Jules Denier, Benoit Van Troeye, Guillaume Brunin, Miguel A. L. Marques, Yann Pouillon, Nicole Helbig, Alessandra Romero, Henrique Pereira Coutada Miranda, Alexandre Martin, William Lafargue-Dit-Hauret, Geoffroy Hautier, Jean-Michel Beuken, Michael Marcus Schmitt, Bernard Amadon, Olivier Gingras, Xavier Gonze, Kurt Lejaeghere, Cyril Martins, Gabriel Antonius, Xu He, Grégory Geneste, Nils Brouwer, Valentin Planes, Frédéric Arnardi, Jordan Bieder, Jean-Baptiste Charraud, J. Bouchet, Francesco Naccarato, Wei Chen, Yongchao Jia, F. Jollet, Kristin A. Persson, Michiel van Setten, Théo Cavignac, Marc Torrent, Fabien Bruneval, Lucas Baguet, Guido Petretto, Michel Côté, Philippe Ghosez, François Bottin, Fabio Ricci, D. R. Hamann, Josef W. Zwanziger, Yannick Gillet, Matthieu J. Verstraete, Gian-Marco Rignanese, Natalie Holzwarth, Sergei Prokhorenko, Eric Bousquet, G. Zérah, Matteo Giantomassi, Stefaan Cottenier, UCL - SST/IMCN/MODL - Modelling, Université Catholique de Louvain = Catholic University of Louvain (UCL), European Theoretical Spectroscopy Facility (ETSF), Skolkovo Institute of Science and Technology [Moscow] (Skoltech), DAM Île-de-France (DAM/DIF), Direction des Applications Militaires (DAM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Université du Québec à Trois-Rivières (UQTR), Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre de Mathématiques et de Leurs Applications (CMLA), École normale supérieure - Cachan (ENS Cachan)-Centre National de la Recherche Scientifique (CNRS), CESAM RU [Liège, Belgium] (Université de liège), Service de recherches de métallurgie physique (SRMP), Département des Matériaux pour le Nucléaire (DMN), CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Université de Montréal (UdeM), Universiteit Gent = Ghent University [Belgium] (UGENT), Department of Physics and Astronomy [Piscataway], Rutgers, The State University of New Jersey [New Brunswick] (RU), Rutgers University System (Rutgers)-Rutgers University System (Rutgers), Wake Forest University, Martin-Luther-Universität Halle Wittenberg (MLU), Lawrence Berkeley National Laboratory [Berkeley] (LBNL), Universidad de Cantabria [Santander], West Virginia University [Morgantown], IMEC (IMEC), Catholic University of Leuven - Katholieke Universiteit Leuven (KU Leuven), Dalhousie University [Halifax], The Abinit team, European Project: CTM2014-5848-1R, and Universiteit Gent = Ghent University (UGENT)
Abinit is a material- and nanostructure-oriented package that implements density-functional theory (DFT) and many-body perturbation theory (MBPT) to find, from first principles, numerous properties including total energy, electronic structure, vibrational and thermodynamic properties, different dielectric and non-linear optical properties, and related spectra. In the special issue to celebrate the 40th anniversary of CPC, published in 2009, a detailed account of Abinit was included [Gonze et al. (2009)], and has been amply cited. The present article comes as a follow-up to this 2009 publication. It includes an analysis of the impact that Abinit has had, through for example the bibliometric indicators of the 2009 publication. Links with several other computational materials science projects are described. This article also covers the new capabilities of Abinit that have been implemented during the last three years, complementing a recent update of the 2009 article published in 2016. Physical and technical developments inside the abinit application are covered, as well as developments provided with the Abinit package, such as the multibinit and a-tdep projects, and related Abinit organization developments such as AbiPy . The new developments are described with relevant references, input variables, tests, and tutorials. Program summary Program Title: Abinit Program Files doi: http://dx.doi.org/10.17632/csvdrr4d68.1 Licensing provisions: GPLv3 Programming language: Fortran2003, Python Journal reference of previous version: X .Gonze et al, Comput. Phys. Commun. 205 (2016) 106–131 Does the new version supersede the previous version?: Yes. The present 8.10.3 version is now the up-to-date stable version of abinit , and supercedes the 7.10.5 version. Reasons for the new version: New developments Summary of revisions: • Many new capabilities of the main abinit application, related to density-functional theory, density-functional perturbation theory, GW, the Bethe-Salpeter equation, dynamical mean-field theory, etc. • New applications in the package: multibinit (second-principles calculations)and tdep (temperature-dependent properties) Nature of problem: Computing accurately material and nanostructure properties: electronic structure, bond lengths, bond angles, primitive cell, cohesive energy, dielectric properties, vibrational properties, elastic properties, optical properties, magnetic properties, non-linear couplings, electronic and vibrational lifetimes, etc. For large-scale systems, second-principles calculations, building upon the first-principles results, are also possible. Solution method: Software application based on density-functional theory and many-body perturbation theory, pseudopotentials, with plane waves or wavelets as basis functions. Different real-time algorithms are implemented for second-principles calculations.