During meiosis, self-inflicted DNA double-strand breaks (DSBs) are created by the protein Spo11 and repaired by homologous recombination leading to gene conversions and crossovers. Crossover formation is vital for the segregation of homologous chromosomes during the first meiotic division and requires the RecA orthologue, Dmc1.We analyzed repair during meiosis of site-specific DSBs created by another nuclease, VMA1-derived endonuclease (VDE), in cells lacking Dmc1 strand-exchange protein. Turnover and resection of the VDE-DSBs was assessed in two different reporter cassettes that can repair using flanking direct repeat sequences, thereby obviating the need for a Dmc1-dependent DNA strand invasion step. Access of the single-strand binding complex replication protein A, which is normally used in all modes of DSB repair, was checked in chromatin immunoprecipitation experiments, using antibody against Rfa1. Repair of the VDE-DSBs was severely inhibited in dmc1Δ cells, a defect that was associated with a reduction in the long tract resection required to initiate single-strand annealing between the flanking repeat sequences. Mutants that either reduce Spo11-DSB formation or abolish resection at Spo11-DSBs rescued the repair block. We also found that a replication protein A component, Rfa1, does not accumulate to expected levels at unrepaired single-stranded DNA (ssDNA) in dmc1Δ cells. The requirement of Dmc1 for VDE-DSB repair using flanking repeats appears to be caused by the accumulation of large quantities of ssDNA that accumulate at Spo11-DSBs when Dmc1 is absent. We propose that these resected DSBs sequester both resection machinery and ssDNA binding proteins, which in wild-type cells would normally be recycled as Spo11-DSBs repair. The implication is that repair proteins are in limited supply, and this could reflect an underlying mechanism for regulating DSB repair in wild-type cells, providing protection from potentially harmful effects of overabundant repair proteins., Author Summary During meiosis, DNA is deliberately damaged by formation of double-strand breaks. Programmed breaks must be repaired for cell division to be completed. Break repair enables reciprocal exchange between parental chromosomes, and this exchange acts as a link between chromosomes before anaphase separation. These links are essential to ensure that maternal and paternal chromosomes segregate into different daughter cells. Meiosis has special mechanisms to ensure the repair creates sufficient reciprocal exchanges between parental chromosomes; Dmc1 protein is essential for these mechanisms to work. When Dmc1 is absent, programmed breaks accumulate with excess single-stranded DNA nearby. Using reporter constructs integrated into yeast, we examined repair of an experimentally induced break expected not to need Dmc1. When Dmc1 is absent, programmed breaks accumulate in single-stranded form, and the experimental break is not repaired. Either preventing formation of programmed breaks, or stopping DNA near them from becoming single-stranded, relieves this repair block. We conclude that repair proteins are likely to be in limited supply during meiosis, and they run out in cells lacking Dmc1 function. Limiting protein supply may be an important regulatory mechanism, protecting DNA from potentially damaging effects of oversupply.