYNA. Theoretical and simulated thickness values have been compared with measured thickness values. It was found from the results that the finite element model was more accurate than theoretical model in predicting thickness distribution.
- Published
- 2014
- Full Text
- View/download PDF
3. The effect of variation in the curvature of part on the formability in incremental forming: An experimental investigation
- Author
-
Hussain, G., Gao, L., Hayat, N., and Qijian, L.
- Subjects
- *
CURVATURE , *ALUMINUM , *CALCULUS , *CURVES - Abstract
Abstract: The maximum wall angle or thinning limit can be used as formability parameter in negative incremental forming. In the present study, the effect of the curvature of a part''s generatrix on the formability of an aluminum sheet has been investigated systematically. It was found that the formability increases as the radius of curvature decreases. [Copyright &y& Elsevier]
- Published
- 2007
- Full Text
- View/download PDF
4. An experimental study on some formability evaluation methods in negative incremental forming
- Author
-
Hussain, G., Gao, L., and Dar, N.U.
- Subjects
- *
ALUMINUM plates , *ALUMINUM sheets , *EVALUATION methodology , *VARIATIONAL principles - Abstract
Abstract: In single point incremental forming (SPIF), the final thickness of a deformed sheet can be predicted by the sine law. Therefore, the formability in SPIF can be expressed as the maximum wall angle (θ max) that a sheet would endure without fracturing. In the present study, two tests were carried out in order to evaluate the formability of an aluminum sheet. In the first test, conical frustums and square pyramids, a set of each, were produced by systematically varying the wall angle in order to investigate θ max. In the second test, four conical frustums, each having varying wall angle, designed by revolving different curved lines were formed to fracture. The results revealed that the value of θ max obtained from the former test was smaller than those obtained from the latter one. Moreover, a variation among the values of θ max obtained from the parts of the second test was also found. Since the first test shows the minimum possible value of θ max, it should be employed in combination with the second test so as to minimize the number of experiments required. [Copyright &y& Elsevier]
- Published
- 2007
- Full Text
- View/download PDF
5. Formability analysis of polymers in incremental sheet forming process
- Author
-
Mahna, Aminreza and Hussain, Ghulam Hussain
- Subjects
PVC ,maximum wall angle ,fracture ,Production engineering ,wrinkling ,Single point incremental forming ,PE ,Mechanical ,polymers - Abstract
Single point incremental forming (SPIF) being simple and flexible has potential to replace conventional process in order to produce customized cost-effective parts. It has found several applications in automobile, aerospace and biomedical industries. Traditional processing of polymers normally requires dedicated tools, long setup times and high investments. Therefore, there is a need to find an economical alternative of traditional processing. In this study, the ability of SPIF to process polymers is examined at room temperature. Two polymer materials, polyvinylchloride (PVC) and polyethylene (PE) are employed. The said objective is done through examining the formability of these polymer sheets by varying process parameters, namely tool radius, spindle rotation and step size. To do so, a frustum of cone with wall angle continuously varying along depth is used as test geometry. The formability is defined in two ways: maximum wall angle corresponding to commencement of wrinkling and maximum wall angle corresponding to fracture point. To examine the effect of temperature, if any, on sheet failure during SPIF, temperature rise is recorded in each test. The test plan following response surface method is prepared using a statistical package, Design Expert Dx-8. The tests results have shown that the formability of PVC is limited by sheet fracturing and the formability of PE is limited by sheet wrinkling. Moreover, the combination of parameters, instead of an individual one, is more meaningful to control formability in SPIF. Further, high-high combination (i.e., high values of parameters) is useful for improving formability of PVC, whereas low-low combination of parameters is useful to enhance formability of PE. Temperature rise during SPIF has been found to be the major reason behind the above findings, which have been detailed in the thesis. Finally, to predict the formability for both of PVC and PE material, empirical models as function of process parameter have been proposed. Keywords: Single point incremental forming, polymers, PVC, PE, formability, maximum wall angle, fracture, wrinkling. ÖZ: Tek nokta artan şekillendirme (SPIF) basit ve esnek olan özelleştirilmiş maliyetli parçaları üretmek için kullanılan bir uygulamadır. Bu şekillendirme havacılık, otomotiv ve biyomedikal gibi çeşitli uygulama alanlarında kullanılmaktadır. Polimerlerin Geleneksel işlemesi normalde uzun kurulum süresi ve yüksek yatırımlar gerektirir. Bu nedenle, geleneksel bir işlem ve ekonomik bir alternatif bulmak ihtiyaç haline gelmiştir. Bu çalışmada, proses polimerlerin SPIF kabiliyeti oda sıcaklığında incelenir. İki polimer malzeme olan polivinilklorür (PVC) ve polietilen (PE) kullanılır. Amaç, parametreleri, takım yarıçapı, iş mili dönüşünü ve adım boyutu değişen bu polimer levhaların şekillendirilebilirliğinin incelenmesidir. Bunu kesik koni testi olarak kullanılır.Şekillendirilebilirlik iki şekilde tanımlanır: kırışıklıklar ve nokta kırılmaya karşılık gelen maksimum duvar açısı. SPIF sırasında levha sıcaklığının etkisi, eğer varsa, sıcaklık artışı, her bir testte kaydedilir. Bu tezde bir istatistik paket olan Tasarım Uzmanı Dx-8 kullanılmıştır. Test sonuçları PVC’nin şekillendirilmesinin levha kırılması ile sınırlı olduğunu ve PE’nin şekillendirilmesinin de levha kırışma ile sınırlandırılmış olduğunu göstermiştir. Ayrıca, bunun yerine, parametrelerin oluşturduğu kombinasyon, SPIF bölgesindeki şekillendirilebilirliği kontrol etmek için daha uygundur. Parametrelerinin düşük-düşük kombinasyonu PE ile şekillendirilebilirliğin artması için yararlı ise, PVC’de şekillendirilebilirliğin iyileştirilmesi için yararlıdır. SPIF sırasında sıcaklık artışının bulguların arkasındaki en önemli neden olduğu tespit edilmiştir. Son olarak, PVC ve PE malzemelerinin her ikisi için de şekillendirilebilirliliği tahmin etmek için, işlem parametresinin fonksiyonu deneysel model olarak önerilmiştir. Anahtar Kelimeler: Tek noktadan artan şekillendirme, polimerler, PVC, PE şekillendirilebilirlik, maksimum duvar açısı, kırık, kırışıklıklar. Master of Science in Mechanical Engineering. Thesis (M.S.)--Eastern Mediterranean University, Faculty of Engineering, Dept. of Mechanical Engineering, 2013. Supervisor: Assist. Prof. Dr. Ghulam Hussain
- Published
- 2013
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.