1. Locally Adaptive Random Walk Stochastic Volatility
- Author
-
Cho, Jason B. and Matteson, David S.
- Subjects
Statistics - Methodology ,Statistics - Applications ,Statistics - Computation - Abstract
We introduce a novel Bayesian framework for estimating time-varying volatility by extending the Random Walk Stochastic Volatility (RWSV) model with a new Dynamic Shrinkage Process (DSP) in (log) variances. Unlike classical Stochastic Volatility or GARCH-type models with restrictive parametric stationarity assumptions, our proposed Adaptive Stochastic Volatility (ASV) model provides smooth yet dynamically adaptive estimates of evolving volatility and its uncertainty (vol of vol). We derive the theoretical properties of the proposed global-local shrinkage prior. Through simulation studies, we demonstrate that ASV exhibits remarkable misspecification resilience with low prediction error across various data generating scenarios in simulation. Furthermore, ASV's capacity to yield locally smooth and interpretable estimates facilitates a clearer understanding of underlying patterns and trends in volatility. Additionally, we propose and illustrate an extension for Bayesian Trend Filtering simultaneously in both mean and variance. Finally, we show that this attribute makes ASV a robust tool applicable across a wide range of disciplines, including in finance, environmental science, epidemiology, and medicine, among others.
- Published
- 2024