216 results on '"Mathivanan, S"'
Search Results
2. Emergence of emotional intelligence and its association with work outcomes
- Author
-
Riasudeen, S. and Mathivanan, S.
- Published
- 2013
3. Experimental Study on Incorporation of Plastic Wastes as a Binding Material in Pervious Pavers
- Author
-
Bharathi, M., Indirajeevan, K. K., Mathivanan, S. S., Muniyandi, R., Praveenkumar, S., and Kalamdhad, Ajay S., editor
- Published
- 2021
- Full Text
- View/download PDF
4. Crystal structure of oxalate decarboxylase from Photorhabdus luminescens , a symbiotic bacterium associated with entomopathogenic nematodes
- Author
-
Chellappan, Sreeja, Mathivanan, S., Thippeswamy, R., Nagesh, M., Savithri, H. S., and Murthy, M. R. N.
- Published
- 2020
5. Mechanical and microstructural properties of graphene reinforced magnesium composite
- Author
-
Sridhar Raja, K.S., Kumar, U. Manoj, Mathivanan, S., Ganesan, S., ArunKumar, T., Hemanandh, J., and Kumar, J. Senthil
- Published
- 2021
- Full Text
- View/download PDF
6. Real Time Analysis of a 24 GHz Planar Microstrip Antenna for Vehicular Communications
- Author
-
Christina, G., Rajeswari, A., and Mathivanan, S.
- Published
- 2017
- Full Text
- View/download PDF
7. Crystal Structure of 14-3-3 epsilon with FOXO3a peptide
- Author
-
Mathivanan, S., primary and Kamariah, N., additional
- Published
- 2022
- Full Text
- View/download PDF
8. K-29 linked ubiquitination of Arrdc4 regulates its function in extracellular vesicle biogenesis
- Author
-
Farooq, AU, Gembus, K, Sandow, JJ, Webb, A, Mathivanan, S, Manning, JA, Shah, SS, Foot, NJ, Kumar, S, Farooq, AU, Gembus, K, Sandow, JJ, Webb, A, Mathivanan, S, Manning, JA, Shah, SS, Foot, NJ, and Kumar, S
- Abstract
Extracellular vesicles (EVs) are important mediators of intercellular communication. However, EV biogenesis remains poorly understood. We previously defined a role for Arrdc4 (Arrestin domain containing protein 4), an adaptor for Nedd4 family ubiquitin ligases, in the biogenesis of EVs. Here we report that ubiquitination of Arrdc4 is critical for its role in EV secretion. We identified five potential ubiquitinated lysine residues in Arrdc4 using mass spectrometry. By analysing Arrdc4 lysine mutants we discovered that lysine 270 (K270) is critical for Arrdc4 function in EV biogenesis. Arrdc4K270R mutation caused a decrease in the number of EVs released by cells compared to Arrdc4WT , and a reduction in trafficking of divalent metal transporter (DMT1) into EVs. Furthermore, we also observed a decrease in DMT1 activity and an increase in its intracellular degradation in the presence of Arrdc4K270R . K270 was found to be ubiquitinated with K-29 polyubiquitin chains by the ubiquitin ligase Nedd4-2. Thus, our results uncover a novel role of K-29 polyubiquitin chains in Arrdc4-mediated EV biogenesis and protein trafficking.
- Published
- 2022
9. MicroRNA-21 is immunosuppressive and pro-metastatic via separate mechanisms
- Author
-
Chi, LH, Cross, RSN, Redvers, RP, Davis, M, Hediyeh-zadeh, S, Mathivanan, S, Samuel, M, Lucas, EC, Mouchemore, K, Gregory, PA, Johnstone, CN, Anderson, RL, Chi, LH, Cross, RSN, Redvers, RP, Davis, M, Hediyeh-zadeh, S, Mathivanan, S, Samuel, M, Lucas, EC, Mouchemore, K, Gregory, PA, Johnstone, CN, and Anderson, RL
- Abstract
MiR-21 was identified as a gene whose expression correlated with the extent of metastasis of murine mammary tumours. Since miR-21 is recognised as being associated with poor prognosis in cancer, we investigated its contribution to mammary tumour growth and metastasis in tumours with capacity for spontaneous metastasis. Unexpectedly, we found that suppression of miR-21 activity in highly metastatic tumours resulted in regression of primary tumour growth in immunocompetent mice but did not impede growth in immunocompromised mice. Analysis of the immune infiltrate of the primary tumours at the time when the tumours started to regress revealed an influx of both CD4+ and CD8+ activated T cells and a reduction in PD-L1+ infiltrating monocytes, providing an explanation for the observed tumour regression. Loss of anti-tumour immune suppression caused by decreased miR-21 activity was confirmed by transcriptomic analysis of primary tumours. This analysis also revealed reduced expression of genes associated with cell cycle progression upon loss of miR-21 activity. A second activity of miR-21 was the promotion of metastasis as shown by the loss of metastatic capacity of miR-21 knockdown tumours established in immunocompromised mice, despite no impact on primary tumour growth. A proteomic analysis of tumour cells with altered miR-21 activity revealed deregulation of proteins known to be associated with tumour progression. The development of therapies targeting miR-21, possibly via targeted delivery to tumour cells, could be an effective therapy to combat primary tumour growth and suppress the development of metastatic disease.
- Published
- 2022
10. CAF hierarchy driven by pancreatic cancer cell p53-status creates a pro-metastatic and chemoresistant environment via perlecan
- Author
-
Vennin, C, Melenec, P, Rouet, R, Nobis, M, Cazet, As, Murphy, Kj, Herrmann, D, Reed, Da, Lucas, Mc, Warren, Sc, Elgundi, Z, Pinese, M, Kalna, G, Roden, D, Samuel, M, Zaratzian, A, Grey, St, Da Silva, A, Leung, W, Mathivanan, S, Wang, Yx, Braithwaite, Aw, Christ, D, Benda, A, Parkin, A, Phillips, Pa, Whitelock, Jm, Gill, Aj, Sansom, Oj, Croucher, Dr, Parker, Bl, Pajic, M, Morton, Jp, Cox, Tr, Timpson, P, Johns, Al, Chantrill, La, Chou, A, Steinmann, A, Arshi, M, Dwarte, T, Froio, D, Pereira, B, Ritchie, S, Chambers, Cr, Metcalf, X, Waddell, N, Pearson, Jv, Patch, Am, Nones, K, Newell, F, Mukhopadhyay, P, Addala, V, Kazakoff, S, Holmes, O, Leonard, C, Wood, S, Grimmond, Sm, Hofmann, O, Christ, A, Bruxner, T, Samra, Js, Pavlakis, N, High, Ha, Asghari, R, Merrett, Nd, Pavey, D, Das, A, Cosman, Ph, Ismail, K, O'Connnor, C, Stoita, A, Williams, D, Spigellman, A, Lam, Vw, Mcleod, D, Kirk, J, Kench, Jg, Grimison, P, Cooper, Cl, Sandroussi, C, Goodwin, A, Mead, Rs, Tucker, K, Andrews, L, Texler, M, Forest, C, Epari, Kp, Ballal, M, Fletcher, Dr, Mukhedkar, S, Zeps, N, Beilin, M, Feeney, K, Nguyen, Nq, Ruszkiewicz, Ar, Worthley, C, Chen, J, Brooke-Smith, Me, Papangelis, V, Clouston, Ad, Barbour, Ap, O'Rourke, Tj, Fawcett, Jw, Slater, K, Hatzifotis, M, Hodgkinson, P, Nikfarjam, M, Eshleman, Jr, Hruban, Rh, Wolfgang, Cl, Lawlor, Rt, Beghelli, S, Corbo, V, Scardoni, M, Bassi, C, Biankin, Av, Dixon, J, Jamieson, Nb, and Chang, Dk
- Subjects
0301 basic medicine ,medicine.medical_treatment ,Drug Resistance ,General Physics and Astronomy ,02 engineering and technology ,Mice ,Cancer-Associated Fibroblasts ,Cell Movement ,lcsh:Science ,Inbred BALB C ,Cancer ,education.field_of_study ,Mice, Inbred BALB C ,Multidisciplinary ,Tumor ,021001 nanoscience & nanotechnology ,3. Good health ,Gene Expression Regulation, Neoplastic ,medicine.anatomical_structure ,0210 nano-technology ,Pancreas ,Signal Transduction ,Cancer microenvironment ,Cell biology ,Science ,Population ,Perlecan ,Biology ,General Biochemistry, Genetics and Molecular Biology ,Article ,Cell Line ,03 medical and health sciences ,Pancreatic cancer ,Cell Line, Tumor ,medicine ,Humans ,Animals ,Neoplasm Invasiveness ,education ,Cell Proliferation ,Neoplastic ,fungi ,General Chemistry ,Immunotherapy ,medicine.disease ,Pancreatic Neoplasms ,030104 developmental biology ,Gene Expression Regulation ,Drug Resistance, Neoplasm ,Cancer cell ,Cancer research ,biology.protein ,Neoplasm ,lcsh:Q ,Stromal Cells ,Tumor Suppressor Protein p53 ,Heparan Sulfate Proteoglycans - Abstract
Heterogeneous subtypes of cancer-associated fibroblasts (CAFs) coexist within pancreatic cancer tissues and can both promote and restrain disease progression. Here, we interrogate how cancer cells harboring distinct alterations in p53 manipulate CAFs. We reveal the existence of a p53-driven hierarchy, where cancer cells with a gain-of-function (GOF) mutant p53 educate a dominant population of CAFs that establish a pro-metastatic environment for GOF and null p53 cancer cells alike. We also demonstrate that CAFs educated by null p53 cancer cells may be reprogrammed by either GOF mutant p53 cells or their CAFs. We identify perlecan as a key component of this pro-metastatic environment. Using intravital imaging, we observe that these dominant CAFs delay cancer cell response to chemotherapy. Lastly, we reveal that depleting perlecan in the stroma combined with chemotherapy prolongs mouse survival, supporting it as a potential target for anti-stromal therapies in pancreatic cancer., Subtypes of cancer associated fibroblasts can both promote and suppress tumorigenesis. Here, the authors investigate how p53 status in pancreatic cancer cells affects their interaction with cancer associated fibroblasts, and report perlecan as a mediator of the pro-metastatic environment.
- Published
- 2019
11. Crystal Structure of 14-3-3 epsilon with 9J10 peptide
- Author
-
Mathivanan, S., primary, Sudhakar, S., additional, Bairy, S., additional, Kamariah, N., additional, and Venkitaraman, A., additional
- Published
- 2021
- Full Text
- View/download PDF
12. Pannexin-1 channel regulates nuclear content packaging into apoptotic bodies and their size
- Author
-
Phan, TK, Fonseka, P, Tixeira, R, Pathan, M, Ang, C-S, Ozkocak, DC, Mathivanan, S, Poon, IKH, Phan, TK, Fonseka, P, Tixeira, R, Pathan, M, Ang, C-S, Ozkocak, DC, Mathivanan, S, and Poon, IKH
- Abstract
Apoptotic bodies (ApoBDs), which are large extracellular vesicles exclusively released by apoptotic cells, possess therapeutically exploitable properties including biomolecule loadability and transferability. However, current limited understanding of ApoBD biology has hindered its exploration for clinical use. Particularly, as ApoBD-accompanying cargoes (e.g., nucleic acids and proteins) have major influence on their functionality, further insights into the mechanism of biomolecule sorting into ApoBDs are critical to unleash their therapeutic potential. Previous studies suggested pannexin 1 (PANX1) channel, a negative regulator of ApoBD biogenesis, can modify synaptic vesicle contents. We also reported that trovafloxacin (a PANX1 inhibitor) increases proportion of ApoBDs containing DNA. Therefore, we sought to define the role of PANX1 in regulating the sorting of nuclear content into ApoBDs. Here, using flow cytometry and label-free quantitative proteomic analyses, we showed that targeting PANX1 activity during apoptosis, via either pharmacological inhibition or genetic disruption, resulted in enrichment of both DNA and nuclear proteins in ApoBDs that were unexpectedly smaller in size. Our data suggest that PANX1, besides being a key regulator of ApoBD formation, also functions as a negative regulator of nuclear content packaging and modulator of ApoBD size. Together, our findings provide further insights into ApoBD biology and form a novel conceptual framework for ApoBD-based therapies through pharmacologically manipulating ApoBD contents.
- Published
- 2021
13. Temporal Quantitative Proteomics Analysis of Neuroblastoma Cells Treated with Bovine Milk-Derived Extracellular Vesicles Highlights the Anti-Proliferative Properties of Milk-Derived Extracellular Vesicles
- Author
-
Fonseka, P, Kang, T, Chee, S, Chitti, SV, Sanwlani, R, Ang, C-S, Mathivanan, S, Fonseka, P, Kang, T, Chee, S, Chitti, SV, Sanwlani, R, Ang, C-S, and Mathivanan, S
- Abstract
Neuroblastoma (NBL) is a pediatric cancer that accounts for 15% of childhood cancer mortality. Amplification of the oncogene N-Myc occurs in 20% of NBL patients and is considered high risk as it correlates with aggressiveness, treatment resistance and poor prognosis. Even though the treatment strategies have improved in the recent years, the survival rate of high-risk NBL patients remain poor. Hence, it is crucial to explore new therapeutic avenues to sensitise NBL. Recently, bovine milk-derived extracellular vesicles (MEVs) have been proposed to contain anti-cancer properties. However, the impact of MEVs on NBL cells is not understood. In this study, we characterised MEVs using Western blotting, NTA and TEM. Importantly, treatment of NBL cells with MEVs decreased the proliferation and increased the sensitivity of NBL cells to doxorubicin. Temporal label-free quantitative proteomics of NBL cells highlighted the depletion of proteins involved in cell metabolism, cell growth and Wnt signalling upon treatment with MEVs. Furthermore, proteins implicated in cellular senescence and apoptosis were enriched in NBL cells treated with MEVs. For the first time, this study highlights the temporal proteomic profile that occurs in cancer cells upon MEVs treatment.
- Published
- 2021
14. Oral administration of bovine milk-derived extracellular vesicles induces senescence in the primary tumor but accelerates cancer metastasis
- Author
-
Samuel, M, Fonseka, P, Sanwlani, R, Gangoda, L, Chee, SH, Keerthikumar, S, Spurling, A, Chitti, SV, Zanker, D, Ang, C-S, Atukorala, I, Kang, T, Shahi, S, Marzan, AL, Nedeva, C, Vennin, C, Lucas, MC, Cheng, L, Herrmann, D, Pathan, M, Chisanga, D, Warren, SC, Zhao, K, Abraham, N, Anand, S, Boukouris, S, Adda, CG, Jiang, L, Shekhar, TM, Baschuk, N, Hawkins, CJ, Johnston, AJ, Orian, JM, Hoogenraad, NJ, Poon, IK, Hill, AF, Jois, M, Timpson, P, Parker, BS, Mathivanan, S, Samuel, M, Fonseka, P, Sanwlani, R, Gangoda, L, Chee, SH, Keerthikumar, S, Spurling, A, Chitti, SV, Zanker, D, Ang, C-S, Atukorala, I, Kang, T, Shahi, S, Marzan, AL, Nedeva, C, Vennin, C, Lucas, MC, Cheng, L, Herrmann, D, Pathan, M, Chisanga, D, Warren, SC, Zhao, K, Abraham, N, Anand, S, Boukouris, S, Adda, CG, Jiang, L, Shekhar, TM, Baschuk, N, Hawkins, CJ, Johnston, AJ, Orian, JM, Hoogenraad, NJ, Poon, IK, Hill, AF, Jois, M, Timpson, P, Parker, BS, and Mathivanan, S
- Abstract
The concept that extracellular vesicles (EVs) from the diet can be absorbed by the intestinal tract of the consuming organism, be bioavailable in various organs, and in-turn exert phenotypic changes is highly debatable. Here, we isolate EVs from both raw and commercial bovine milk and characterize them by electron microscopy, nanoparticle tracking analysis, western blotting, quantitative proteomics and small RNA sequencing analysis. Orally administered bovine milk-derived EVs survive the harsh degrading conditions of the gut, in mice, and is subsequently detected in multiple organs. Milk-derived EVs orally administered to mice implanted with colorectal and breast cancer cells reduce the primary tumor burden. Intriguingly, despite the reduction in primary tumor growth, milk-derived EVs accelerate metastasis in breast and pancreatic cancer mouse models. Proteomic and biochemical analysis reveal the induction of senescence and epithelial-to-mesenchymal transition in cancer cells upon treatment with milk-derived EVs. Timing of EV administration is critical as oral administration after resection of the primary tumor reverses the pro-metastatic effects of milk-derived EVs in breast cancer models. Taken together, our study provides context-based and opposing roles of milk-derived EVs as metastasis inducers and suppressors.
- Published
- 2021
15. Tumor microenvironmental cytokines bound to cancer exosomes determine uptake by cytokine receptor-expressing cells and biodistribution
- Author
-
Lima, LG, Ham, S, Shin, H, Chai, EPZ, Lek, ESH, Lobb, RJ, Muller, AF, Mathivanan, S, Yeo, B, Choi, Y, Parker, BS, Moller, A, Lima, LG, Ham, S, Shin, H, Chai, EPZ, Lek, ESH, Lobb, RJ, Muller, AF, Mathivanan, S, Yeo, B, Choi, Y, Parker, BS, and Moller, A
- Abstract
Metastatic spread of a cancer to secondary sites is a coordinated, non-random process. Cancer cell-secreted vesicles, especially exosomes, have recently been implicated in the guidance of metastatic dissemination, with specific surface composition determining some aspects of organ-specific localization. Nevertheless, whether the tumor microenvironment influences exosome biodistribution has yet to be investigated. Here, we show that microenvironmental cytokines, particularly CCL2, decorate cancer exosomes via binding to surface glycosaminoglycan side chains of proteoglycans, causing exosome accumulation in specific cell subsets and organs. Exosome retention results in changes in the immune landscape within these organs, coupled with a higher metastatic burden. Strikingly, CCL2-decorated exosomes are directed to a subset of cells that express the CCL2 receptor CCR2, demonstrating that exosome-bound cytokines are a crucial determinant of exosome-cell interactions. In addition to the finding that cytokine-conjugated exosomes are detected in the blood of cancer patients, we discovered that healthy subjects derived exosomes are also associated with cytokines. Although displaying a different profile from exosomes isolated from cancer patients, it further indicates that specific combinations of cytokines bound to exosomes could likewise affect other physiological and disease settings.
- Published
- 2021
16. MOLECULAR MECHANISMS OF TRPV1 INFLAMMATORY SENSITIZATION: S16
- Author
-
Devesa, I, Ferrandiz-Huertas, C, Mathivanan, S, Wolf, C, and Ferrer-Montiel, A
- Published
- 2014
17. Studies on Compressive Loading-characteristics of PU Foam Materials Used in Footwear for Obese.
- Author
-
MATHIVANAN, S., MOHAN, R., PANDA, RAMES C., and BALACHANDER, P.
- Subjects
- *
FOAM , *OBESITY , *FOOTWEAR , *BODY mass index - Abstract
Optimum-designed footwear with polyurethane (PU) material for comfort is an important requirement for obese. Investigations on compressive behavior of varied designed footwear using 120 D PU material have been carried out. The energy absorption primarily depends on heel height, slope angle and load applied or body mass index of obese. Statistical analysis has been used to formulate the prediction of absorbed energy wherein a heel height of 30 mm with 20-degree angle provides optimum value with the incorporation of 120 D PU material. A coefficient-of-determination (R²) value of 0.9406 confirms the suitability of the statistical regression model. Hence, the optimally designed footwear for higher energy absorption with 120 D PU foam material is recommendable for obese. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
18. Extracellular Vesicles From the Cotton Pathogen Fusarium oxysporum f. sp. vasinfectum Induce a Phytotoxic Response in Plants
- Author
-
Bleackley, M, Samuel, M, Garcia-Ceron, D, Mckenna, JA, Lowe, RGT, Pathan, M, Zhao, K, Ang, C-S, Mathivanan, S, Anderson, MA, Bleackley, M, Samuel, M, Garcia-Ceron, D, Mckenna, JA, Lowe, RGT, Pathan, M, Zhao, K, Ang, C-S, Mathivanan, S, and Anderson, MA
- Abstract
Extracellular vesicles (EVs) represent a system for the coordinated secretion of a variety of molecular cargo including proteins, lipids, nucleic acids, and metabolites. They have an essential role in intercellular communication in multicellular organisms and have more recently been implicated in host-pathogen interactions. Study of the role for EVs in fungal biology has focused on pathogenic yeasts that are major pathogens in humans. In this study we have expanded the investigation of fungal EVs to plant pathogens, specifically the major cotton pathogen Fusarium oxysporum f. sp. vasinfectum. EVs isolated from F. oxysporum f. sp. vasinfectum culture medium have a morphology and size distribution similar to EVs from yeasts such as Candida albicans and Cryptococcus neoformans. A unique feature of the EVs from F. oxysporum f. sp. vasinfectum is their purple color, which is predicted to arise from a napthoquinone pigment being packaged into the EVs. Proteomic analysis of F. oxysporum f. sp. vasinfectum EVs revealed that they are enriched in proteins that function in synthesis of polyketides as well as proteases and proteins that function in basic cellular processes. Infiltration of F. oxysporum f. sp. vasinfectum EVs into the leaves of cotton or N. benthamiana plants led to a phytotoxic response. These observations lead to the hypothesis that F. oxysporum f. sp. vasinfectum EVs are likely to play a crucial role in the infection process.
- Published
- 2020
19. A High-Resolution Mass Spectrometry-Based Quantitative Metabolomic Workflow Highlights Defects in 5-Fluorouracil Metabolism in Cancer Cells with Acquired Chemoresistance
- Author
-
Shahi, S, Ang, C-S, Mathivanan, S, Shahi, S, Ang, C-S, and Mathivanan, S
- Abstract
Currently, 5-fluorouracil (5-FU)-based combination chemotherapy is the mainstay in the treatment of metastatic colorectal cancer (CRC), which benefits approximately 50% of the patients. However, these tumors inevitably acquire chemoresistance resulting in treatment failure. The molecular mechanisms driving acquired chemotherapeutic drug resistance in CRC is fundamental for the development of novel strategies for circumventing resistance. However, the specific phenomenon that drives the cancer cells to acquire resistance is poorly understood. Understanding the molecular mechanisms that regulate chemoresistance will uncover new avenues for the treatment of CRC. Among the various mechanisms of acquired chemoresistance, defects in the drug metabolism pathways could play a major role. In the case of 5-FU, it gets converted into various active metabolites, which, directly or indirectly, interferes with the replication and transcription of dividing cells causing DNA and RNA damage. In this project, we developed a high-resolution mass spectrometry-based method to effectively extract and quantify levels of the 5-FU metabolites in cell lysates and media of parental and 5-FU resistant LIM1215 CRC cells. The analysis highlighted that the levels of 5-FU metabolites are significantly reduced in 5-FU resistant cells. Specifically, the level of the nucleotide fluorodeoxyuridine monophosphate (FdUMP) is reduced with treatment of 5-FU clarifying the compromised 5-FU metabolism in resistant cells. Corroborating the metabolomic analysis, treatment of the resistant cells with FdUMP, an active metabolite of 5-FU, resulted in effective killing of the resistant cells. Overall, in this study, an effective protocol was developed for comparative quantitation of polar metabolites and nucleotide analogues from the adherent cells efficiently. Furthermore, the utility of FdUMP as an alternative for CRC therapy is highlighted.
- Published
- 2020
20. A study on the impact of Plant Growth Promoting Fungus (PGPF) and Plant Growth Promoting Rhizobacteria (PGPR) as biofertilizers for Abelmoschus esculentus (L.) Moench.
- Author
-
Rabert, G., primary, Dhivya, A., additional, Navaneetha, P., additional, Mathivanan, S., additional, Muthuraman, B., additional, Nagarajan, M., additional, and Paramasivam, M., additional
- Published
- 2021
- Full Text
- View/download PDF
21. Knocking down of substance-P and α-CGRP modulates inflammatory sensitization of TRPV1: P16-31
- Author
-
Mathivanan, S., Wolf, C. J., Devesa, I., Huertas, C. F., and Ferrer-Montiel, A.
- Published
- 2012
22. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines
- Author
-
Thery, C., Witwer, K. (Kenneth), Aikawa, E. (Elena), Alcaraz, M.J. (Maria Jose), Anderson, J.D. (Johnathon D), Andriantsitohaina, R. (Ramaroson), Antoniou, A. (Anna), Arab, T. (Tanina), Archer, F. (Fabienne), Atkin-Smith, G.K. (Georgia K), Ayre, D.C. (D Craig), Bach, J.-M. (Jean-Marie), Bachurski, D. (Daniel), Baharvand, H. (Hossein), Balaj, L. (Leonora), Baldacchino, S. (Shawn), Bauer, N.N. (Natalie N), Baxter, A.A. (Amy A), Bebawy, M. (Mary), Beckham, C. (Carla), Bedina Zavec, A. (Apolonija), Benmoussa, A. (Abderrahim), Berardi, A.C. (Anna C), Bergese, P. (Paolo), Bielska, E. (Ewa), Blenkiron, C. (Cherie), Bobis-Wozowicz, S. (Sylwia), Boilard, E. (Eric), Boireau, W. (Wilfrid), Bongiovanni, A. (Antonella), Borràs, F.E. (Francesc), Bosch, S. (Steffi), Boulanger, C.M. (Chantal), Breakefield, X. (Xandra), Breglio, A.M. (Andrew M), Brennan, M.Á. (Meadhbh Á), Brigstock, D.R. (David R), Brisson, A. (Alain), Broekman, M.L.D. (Marike), Bromberg, J.F. (Jacqueline F), Bryl-Górecka, P. (Paulina), Buch, S. (Shilpa), Buck, A.H. (Amy H), Burger, D. (Dylan), Busatto, S. (Sara), Buschmann, D. (Dominik), Bussolati, B. (Benedetta), Buzas, E. (Edit), Byrd, J.B. (James Bryan), Camussi, G. (Giovanni), Carter, D.R.F. (David RF), Caruso, S. (Sarah), Chamley, L.W. (Lawrence W), Chang, Y.-T. (Yu-Ting), Chaudhuri, A.D. (Amrita Datta), Chen, C. (Chihchen), Chen, S. (Shuai), Cheng, L. (Lesley), Chin, A.R. (Andrew R), Clayton, A. (Aled), Clerici, S.P. (Stefano P), Cocks, A. (Alex), Cocucci, E. (Emanuele), Coffey, R.J. (Robert J), Cordeiro-da-Silva, A. (Anabela), Couch, Y. (Yvonne), Coumans, F.A.W. (Frank AW), Coyle, B. (Beth), Crescitelli, R. (Rossella), Criado, M.F. (Miria Ferreira), D’Souza-Schorey, C. (Crislyn), Das, S. (Saumya), de Candia, P. (Paola), De Santana, E.F. (Eliezer F), De Wever, O. (Olivier), Del Portillo, H. (Hernando), Demaret, T. (Tanguy), Deville, S. (Sarah), Devitt, A. (Andrew), Dhondt, B. (Bert), Di Vizio, D. (Dolores), Dieterich, L.C. (Lothar C), Dolo, V. (Vincenza), Dominguez Rubio, A.P. (Ana Paula), Dominici, M. (Massimo), Dourado, M.R. (Mauricio R), Driedonks, T.A.P. (Tom AP), Duarte, F.V. (Filipe V), Duncan, H.M. (Heather M), Eichenberger, R.M. (Ramon M), Ekström, K. (Karin), EL Andaloussi, S. (Samir), Elie-Caille, C. (Celine), Erdbrügger, U. (Uta), Falcon-Perez, J.M. (Juan), Fatima, F. (Farah), Fish, J.E. (Jason E), Flores-Bellver, M. (Miguel), Försönits, A. (András), Frelet-Barrand, A. (Annie), Fricke, F. (Fabia), Fuhrmann, G. (Gregor), Gabrielsson, S. (Susanne), Gámez-Valero, A. (Ana), Gardiner, C. (Chris), Gärtner, K. (Kathrin), Gaudin, R. (Raphael), Gho, Y.S. (Yong Song), Giebel, B. (B.), Gilbert, C. (Caroline), Gimona, M. (Mario), Giusti, I. (Ilaria), Goberdhan, D.C.I. (Deborah CI), Görgens, A. (André), Gorski, S.M. (Sharon M), Greening, D.W. (David W.), Gross, J.C. (Julia Christina), Gualerzi, A. (Alice), Gupta, G.N. (Gopal N), Gustafson, D. (Dakota), Handberg, A. (Aase), Haraszti, R.A. (Reka A), Harrison, P. (Paul), Hegyesi, H. (Hargita), Hendrix, A. (An), Hill, A.F. (Andrew F), Hochberg, F.H. (Fred H), Hoffmann, K.F. (Karl F), Holder, B. (Beth), Holthofer, H. (Harry), Hosseinkhani, B. (Baharak), Hu, G. (Guoku), Huang, Y. (Yiyao), Huber, V. (Veronica), Hunt, S. (Stuart), Ibrahim, A.G.-E. (Ahmed Gamal-Eldin), Ikezu, T. (Tsuneya), Inal, J.M. (Jameel), Isin, M. (Mustafa), Ivanova, A. (Alena), Jackson, H.K. (Hannah K), Jacobsen, S. (Soren), Jay, S.M. (Steven M), Jayachandran, M. (Muthuvel), Jenster, G.W. (Guido), Jiang, L. (Lanzhou), Johnson, S.M. (Suzanne M), Jones, J.C. (Jennifer C), Jong, A. (Ambrose), Jovanovic-Talisman, T. (Tijana), Jung, S. (Stephanie), Kalluri, R. (Raghu), Kano, S.-I. (Shin-ichi), Kaur, S. (Sukhbir), Kawamura, Y. (Yumi), Keller, E.T. (Evan T), Khamari, D. (Delaram), Khomyakova, E. (Elena), Khvorova, A. (Anastasia), Kierulf, P. (Peter), Kim, K.P. (Kwang Pyo), Kislinger, T. (Thomas), Klingeborn, M. (Mikael), Klinke, D.J. (David J), Kornek, M. (Miroslaw), Kosanović, M.M. (Maja M), Kovács, Á.F. (Árpád Ferenc), Krämer-Albers, E.-M. (Eva-Maria), Krasemann, S. (Susanne), Krause, M. (Mirja), Kurochkin, I.V. (Igor V), Kusuma, G.D. (Gina D), Kuypers, S. (Sören), Laitinen, S. (Saara), Langevin, S.M. (Scott M), Languino, L.R. (Lucia R), Lannigan, J. (Joanne), Lässer, C. (Cecilia), Laurent, L.C. (Louise C), Lavieu, G. (Gregory), Lázaro-Ibáñez, E. (Elisa), Le Lay, S. (Soazig), Lee, M.-S. (Myung-Shin), Lee, Y.X.F. (Yi Xin Fiona), Lemos, D.S. (Debora S), Lenassi, M. (Metka), Leszczynska, A. (Aleksandra), Li, I.T.S. (Isaac TS), Liao, K. (Ke), Libregts, S.F. (Sten), Ligeti, E. (Erzsebet), Lim, R. (Rebecca), Lim, S.K. (Sai Kiang), Linē, A. (Aija), Linnemannstöns, K. (Karen), Llorente, A. (Alicia), Lombard, C.A. (Catherine A), Lorenowicz, M.J. (Magdalena J), Lörincz, Á.M. (Ákos M), Lötvall, J. (Jan), Lovett, J. (Jason), Lowry, M.C. (Michelle C), Loyer, X. (Xavier), Lu, Q. (Quan), Lukomska, B. (Barbara), Lunavat, T.R. (Taral R), Maas, S.L.N. (Sybren), Malhi, H. (Harmeet), Marcilla, A. (Antonio), Mariani, J. (Jacopo), Mariscal, J. (Javier), Martens-Uzunova, E.S. (Elena), Martin-Jaular, L. (Lorena), Martinez, M.C. (M Carmen), Martins, V.R. (Vilma Regina), Mathieu, M. (Mathilde), Mathivanan, S. (Suresh), Maugeri, M. (Marco), McGinnis, L.K. (Lynda K), McVey, M.J. (Mark J), Meckes, D.G. (David G), Meehan, K.L. (Katie L), Mertens, I. (Inge), Minciacchi, V.R. (Valentina R), Möller, A. (Andreas), Møller Jørgensen, M. (Malene), Morales-Kastresana, A. (Aizea), Morhayim, J. (Jess), Mullier, F. (Francois), Muraca, M. (Maurizio), Musante, L. (Luca), Mussack, V. (Veronika), Muth, D.C. (Dillon C), Myburgh, K.H. (Kathryn H), Najrana, T. (Tanbir), Nawaz, M. (Muhammad), Nazarenko, I. (Irina), Nejsum, P. (Peter), Neri, C. (Christian), Neri, T. (Tommaso), Nieuwland, C.C.M. (Carolien) van, Nimrichter, L. (Leonardo), Nolan, J.P. (John P), Nolte-’t Hoen, E.N.M. (Esther NM), Hooten, N.N. (Nicole Noren), O’Driscoll, L. (Lorraine), O’Grady, T. (Tina), O’Loghlen, A. (Ana), Ochiya, T. (Takahiro), Olivier, M. (Martin), Ortiz, A. (Alberto), Ortiz, L.A. (Luis A), Osteikoetxea, X. (Xabier), Ostegaard, O. (Ole), Ostrowski, M. (Matias), Park, J. (Jaesung), Pegtel, D.M. (D. Michiel), Peinado, H. (Hector), Perut, F. (Francesca), Pfaffl, M.W. (Michael W), Phinney, D.G. (Donald G), Pieters, B.C.H. (Bartijn CH), Pink, R.C. (Ryan C), Pisetsky, D.S. (David S), Pogge von Strandmann, E. (Elke), Polakovicova, I. (Iva), Poon, I.K.H. (Ivan KH), Powell, B.H. (Bonita H), Prada, I. (Ilaria), Pulliam, L. (Lynn), Quesenberry, P. (Peter), Radeghieri, A. (Annalisa), Raffai, R.L. (Robert L), Raimondo, S. (Stefania), Rak, J. (Janusz), Ramirez, M.I. (Marcel I.), Raposo, L. (Luís), Rayyan, M.S. (Morsi S), Regev-Rudzki, N. (Neta), Ricklefs, F.L. (Franz L), Robbins, P.D. (Paul D), Roberts, D.D. (David D), Rodrigues, S.C. (Silvia C), Rohde, E. (Eva), Rome, S. (Sophie), Rouschop, K.M.A. (Kasper MA), Rughetti, A. (Aurelia), Russell, A.E. (Ashley E), Saá, P. (Paula), Sahoo, S. (Susmita), Salas-Huenuleo, E. (Edison), Sánchez, C. (Catherine), Saugstad, J.A. (Julie A), Saul, M.J. (Meike J), Schiffelers, R.M. (Raymond), Schneider, R. (Raphael), Schøyen, T.H. (Tine Hiorth), Scott, A. (Aaron), Shahaj, E. (Eriomina), Sharma, S. (Shivani), Shatnyeva, O. (Olga), Shekari, F. (Faezeh), Shelke, G.V. (Ganesh Vilas), Shetty, A.K. (Ashok K), Shiba, K. (Kiyotaka), Siljander, P. (Pia), Silva, A.M. (Andreia M), Skowronek, A. (Agata), Snyder, O.L. (Orman L), Soares, R.P. (Rodrigo Pedro), Sódar, B.W. (Barbara W), Soekmadji, C. (Carolina), Sotillo, J. (Javier), Stahl, P.D. (Philip D), Stoorvogel, W. (Willem), Stott, S.L. (Shannon L), Strasser, E.F. (Erwin F), Swift, S. (Simon), Tahara, H. (Hidetoshi), Tewari, M. (Muneesh), Timms, K. (Kate), Tiwari, S. (Swasti), Tixeira, R. (Rochelle), Tkach, M. (Mercedes), Toh, W.S. (Wei Seong), Tomasini, R. (Richard), Torrecilhas, A.C. (Ana Claudia), Tosar, J.P. (Juan Pablo), Toxavidis, V. (Vasilis), Urbanelli, L. (Lorena), Vader, P. (Pieter), Balkom, B.W.M. (Bas) van, van der Grein, S.G. (Susanne G), Van Deun, J. (Jan), van Herwijnen, M.J.C. (Martijn JC), Van Keuren-Jensen, K. (Kendall), van Niel, G. (Guillaume), Royen, M.E. (Martin), van Wijnen, A.J. (Andre J), Vasconcelos, M.H. (M Helena), Vechetti, I.J. (Ivan J), Veit, T.D. (Tiago D), Vella, L.J. (Laura J.), Velot, É. (Émilie), Verweij, F.J. (Frederik J), Vestad, B. (Beate), Viñas, J.L. (Jose L), Visnovitz, T. (Tamás), Vukman, K.V. (Krisztina V), Wahlgren, J. (Jessica), Watson, D.C. (Dionysios C), Wauben, M.H.M. (Marca), Weaver, A. (Alissa), Webber, J.P. (Jason P), Weber, V. (Viktoria), Wehman, A.M. (Ann M), Weiss, D.J. (Daniel J), Welsh, J.A. (Joshua A), Wendt, S. (Sebastian), Wheelock, A.M. (Asa M), Wiener, Z. (Zoltán), Witte, L. (Leonie), Wolfram, J. (Joy), Xagorari, A. (Angeliki), Xander, P. (Patricia), Xu, J. (Jing), Yan, X. (Xiaomei), Yáñez-Mó, M. (María), Yin, H. (Hang), Yuana, Y., Zappulli, V. (Valentina), Zarubova, J. (Jana), Žėkas, V. (Vytautas), Zhang, J.-Y. (Jian-ye), Zhao, Z. (Zezhou), Zheng, L. (Lei), Zheutlin, A.R. (Alexander R), Zickler, A.M. (Antje M), Zimmermann, P. (Pascale), Zivkovic, A.M. (Angela M), Zocco, D. (Davide), Zuba-Surma, E.K. (Ewa K), Thery, C., Witwer, K. (Kenneth), Aikawa, E. (Elena), Alcaraz, M.J. (Maria Jose), Anderson, J.D. (Johnathon D), Andriantsitohaina, R. (Ramaroson), Antoniou, A. (Anna), Arab, T. (Tanina), Archer, F. (Fabienne), Atkin-Smith, G.K. (Georgia K), Ayre, D.C. (D Craig), Bach, J.-M. (Jean-Marie), Bachurski, D. (Daniel), Baharvand, H. (Hossein), Balaj, L. (Leonora), Baldacchino, S. (Shawn), Bauer, N.N. (Natalie N), Baxter, A.A. (Amy A), Bebawy, M. (Mary), Beckham, C. (Carla), Bedina Zavec, A. (Apolonija), Benmoussa, A. (Abderrahim), Berardi, A.C. (Anna C), Bergese, P. (Paolo), Bielska, E. (Ewa), Blenkiron, C. (Cherie), Bobis-Wozowicz, S. (Sylwia), Boilard, E. (Eric), Boireau, W. (Wilfrid), Bongiovanni, A. (Antonella), Borràs, F.E. (Francesc), Bosch, S. (Steffi), Boulanger, C.M. (Chantal), Breakefield, X. (Xandra), Breglio, A.M. (Andrew M), Brennan, M.Á. (Meadhbh Á), Brigstock, D.R. (David R), Brisson, A. (Alain), Broekman, M.L.D. (Marike), Bromberg, J.F. (Jacqueline F), Bryl-Górecka, P. (Paulina), Buch, S. (Shilpa), Buck, A.H. (Amy H), Burger, D. (Dylan), Busatto, S. (Sara), Buschmann, D. (Dominik), Bussolati, B. (Benedetta), Buzas, E. (Edit), Byrd, J.B. (James Bryan), Camussi, G. (Giovanni), Carter, D.R.F. (David RF), Caruso, S. (Sarah), Chamley, L.W. (Lawrence W), Chang, Y.-T. (Yu-Ting), Chaudhuri, A.D. (Amrita Datta), Chen, C. (Chihchen), Chen, S. (Shuai), Cheng, L. (Lesley), Chin, A.R. (Andrew R), Clayton, A. (Aled), Clerici, S.P. (Stefano P), Cocks, A. (Alex), Cocucci, E. (Emanuele), Coffey, R.J. (Robert J), Cordeiro-da-Silva, A. (Anabela), Couch, Y. (Yvonne), Coumans, F.A.W. (Frank AW), Coyle, B. (Beth), Crescitelli, R. (Rossella), Criado, M.F. (Miria Ferreira), D’Souza-Schorey, C. (Crislyn), Das, S. (Saumya), de Candia, P. (Paola), De Santana, E.F. (Eliezer F), De Wever, O. (Olivier), Del Portillo, H. (Hernando), Demaret, T. (Tanguy), Deville, S. (Sarah), Devitt, A. (Andrew), Dhondt, B. (Bert), Di Vizio, D. (Dolores), Dieterich, L.C. (Lothar C), Dolo, V. (Vincenza), Dominguez Rubio, A.P. (Ana Paula), Dominici, M. (Massimo), Dourado, M.R. (Mauricio R), Driedonks, T.A.P. (Tom AP), Duarte, F.V. (Filipe V), Duncan, H.M. (Heather M), Eichenberger, R.M. (Ramon M), Ekström, K. (Karin), EL Andaloussi, S. (Samir), Elie-Caille, C. (Celine), Erdbrügger, U. (Uta), Falcon-Perez, J.M. (Juan), Fatima, F. (Farah), Fish, J.E. (Jason E), Flores-Bellver, M. (Miguel), Försönits, A. (András), Frelet-Barrand, A. (Annie), Fricke, F. (Fabia), Fuhrmann, G. (Gregor), Gabrielsson, S. (Susanne), Gámez-Valero, A. (Ana), Gardiner, C. (Chris), Gärtner, K. (Kathrin), Gaudin, R. (Raphael), Gho, Y.S. (Yong Song), Giebel, B. (B.), Gilbert, C. (Caroline), Gimona, M. (Mario), Giusti, I. (Ilaria), Goberdhan, D.C.I. (Deborah CI), Görgens, A. (André), Gorski, S.M. (Sharon M), Greening, D.W. (David W.), Gross, J.C. (Julia Christina), Gualerzi, A. (Alice), Gupta, G.N. (Gopal N), Gustafson, D. (Dakota), Handberg, A. (Aase), Haraszti, R.A. (Reka A), Harrison, P. (Paul), Hegyesi, H. (Hargita), Hendrix, A. (An), Hill, A.F. (Andrew F), Hochberg, F.H. (Fred H), Hoffmann, K.F. (Karl F), Holder, B. (Beth), Holthofer, H. (Harry), Hosseinkhani, B. (Baharak), Hu, G. (Guoku), Huang, Y. (Yiyao), Huber, V. (Veronica), Hunt, S. (Stuart), Ibrahim, A.G.-E. (Ahmed Gamal-Eldin), Ikezu, T. (Tsuneya), Inal, J.M. (Jameel), Isin, M. (Mustafa), Ivanova, A. (Alena), Jackson, H.K. (Hannah K), Jacobsen, S. (Soren), Jay, S.M. (Steven M), Jayachandran, M. (Muthuvel), Jenster, G.W. (Guido), Jiang, L. (Lanzhou), Johnson, S.M. (Suzanne M), Jones, J.C. (Jennifer C), Jong, A. (Ambrose), Jovanovic-Talisman, T. (Tijana), Jung, S. (Stephanie), Kalluri, R. (Raghu), Kano, S.-I. (Shin-ichi), Kaur, S. (Sukhbir), Kawamura, Y. (Yumi), Keller, E.T. (Evan T), Khamari, D. (Delaram), Khomyakova, E. (Elena), Khvorova, A. (Anastasia), Kierulf, P. (Peter), Kim, K.P. (Kwang Pyo), Kislinger, T. (Thomas), Klingeborn, M. (Mikael), Klinke, D.J. (David J), Kornek, M. (Miroslaw), Kosanović, M.M. (Maja M), Kovács, Á.F. (Árpád Ferenc), Krämer-Albers, E.-M. (Eva-Maria), Krasemann, S. (Susanne), Krause, M. (Mirja), Kurochkin, I.V. (Igor V), Kusuma, G.D. (Gina D), Kuypers, S. (Sören), Laitinen, S. (Saara), Langevin, S.M. (Scott M), Languino, L.R. (Lucia R), Lannigan, J. (Joanne), Lässer, C. (Cecilia), Laurent, L.C. (Louise C), Lavieu, G. (Gregory), Lázaro-Ibáñez, E. (Elisa), Le Lay, S. (Soazig), Lee, M.-S. (Myung-Shin), Lee, Y.X.F. (Yi Xin Fiona), Lemos, D.S. (Debora S), Lenassi, M. (Metka), Leszczynska, A. (Aleksandra), Li, I.T.S. (Isaac TS), Liao, K. (Ke), Libregts, S.F. (Sten), Ligeti, E. (Erzsebet), Lim, R. (Rebecca), Lim, S.K. (Sai Kiang), Linē, A. (Aija), Linnemannstöns, K. (Karen), Llorente, A. (Alicia), Lombard, C.A. (Catherine A), Lorenowicz, M.J. (Magdalena J), Lörincz, Á.M. (Ákos M), Lötvall, J. (Jan), Lovett, J. (Jason), Lowry, M.C. (Michelle C), Loyer, X. (Xavier), Lu, Q. (Quan), Lukomska, B. (Barbara), Lunavat, T.R. (Taral R), Maas, S.L.N. (Sybren), Malhi, H. (Harmeet), Marcilla, A. (Antonio), Mariani, J. (Jacopo), Mariscal, J. (Javier), Martens-Uzunova, E.S. (Elena), Martin-Jaular, L. (Lorena), Martinez, M.C. (M Carmen), Martins, V.R. (Vilma Regina), Mathieu, M. (Mathilde), Mathivanan, S. (Suresh), Maugeri, M. (Marco), McGinnis, L.K. (Lynda K), McVey, M.J. (Mark J), Meckes, D.G. (David G), Meehan, K.L. (Katie L), Mertens, I. (Inge), Minciacchi, V.R. (Valentina R), Möller, A. (Andreas), Møller Jørgensen, M. (Malene), Morales-Kastresana, A. (Aizea), Morhayim, J. (Jess), Mullier, F. (Francois), Muraca, M. (Maurizio), Musante, L. (Luca), Mussack, V. (Veronika), Muth, D.C. (Dillon C), Myburgh, K.H. (Kathryn H), Najrana, T. (Tanbir), Nawaz, M. (Muhammad), Nazarenko, I. (Irina), Nejsum, P. (Peter), Neri, C. (Christian), Neri, T. (Tommaso), Nieuwland, C.C.M. (Carolien) van, Nimrichter, L. (Leonardo), Nolan, J.P. (John P), Nolte-’t Hoen, E.N.M. (Esther NM), Hooten, N.N. (Nicole Noren), O’Driscoll, L. (Lorraine), O’Grady, T. (Tina), O’Loghlen, A. (Ana), Ochiya, T. (Takahiro), Olivier, M. (Martin), Ortiz, A. (Alberto), Ortiz, L.A. (Luis A), Osteikoetxea, X. (Xabier), Ostegaard, O. (Ole), Ostrowski, M. (Matias), Park, J. (Jaesung), Pegtel, D.M. (D. Michiel), Peinado, H. (Hector), Perut, F. (Francesca), Pfaffl, M.W. (Michael W), Phinney, D.G. (Donald G), Pieters, B.C.H. (Bartijn CH), Pink, R.C. (Ryan C), Pisetsky, D.S. (David S), Pogge von Strandmann, E. (Elke), Polakovicova, I. (Iva), Poon, I.K.H. (Ivan KH), Powell, B.H. (Bonita H), Prada, I. (Ilaria), Pulliam, L. (Lynn), Quesenberry, P. (Peter), Radeghieri, A. (Annalisa), Raffai, R.L. (Robert L), Raimondo, S. (Stefania), Rak, J. (Janusz), Ramirez, M.I. (Marcel I.), Raposo, L. (Luís), Rayyan, M.S. (Morsi S), Regev-Rudzki, N. (Neta), Ricklefs, F.L. (Franz L), Robbins, P.D. (Paul D), Roberts, D.D. (David D), Rodrigues, S.C. (Silvia C), Rohde, E. (Eva), Rome, S. (Sophie), Rouschop, K.M.A. (Kasper MA), Rughetti, A. (Aurelia), Russell, A.E. (Ashley E), Saá, P. (Paula), Sahoo, S. (Susmita), Salas-Huenuleo, E. (Edison), Sánchez, C. (Catherine), Saugstad, J.A. (Julie A), Saul, M.J. (Meike J), Schiffelers, R.M. (Raymond), Schneider, R. (Raphael), Schøyen, T.H. (Tine Hiorth), Scott, A. (Aaron), Shahaj, E. (Eriomina), Sharma, S. (Shivani), Shatnyeva, O. (Olga), Shekari, F. (Faezeh), Shelke, G.V. (Ganesh Vilas), Shetty, A.K. (Ashok K), Shiba, K. (Kiyotaka), Siljander, P. (Pia), Silva, A.M. (Andreia M), Skowronek, A. (Agata), Snyder, O.L. (Orman L), Soares, R.P. (Rodrigo Pedro), Sódar, B.W. (Barbara W), Soekmadji, C. (Carolina), Sotillo, J. (Javier), Stahl, P.D. (Philip D), Stoorvogel, W. (Willem), Stott, S.L. (Shannon L), Strasser, E.F. (Erwin F), Swift, S. (Simon), Tahara, H. (Hidetoshi), Tewari, M. (Muneesh), Timms, K. (Kate), Tiwari, S. (Swasti), Tixeira, R. (Rochelle), Tkach, M. (Mercedes), Toh, W.S. (Wei Seong), Tomasini, R. (Richard), Torrecilhas, A.C. (Ana Claudia), Tosar, J.P. (Juan Pablo), Toxavidis, V. (Vasilis), Urbanelli, L. (Lorena), Vader, P. (Pieter), Balkom, B.W.M. (Bas) van, van der Grein, S.G. (Susanne G), Van Deun, J. (Jan), van Herwijnen, M.J.C. (Martijn JC), Van Keuren-Jensen, K. (Kendall), van Niel, G. (Guillaume), Royen, M.E. (Martin), van Wijnen, A.J. (Andre J), Vasconcelos, M.H. (M Helena), Vechetti, I.J. (Ivan J), Veit, T.D. (Tiago D), Vella, L.J. (Laura J.), Velot, É. (Émilie), Verweij, F.J. (Frederik J), Vestad, B. (Beate), Viñas, J.L. (Jose L), Visnovitz, T. (Tamás), Vukman, K.V. (Krisztina V), Wahlgren, J. (Jessica), Watson, D.C. (Dionysios C), Wauben, M.H.M. (Marca), Weaver, A. (Alissa), Webber, J.P. (Jason P), Weber, V. (Viktoria), Wehman, A.M. (Ann M), Weiss, D.J. (Daniel J), Welsh, J.A. (Joshua A), Wendt, S. (Sebastian), Wheelock, A.M. (Asa M), Wiener, Z. (Zoltán), Witte, L. (Leonie), Wolfram, J. (Joy), Xagorari, A. (Angeliki), Xander, P. (Patricia), Xu, J. (Jing), Yan, X. (Xiaomei), Yáñez-Mó, M. (María), Yin, H. (Hang), Yuana, Y., Zappulli, V. (Valentina), Zarubova, J. (Jana), Žėkas, V. (Vytautas), Zhang, J.-Y. (Jian-ye), Zhao, Z. (Zezhou), Zheng, L. (Lei), Zheutlin, A.R. (Alexander R), Zickler, A.M. (Antje M), Zimmermann, P. (Pascale), Zivkovic, A.M. (Angela M), Zocco, D. (Davide), and Zuba-Surma, E.K. (Ewa K)
- Abstract
The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make the
- Published
- 2019
- Full Text
- View/download PDF
23. Exosomes from N-Myc amplified neuroblastoma cells induce migration and confer chemoresistance to non-N-Myc amplified cells: implications of intra-tumour heterogeneity
- Author
-
Fonseka, P, Liem, M, Ozcitti, C, Adda, CG, Ang, C-S, Mathivanan, S, Fonseka, P, Liem, M, Ozcitti, C, Adda, CG, Ang, C-S, and Mathivanan, S
- Abstract
Neuroblastoma accounts for 15% of childhood cancer mortality. Amplification of the oncogene N-Myc is a well-established poor prognostic marker for neuroblastoma. Whilst N-Myc amplification status strongly correlates with higher tumour aggression and resistance to treatment, the role of N-Myc in the aggressiveness of the disease is poorly understood. Exosomes are released by many cell types including cancer cells and are implicated as key mediators in cell-cell communication via the transfer of molecular cargo. Hence, characterising the exosomal protein components from N-Myc amplified and non-amplified neuroblastoma cells will improve our understanding on their role in the progression of neuroblastoma. In this study, a comparative proteomic analysis of exosomes isolated from cells with varying N-Myc amplification status was performed. Label-free quantitative proteomic profiling revealed 968 proteins that are differentially abundant in exosomes released by the neuroblastoma cells. Gene ontology-based analysis highlighted the enrichment of proteins involved in cell communication and signal transduction in N-Myc amplified exosomes. Treatment of SH-SY5Y cells with N-Myc amplified SK-N-BE2 cell-derived exosomes increased the migratory potential, colony forming abilities and conferred resistance to doxorubicin induced apoptosis. Incubation of exosomes from N-Myc knocked down SK-N-BE2 cells abolished the transfer of resistance to doxorubicin induced apoptosis. These findings suggest that exosomes could play a pivotal role in N-Myc-driven aggressive neuroblastoma and transfer of chemoresistance between cells. Abbreviations: RNA = ribonucleic acid; DNA = deoxyribonucleic acid; FCS = foetal calf serum; NTA = nanoparticle tracking analysis; LC-MS = liquid chromatography-mass spectrometry; KD = knockdown; LTQ = linear trap quadropole; TEM = transmission electron microscopy.
- Published
- 2019
24. Analysis of extracellular vesicles generated from monocytes under conditions of lytic cell death
- Author
-
Baxter, AA, Phan, TK, Hanssen, E, Liem, M, Hulett, MD, Mathivanan, S, Poon, IKH, Baxter, AA, Phan, TK, Hanssen, E, Liem, M, Hulett, MD, Mathivanan, S, and Poon, IKH
- Abstract
Extracellular vesicles (EVs) are an important class of membrane-bound structures that have been widely investigated for their roles in intercellular communication in the contexts of tumor progression, vascular function, immunity and regenerative medicine. Much of the current knowledge on the functions of EVs pertains to those derived from viable cells (e.g. exosomes and microvesicles) or apoptotic cells (e.g. apoptotic bodies) whilst the generation of EVs from dying cells under non-apoptotic conditions remains poorly characterized. Herein, the release of EVs from THP-1 monocytes under conditions of primary necrosis, secondary necrosis and pyroptosis, was investigated. A comprehensive analysis of THP-1-derived EVs revealed that cells undergoing lytic forms of cell death generated a high number of EVs compared with viable or apoptotic cells in vitro. Differential centrifugation via 16,000 g and 100,000 g revealed that dying THP-1 cells release both medium and small EVs, respectively, consistent with the known characteristics of microvesicles and/or exosomes. In addition, large EVs isolated via 2000 g centrifugation were also present in all samples. These findings suggest that lytic cell death under both sterile and non-sterile inflammatory conditions induces monocytes to generate EVs, which could potentially act as mediators of cell-to-cell communication.
- Published
- 2019
25. Immunoprofiling of Breast Cancer Antigens Using Antibodies Derived from Local Lymph Nodes
- Author
-
Young, AR, Duarte, JDG, Coulson, R, O'Brien, M, Deb, S, Lopata, A, Behren, A, Mathivanan, S, Lim, E, Meeusen, E, Young, AR, Duarte, JDG, Coulson, R, O'Brien, M, Deb, S, Lopata, A, Behren, A, Mathivanan, S, Lim, E, and Meeusen, E
- Abstract
Tumor antigens are responsible for initiating an immune response in cancer patients, and their identification may provide new biomarkers for cancer diagnosis and targets for immunotherapy. The general use of serum antibodies to identify tumor antigens has several drawbacks, including dilution, complex formation, and background reactivity. In this study, antibodies were generated from antibody-secreting cells (ASC) present in tumor-draining lymph nodes of 20 breast cancer patients (ASC-probes) and were used to screen breast cancer cell lines and protein microarrays. Half of the ASC-probes reacted strongly against extracts of the MCF-7 breast cancer cell line, but each with a distinct antigen recognition profile. Three of the positive ASC-probes reacted differentially with recombinant antigens on a microarray containing cancer-related proteins. The results of this study show that lymph node-derived ASC-probes provide a highly specific source of tumor-specific antibodies. Each breast cancer patient reacts with a different antibody profile which indicates that targeted immunotherapies may need to be personalized for individual patients. Focused microarrays in combination with ASC-probes may be useful in providing immune profiles and identifying tumor antigens of individual cancer patients.
- Published
- 2019
26. BCL-2 family protein BOK is a positive regulator of uridine metabolism in mammals
- Author
-
Srivastava, R, Cao, Z, Nedeva, C, Naim, S, Bachmann, D, Rabachini, T, Gangoda, L, Shahi, S, Glab, J, Menassa, J, Osellame, L, Nelson, T, Fernandez-Marrero, Y, Brown, F, Wei, A, Ke, F, O'Reilly, L, Doerflinger, M, Allison, C, Kueh, A, Ramsay, R, Smith, BJ, Mathivanan, S, Kaufmann, T, Puthalakath, H, Srivastava, R, Cao, Z, Nedeva, C, Naim, S, Bachmann, D, Rabachini, T, Gangoda, L, Shahi, S, Glab, J, Menassa, J, Osellame, L, Nelson, T, Fernandez-Marrero, Y, Brown, F, Wei, A, Ke, F, O'Reilly, L, Doerflinger, M, Allison, C, Kueh, A, Ramsay, R, Smith, BJ, Mathivanan, S, Kaufmann, T, and Puthalakath, H
- Abstract
BCL-2 family proteins regulate the mitochondrial apoptotic pathway. BOK, a multidomain BCL-2 family protein, is generally believed to be an adaptor protein similar to BAK and BAX, regulating the mitochondrial permeability transition during apoptosis. Here we report that BOK is a positive regulator of a key enzyme involved in uridine biosynthesis; namely, uridine monophosphate synthetase (UMPS). Our data suggest that BOK expression enhances UMPS activity, cell proliferation, and chemosensitivity. Genetic deletion of Bok results in chemoresistance to 5-fluorouracil (5-FU) in different cell lines and in mice. Conversely, cancer cells and primary tissues that acquire resistance to 5-FU down-regulate BOK expression. Furthermore, we also provide evidence for a role for BOK in nucleotide metabolism and cell cycle regulation. Our results have implications in developing BOK as a biomarker for 5-FU resistance and have the potential for the development of BOK-mimetics for sensitizing 5-FU-resistant cancers.
- Published
- 2019
27. Extracellular vesicles secreted by Saccharomyces cerevisiae are involved in cell wall remodelling
- Author
-
Zhao, K, Bleackley, M, Chisanga, D, Gangoda, L, Fonseka, P, Liem, M, Kalra, H, Al Saffar, H, Keerthikumar, S, Ang, C-S, Adda, CG, Jiang, L, Yap, K, Poon, IK, Lock, P, Bulone, V, Anderson, M, Mathivanan, S, Zhao, K, Bleackley, M, Chisanga, D, Gangoda, L, Fonseka, P, Liem, M, Kalra, H, Al Saffar, H, Keerthikumar, S, Ang, C-S, Adda, CG, Jiang, L, Yap, K, Poon, IK, Lock, P, Bulone, V, Anderson, M, and Mathivanan, S
- Abstract
Extracellular vesicles (EVs) are membranous vesicles that are released by cells. In this study, the role of the Endosomal Sorting Complex Required for Transport (ESCRT) machinery in the biogenesis of yeast EVs was examined. Knockout of components of the ESCRT machinery altered the morphology and size of EVs as well as decreased the abundance of EVs. In contrast, strains with deletions in cell wall biosynthesis genes, produced more EVs than wildtype. Proteomic analysis highlighted the depletion of ESCRT components and enrichment of cell wall remodelling enzymes, glucan synthase subunit Fks1 and chitin synthase Chs3, in yeast EVs. Interestingly, EVs containing Fks1 and Chs3 rescued the yeast cells from antifungal molecules. However, EVs from fks1∆ or chs3∆ or the vps23∆chs3∆ double knockout strain were unable to rescue the yeast cells as compared to vps23∆ EVs. Overall, we have identified a potential role for yeast EVs in cell wall remodelling.
- Published
- 2019
28. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines
- Author
-
Thery, C, Witwer, KW, Aikawa, E, Jose Alcaraz, M, Anderson, JD, Andriantsitohaina, R, Antoniou, A, Arab, T, Archer, F, Atkin-Smith, GK, Ayre, DC, Bach, J-M, Bachurski, D, Baharvand, H, Balaj, L, Baldacchino, S, Bauer, NN, Baxter, AA, Bebawy, M, Beckham, C, Zavec, AB, Benmoussa, A, Berardi, AC, Bergese, P, Bielska, E, Blenkiron, C, Bobis-Wozowicz, S, Boilard, E, Boireau, W, Bongiovanni, A, Borras, FE, Bosch, S, Boulanger, CM, Breakefield, X, Breglio, AM, Brennan, MA, Brigstock, DR, Brisson, A, Broekman, MLD, Bromberg, JF, Bryl-Gorecka, P, Buch, S, Buck, AH, Burger, D, Busatto, S, Buschmann, D, Bussolati, B, Buzas, E, Byrd, JB, Camussi, G, Carter, DRF, Caruso, S, Chamley, LW, Chang, Y-T, Chen, C, Chen, S, Cheng, L, Chin, AR, Clayton, A, Clerici, SP, Cocks, A, Cocucci, E, Coffey, RJ, Cordeiro-da-Silva, A, Couch, Y, Coumans, FAW, Coyle, B, Crescitelli, R, Criado, MF, D'Souza-Schorey, C, Das, S, Chaudhuri, AD, de Candia, P, De Santana Junior, EF, De Wever, O, del Portillo, HA, Demaret, T, Deville, S, Devitt, A, Dhondt, B, Di Vizio, D, Dieterich, LC, Dolo, V, Dominguez Rubio, AP, Dominici, M, Dourado, MR, Driedonks, TAP, Duarte, F, Duncan, HM, Eichenberger, RM, Ekstrom, K, Andaloussi, SEL, Elie-Caille, C, Erdbrugger, U, Falcon-Perez, JM, Fatima, F, Fish, JE, Flores-Bellver, M, Forsonits, A, Frelet-Barrand, A, Fricke, F, Fuhrmann, G, Gabrielsson, S, Gamez-Valero, A, Gardiner, C, Gaertner, K, Gaudin, R, Gho, YS, Giebel, B, Gilbert, C, Gimona, M, Giusti, I, Goberdhan, DC, Goergens, A, Gorski, SM, Greening, DW, Gross, JC, Gualerzi, A, Gupta, GN, Gustafson, D, Handberg, A, Haraszti, RA, Harrison, P, Hegyesi, H, Hendrix, A, Hill, AF, Hochberg, FH, Hoffmann, KF, Holder, B, Holthofer, H, Hosseinkhani, B, Hu, G, Huang, Y, Huber, V, Hunt, S, Ibrahim, AG-E, Ikezu, T, Inal, JM, Isin, M, Ivanova, A, Jackson, HK, Jacobsen, S, Jay, SM, Jayachandran, M, Jenster, G, Jiang, L, Johnson, SM, Jones, JC, Jong, A, Jovanovic-Talisman, T, Jung, S, Kalluri, R, Kano, S-I, Kaur, S, Kawamura, Y, Keller, ET, Khamari, D, Khomyakova, E, Khvorova, A, Kierulf, P, Kim, KP, Kislinger, T, Klingeborn, M, Klinke, DJ, Kornek, M, Kosanovic, MM, Kovacs, AF, Kraemer-Albers, E-M, Krasemann, S, Krause, M, Kurochkin, I, Kusuma, GD, Kuypers, S, Laitinen, S, Langevin, SM, Languino, LR, Lannigan, J, Lasser, C, Laurent, LC, Lavieu, G, Lazaro-Ibanez, E, Le Lay, S, Lee, M-S, Lee, YXF, Lemos, DS, Lenassi, M, Leszczynska, A, Li, ITS, Liao, K, Libregts, SF, Ligeti, E, Lim, R, Lim, SK, Line, A, Linnemannstoens, K, Llorente, A, Lombard, CA, Lorenowicz, MJ, Lorincz, AM, Lotvall, J, Lovett, J, Lowry, MC, Loyer, X, Lu, Q, Lukomska, B, Lunavat, TR, Maas, SLN, Malhi, H, Marcilla, A, Mariani, J, Mariscal, J, Martens-Uzunova, ES, Martin-Jaular, L, Martinez, MC, Martins, VR, Mathieu, M, Mathivanan, S, Maugeri, M, McGinnis, LK, McVey, MJ, Meckes, DG, Meehan, KL, Mertens, I, Minciacchi, VR, Moller, A, Jorgensen, MM, Morales-Kastresana, A, Morhayim, J, Mullier, F, Muraca, M, Musante, L, Mussack, V, Muth, DC, Myburgh, KH, Najrana, T, Nawaz, M, Nazarenko, I, Nejsum, P, Neri, C, Neri, T, Nieuwland, R, Nimrichter, L, Nolan, JP, Nolte-'t Hoen, ENM, Noren Hooten, N, O'Driscoll, L, O'Grady, T, O'Loghlen, A, Ochiya, T, Olivier, M, Ortiz, A, Ortiz, LA, Osteikoetxea, X, Ostegaard, O, Ostrowski, M, Park, J, Pegtel, DM, Peinado, H, Perut, F, Pfaffl, MW, Phinney, DG, Pieters, BCH, Pink, RC, Pisetsky, DS, von Strandmann, EP, Polakovicova, I, Poon, IKH, Powell, BH, Prada, I, Pulliam, L, Quesenberry, P, Radeghieri, A, Raffai, RL, Raimondo, S, Rak, J, Ramirez, M, Raposo, G, Rayyan, MS, Regev-Rudzki, N, Ricklefs, FL, Robbins, PD, Roberts, DD, Rodrigues, SC, Rohde, E, Rome, S, Rouschop, KMA, Rughetti, A, Russell, AE, Saa, P, Sahoo, S, Salas-Huenuleo, E, Sanchez, C, Saugstad, JA, Saul, MJ, Schiffelers, RM, Schneider, R, Schoyen, TH, Scott, A, Shahaj, E, Sharma, S, Shatnyeva, O, Shekari, F, Shelke, GV, Shetty, AK, Shiba, K, Siljander, PR-M, Silva, AM, Skowronek, A, Snyder, OL, Soares, RP, Sodar, BW, Soekmadji, C, Sotillo, J, Stahl, PD, Stoorvogel, W, Stott, SL, Strasser, EF, Swift, S, Tahara, H, Tewari, M, Timms, K, Tiwari, S, Tixeira, R, Tkach, M, Toh, WS, Tomasini, R, Torrecilhas, AC, Pablo Tosar, J, Toxavidis, V, Urbanelli, L, Vader, P, van Balkom, BWM, van der Grein, SG, Van Deun, J, van Herwijnen, MJC, Van Keuren-Jensen, K, van Niel, G, van Royen, ME, van Wijnen, AJ, Helena Vasconcelos, M, Vechetti, IJ, Veit, TD, Vella, LJ, Velot, E, Verweij, FJ, Vestad, B, Vinas, JL, Visnovitz, T, Vukman, KV, Wahlgren, J, Watson, DC, Wauben, MHM, Weaver, A, Webber, JP, Weber, V, Wehman, AM, Weiss, DJ, Welsh, JA, Wendt, S, Wheelock, AM, Wiener, Z, Witte, L, Wolfram, J, Xagorari, A, Xander, P, Xu, J, Yan, X, Yanez-Mo, M, Yin, H, Yuana, Y, Zappulli, V, Zarubova, J, Zekas, V, Zhang, J-Y, Zhao, Z, Zheng, L, Zheutlin, AR, Zickler, AM, Zimmermann, P, Zivkovic, AM, Zocco, D, Zuba-Surma, EK, Thery, C, Witwer, KW, Aikawa, E, Jose Alcaraz, M, Anderson, JD, Andriantsitohaina, R, Antoniou, A, Arab, T, Archer, F, Atkin-Smith, GK, Ayre, DC, Bach, J-M, Bachurski, D, Baharvand, H, Balaj, L, Baldacchino, S, Bauer, NN, Baxter, AA, Bebawy, M, Beckham, C, Zavec, AB, Benmoussa, A, Berardi, AC, Bergese, P, Bielska, E, Blenkiron, C, Bobis-Wozowicz, S, Boilard, E, Boireau, W, Bongiovanni, A, Borras, FE, Bosch, S, Boulanger, CM, Breakefield, X, Breglio, AM, Brennan, MA, Brigstock, DR, Brisson, A, Broekman, MLD, Bromberg, JF, Bryl-Gorecka, P, Buch, S, Buck, AH, Burger, D, Busatto, S, Buschmann, D, Bussolati, B, Buzas, E, Byrd, JB, Camussi, G, Carter, DRF, Caruso, S, Chamley, LW, Chang, Y-T, Chen, C, Chen, S, Cheng, L, Chin, AR, Clayton, A, Clerici, SP, Cocks, A, Cocucci, E, Coffey, RJ, Cordeiro-da-Silva, A, Couch, Y, Coumans, FAW, Coyle, B, Crescitelli, R, Criado, MF, D'Souza-Schorey, C, Das, S, Chaudhuri, AD, de Candia, P, De Santana Junior, EF, De Wever, O, del Portillo, HA, Demaret, T, Deville, S, Devitt, A, Dhondt, B, Di Vizio, D, Dieterich, LC, Dolo, V, Dominguez Rubio, AP, Dominici, M, Dourado, MR, Driedonks, TAP, Duarte, F, Duncan, HM, Eichenberger, RM, Ekstrom, K, Andaloussi, SEL, Elie-Caille, C, Erdbrugger, U, Falcon-Perez, JM, Fatima, F, Fish, JE, Flores-Bellver, M, Forsonits, A, Frelet-Barrand, A, Fricke, F, Fuhrmann, G, Gabrielsson, S, Gamez-Valero, A, Gardiner, C, Gaertner, K, Gaudin, R, Gho, YS, Giebel, B, Gilbert, C, Gimona, M, Giusti, I, Goberdhan, DC, Goergens, A, Gorski, SM, Greening, DW, Gross, JC, Gualerzi, A, Gupta, GN, Gustafson, D, Handberg, A, Haraszti, RA, Harrison, P, Hegyesi, H, Hendrix, A, Hill, AF, Hochberg, FH, Hoffmann, KF, Holder, B, Holthofer, H, Hosseinkhani, B, Hu, G, Huang, Y, Huber, V, Hunt, S, Ibrahim, AG-E, Ikezu, T, Inal, JM, Isin, M, Ivanova, A, Jackson, HK, Jacobsen, S, Jay, SM, Jayachandran, M, Jenster, G, Jiang, L, Johnson, SM, Jones, JC, Jong, A, Jovanovic-Talisman, T, Jung, S, Kalluri, R, Kano, S-I, Kaur, S, Kawamura, Y, Keller, ET, Khamari, D, Khomyakova, E, Khvorova, A, Kierulf, P, Kim, KP, Kislinger, T, Klingeborn, M, Klinke, DJ, Kornek, M, Kosanovic, MM, Kovacs, AF, Kraemer-Albers, E-M, Krasemann, S, Krause, M, Kurochkin, I, Kusuma, GD, Kuypers, S, Laitinen, S, Langevin, SM, Languino, LR, Lannigan, J, Lasser, C, Laurent, LC, Lavieu, G, Lazaro-Ibanez, E, Le Lay, S, Lee, M-S, Lee, YXF, Lemos, DS, Lenassi, M, Leszczynska, A, Li, ITS, Liao, K, Libregts, SF, Ligeti, E, Lim, R, Lim, SK, Line, A, Linnemannstoens, K, Llorente, A, Lombard, CA, Lorenowicz, MJ, Lorincz, AM, Lotvall, J, Lovett, J, Lowry, MC, Loyer, X, Lu, Q, Lukomska, B, Lunavat, TR, Maas, SLN, Malhi, H, Marcilla, A, Mariani, J, Mariscal, J, Martens-Uzunova, ES, Martin-Jaular, L, Martinez, MC, Martins, VR, Mathieu, M, Mathivanan, S, Maugeri, M, McGinnis, LK, McVey, MJ, Meckes, DG, Meehan, KL, Mertens, I, Minciacchi, VR, Moller, A, Jorgensen, MM, Morales-Kastresana, A, Morhayim, J, Mullier, F, Muraca, M, Musante, L, Mussack, V, Muth, DC, Myburgh, KH, Najrana, T, Nawaz, M, Nazarenko, I, Nejsum, P, Neri, C, Neri, T, Nieuwland, R, Nimrichter, L, Nolan, JP, Nolte-'t Hoen, ENM, Noren Hooten, N, O'Driscoll, L, O'Grady, T, O'Loghlen, A, Ochiya, T, Olivier, M, Ortiz, A, Ortiz, LA, Osteikoetxea, X, Ostegaard, O, Ostrowski, M, Park, J, Pegtel, DM, Peinado, H, Perut, F, Pfaffl, MW, Phinney, DG, Pieters, BCH, Pink, RC, Pisetsky, DS, von Strandmann, EP, Polakovicova, I, Poon, IKH, Powell, BH, Prada, I, Pulliam, L, Quesenberry, P, Radeghieri, A, Raffai, RL, Raimondo, S, Rak, J, Ramirez, M, Raposo, G, Rayyan, MS, Regev-Rudzki, N, Ricklefs, FL, Robbins, PD, Roberts, DD, Rodrigues, SC, Rohde, E, Rome, S, Rouschop, KMA, Rughetti, A, Russell, AE, Saa, P, Sahoo, S, Salas-Huenuleo, E, Sanchez, C, Saugstad, JA, Saul, MJ, Schiffelers, RM, Schneider, R, Schoyen, TH, Scott, A, Shahaj, E, Sharma, S, Shatnyeva, O, Shekari, F, Shelke, GV, Shetty, AK, Shiba, K, Siljander, PR-M, Silva, AM, Skowronek, A, Snyder, OL, Soares, RP, Sodar, BW, Soekmadji, C, Sotillo, J, Stahl, PD, Stoorvogel, W, Stott, SL, Strasser, EF, Swift, S, Tahara, H, Tewari, M, Timms, K, Tiwari, S, Tixeira, R, Tkach, M, Toh, WS, Tomasini, R, Torrecilhas, AC, Pablo Tosar, J, Toxavidis, V, Urbanelli, L, Vader, P, van Balkom, BWM, van der Grein, SG, Van Deun, J, van Herwijnen, MJC, Van Keuren-Jensen, K, van Niel, G, van Royen, ME, van Wijnen, AJ, Helena Vasconcelos, M, Vechetti, IJ, Veit, TD, Vella, LJ, Velot, E, Verweij, FJ, Vestad, B, Vinas, JL, Visnovitz, T, Vukman, KV, Wahlgren, J, Watson, DC, Wauben, MHM, Weaver, A, Webber, JP, Weber, V, Wehman, AM, Weiss, DJ, Welsh, JA, Wendt, S, Wheelock, AM, Wiener, Z, Witte, L, Wolfram, J, Xagorari, A, Xander, P, Xu, J, Yan, X, Yanez-Mo, M, Yin, H, Yuana, Y, Zappulli, V, Zarubova, J, Zekas, V, Zhang, J-Y, Zhao, Z, Zheng, L, Zheutlin, AR, Zickler, AM, Zimmermann, P, Zivkovic, AM, Zocco, D, and Zuba-Surma, EK
- Abstract
The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles ("MISEV") guidelines for the field in 2014. We now update these "MISEV2014" guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points.
- Published
- 2018
29. Arrestin-Domain Containing Protein 1 (Arrdc1) Regulates the Protein Cargo and Release of Extracellular Vesicles
- Author
-
Anand, S, Foot, N, Ang, C-S, Gembus, KM, Keerthikumar, S, Adda, CG, Mathivanan, S, Kumar, S, Anand, S, Foot, N, Ang, C-S, Gembus, KM, Keerthikumar, S, Adda, CG, Mathivanan, S, and Kumar, S
- Abstract
Extracellular vesicles (EVs) are lipid-bilayered vesicles that are released by multiple cell types and contain nucleic acids and proteins. Very little is known about how the cargo is packaged into EVs. Ubiquitination of proteins is a key posttranslational modification that regulates protein stability and trafficking to subcellular compartments including EVs. Recently, arrestin-domain containing protein 1 (Arrdc1), an adaptor for the Nedd4 family of ubiquitin ligases, has been implicated in the release of ectosomes, a subtype of EV that buds from the plasma membrane. However, it is currently unknown whether Arrdc1 can regulate the release of exosomes, a class of EVs that are derived endocytically. Furthermore, it is unclear whether Arrdc1 can regulate the sorting of protein cargo into the EVs. Exosomes and ectosomes are isolated from mouse embryonic fibroblasts isolated from wild type and Arrdc1-deficient (Arrdc1-/- ) mice. Nanoparticle tracking analysis-based EV quantitation shows that Arrdc1 regulates the release of both exosomes and ectosomes. Proteomic analysis highlights the change in protein cargo in EVs upon deletion of Arrdc1. Functional enrichment analysis reveals the enrichment of mitochondrial proteins in ectosomes, while proteins implicated in apoptotic cleavage of cell adhesion proteins and formation of cornified envelope are significantly depleted in exosomes upon knockout of Arrdc1.
- Published
- 2018
30. PO-066 Knockdown of cadherin 17 inactivates WNT signalling pathway and induces apoptosis in colorectal cancer cells
- Author
-
Atukorala, I., primary and Mathivanan, S., additional
- Published
- 2018
- Full Text
- View/download PDF
31. Phylogenetic Analysis using Protein Mass Spectrometry
- Author
-
Mathivanan, S, Keerthikumar, S, Ma, S, Downard, KM, Wong, JWH, Mathivanan, S, Keerthikumar, S, Ma, S, Downard, KM, and Wong, JWH
- Abstract
Through advances in molecular biology, comparative analysis of DNA sequences is currently the cornerstone in the study of molecular evolution and phylogenetics. Nevertheless, protein mass spectrometry offers some unique opportunities to enable phylogenetic analyses in organisms where DNA may be difficult or costly to obtain. To date, the methods of phylogenetic analysis using protein mass spectrometry can be classified into three categories, (1) de novo protein sequencing followed by classical phylogenetic reconstruction, (2) direct phylogenetic reconstruction using proteolytic peptide mass maps, and (3) mapping of mass spectral data onto classical phylogenetic trees. In this chapter, we provide a brief description of the three methods and the protocol for each method along with relevant tools and algorithms.
- Published
- 2017
32. A novel community driven software for functional enrichment analysis of extracellular vesicles data
- Author
-
Pathan, M, Keerthikumar, S, Chisanga, D, Alessandro, R, Ang, C-S, Askenase, P, Batagov, AO, Benito-Martin, A, Camussi, G, Clayton, A, Collino, F, Di Vizio, D, Falcon-Perez, J, Fonseca, P, Fonseka, P, Fontana, S, Gho, YS, Hendrix, A, Nolte-'t Hoen, E, Iraci, N, Kastaniegaard, K, Kislinger, T, Kowal, J, Kurochkin, IV, Leonardi, T, Liang, Y, Llorente, A, Lunavat, TR, Maji, S, Monteleone, F, Overbye, A, Panaretakis, T, Patel, T, Peinado, H, Pluchino, S, Principe, S, Ronquist, G, Royo, F, Sahoo, S, Spinelli, C, Stensballe, A, Thery, C, van Herwijnen, MJC, Wauben, M, Welton, JL, Zhao, K, Mathivanan, S, Pathan, M, Keerthikumar, S, Chisanga, D, Alessandro, R, Ang, C-S, Askenase, P, Batagov, AO, Benito-Martin, A, Camussi, G, Clayton, A, Collino, F, Di Vizio, D, Falcon-Perez, J, Fonseca, P, Fonseka, P, Fontana, S, Gho, YS, Hendrix, A, Nolte-'t Hoen, E, Iraci, N, Kastaniegaard, K, Kislinger, T, Kowal, J, Kurochkin, IV, Leonardi, T, Liang, Y, Llorente, A, Lunavat, TR, Maji, S, Monteleone, F, Overbye, A, Panaretakis, T, Patel, T, Peinado, H, Pluchino, S, Principe, S, Ronquist, G, Royo, F, Sahoo, S, Spinelli, C, Stensballe, A, Thery, C, van Herwijnen, MJC, Wauben, M, Welton, JL, Zhao, K, and Mathivanan, S
- Abstract
Bioinformatics tools are imperative for the in depth analysis of heterogeneous high-throughput data. Most of the software tools are developed by specific laboratories or groups or companies wherein they are designed to perform the required analysis for the group. However, such software tools may fail to capture "what the community needs in a tool". Here, we describe a novel community-driven approach to build a comprehensive functional enrichment analysis tool. Using the existing FunRich tool as a template, we invited researchers to request additional features and/or changes. Remarkably, with the enthusiastic participation of the community, we were able to implement 90% of the requested features. FunRich enables plugin for extracellular vesicles wherein users can download and analyse data from Vesiclepedia database. By involving researchers early through community needs software development, we believe that comprehensive analysis tools can be developed in various scientific disciplines.
- Published
- 2017
33. Proteomic Profiling of Exosomes Secreted by Breast Cancer Cells with Varying Metastatic Potential
- Author
-
Gangoda, L, Liem, M, Ang, C-S, Keerthikumar, S, Adda, CG, Parker, BS, Mathivanan, S, Gangoda, L, Liem, M, Ang, C-S, Keerthikumar, S, Adda, CG, Parker, BS, and Mathivanan, S
- Abstract
Cancer cells actively release extracellular vesicles, including exosomes, into the surrounding microenvironment. Exosomes play pleiotropic roles in cancer progression and metastasis, including invasion, angiogenesis, and immune modulation. However, the proteome profile of exosomes isolated from cells with different metastatic potential and the role of these exosomes in driving metastasis remains unclear. Here, we conduct a comparative proteomic analysis of exosomes isolated from several genetically related mouse breast tumor lines with different metastatic propensity. The amount of exosomes produced and the extent of cancer-associated protein cargo vary significantly between nonmetastatic and metastatic cell-derived exosomes. Metastatic cell-derived exosomes contain proteins that promote migration, proliferation, invasion, and angiogenesis while the nonmetastatic cell-derived exosomes contain proteins involved in cell-cell/cell-matrix adhesion and polarity maintenance. The metastatic exosomes contain a distinct set of membrane proteins including Ceruloplasmin and Metadherin which could presumably aid in targeting the primary cancer cells to specific metastatic sites. Hence, it can be concluded that the exosomes contain different protein cargo based on the host cells metastatic properties and can facilitate in the dissemination of the primary tumors to distant sites.
- Published
- 2017
34. Updating the MISEV minimal requirements for extracellular vesicle studies: building bridges to reproducibility
- Author
-
Witwer, KW, Soekmadji, C, Hill, AF, Wauben, MH, Buzas, EI, Di Vizio, D, Falcon-Perez, JM, Gardiner, C, Hochberg, F, Kurochkin, IV, Lotvall, J, Mathivanan, S, Nieuwland, R, Sahoo, S, Tahara, H, Torrecilhas, AC, Weaver, AM, Yin, H, Zheng, L, Gho, YS, Quesenberry, P, Thery, C, Witwer, KW, Soekmadji, C, Hill, AF, Wauben, MH, Buzas, EI, Di Vizio, D, Falcon-Perez, JM, Gardiner, C, Hochberg, F, Kurochkin, IV, Lotvall, J, Mathivanan, S, Nieuwland, R, Sahoo, S, Tahara, H, Torrecilhas, AC, Weaver, AM, Yin, H, Zheng, L, Gho, YS, Quesenberry, P, and Thery, C
- Published
- 2017
35. Bovine milk-derived exosomes from colostrum are enriched with proteins implicated in immune response and growth
- Author
-
Samuel, M, Chisanga, D, Liem, M, Keerthikumar, S, Anand, S, Ang, C-S, Adda, CG, Versteegen, E, Jois, M, Mathivanan, S, Samuel, M, Chisanga, D, Liem, M, Keerthikumar, S, Anand, S, Ang, C-S, Adda, CG, Versteegen, E, Jois, M, and Mathivanan, S
- Abstract
Exosomes are extracellular vesicles secreted by multiple cell types into the extracellular space. They contain cell-state specific cargos which often reflects the (patho)physiological condition of the cells/organism. Milk contains high amounts of exosomes and it is unclear whether their cargo is altered based on the lactation stage of the organism. Here, we isolated exosomes from bovine milk that were obtained at various stages of lactation and examined the content by quantitative proteomics. Exosomes were isolated by OptiPrep density gradient centrifugation from milk obtained from cow after 24, 48 and 72 h post calving. As control, exosomes were also isolated from cows during mid-lactation period which has been referred to as mature milk (MM). Biochemical and biophysical characterization of exosomes revealed the high abundance of exosomes in colostrum and MM samples. Quantitative proteomics analysis highlighted the change in the proteomic cargo of exosomes based on the lactation state of the cow. Functional enrichment analysis revealed that exosomes from colostrum are significantly enriched with proteins that can potentially regulate the immune response and growth. This study highlights the importance of exosomes in colostrum and hence opens up new avenues to exploit these vesicles in the regulation of the immune response and growth.
- Published
- 2017
36. Insulin Mediated Activation of PI3K/Akt Signalling Pathway Modifies the Proteomic Cargo of Extracellular Vesicles
- Author
-
Liem, M, Ang, C-S, Mathivanan, S, Liem, M, Ang, C-S, and Mathivanan, S
- Abstract
Epidemiological studies suggest that diabetes and obesity increases the risk of colorectal cancer (CRC) and lowers the patient survival rate. An important attribute in diabetes and obesity is the presence of high levels of growth factors including insulin in blood which can activate the PI3K/Akt signalling pathway. Dysregulation of PI3K/Akt signalling pathway leads to sustained proliferative signals thereby allowing the cells susceptible to cancer. Extracellular vesicles (EVs), secreted nanovesicles of endocytic origin, are implicated in mediating the transfer of oncogenic cargo in the tumour microenvironment. In this study, CRC cells were treated with insulin to activate PI3K/Akt signaling pathway. Insulin treatment significantly increased the number of EVs secreted by CRC cells. Furthermore, pAkt was exclusively packaged in EVs secreted by PI3K/Akt activated cells. Quantitative proteomics analysis confirmed that the protein cargo of EVs are modified upon activation of PI3K/Akt signaling pathway. Bioinformatics analysis highlighted the enrichment of proteins implicated in cell proliferation in EVs secreted by PI3K/Akt activated cells. Furthermore, incubation of EVs secreted by PI3K/Akt activated cells induced proliferation in recipient CRC cells. These findings suggest that EVs can amplify the signal provided by the growth factors in the tumor microenvironment and hence aid in cancer progression.
- Published
- 2017
37. The impact of psychological capital on job performance: a study among Indian scientists
- Author
-
Muthukumar, K., primary, Riasudeen, S., additional, and Mathivanan, S., additional
- Published
- 2017
- Full Text
- View/download PDF
38. Colorectal cancer atlas: An integrative resource for genomic and proteomic annotations from colorectal cancer cell lines and tissues
- Author
-
Chisanga, D, Keerthikumar, S, Pathan, M, Ariyaratne, D, Kalra, H, Boukouris, S, Mathew, NA, Al Saffar, H, Gangoda, L, Ang, C-S, Sieber, OM, Mariadason, JM, Dasgupta, R, Chilamkurti, N, Mathivanan, S, Chisanga, D, Keerthikumar, S, Pathan, M, Ariyaratne, D, Kalra, H, Boukouris, S, Mathew, NA, Al Saffar, H, Gangoda, L, Ang, C-S, Sieber, OM, Mariadason, JM, Dasgupta, R, Chilamkurti, N, and Mathivanan, S
- Abstract
In order to advance our understanding of colorectal cancer (CRC) development and progression, biomedical researchers have generated large amounts of OMICS data from CRC patient samples and representative cell lines. However, these data are deposited in various repositories or in supplementary tables. A database which integrates data from heterogeneous resources and enables analysis of the multidimensional data sets, specifically pertaining to CRC is currently lacking. Here, we have developed Colorectal Cancer Atlas (http://www.colonatlas.org), an integrated web-based resource that catalogues the genomic and proteomic annotations identified in CRC tissues and cell lines. The data catalogued to-date include sequence variations as well as quantitative and non-quantitative protein expression data. The database enables the analysis of these data in the context of signaling pathways, protein-protein interactions, Gene Ontology terms, protein domains and post-translational modifications. Currently, Colorectal Cancer Atlas contains data for >13 711 CRC tissues, >165 CRC cell lines, 62 251 protein identifications, >8.3 million MS/MS spectra, >18 410 genes with sequence variations (404 278 entries) and 351 pathways with sequence variants. Overall, Colorectal Cancer Atlas has been designed to serve as a central resource to facilitate research in CRC.
- Published
- 2016
39. Tim29 is a novel subunit of the human TIM22 translocase and is involved in complex assembly and stability
- Author
-
Kang, Y, Baker, MJ, Liem, M, Louber, J, McKenzie, M, Atukorala, I, Ang, C-S, Keerthikumar, S, Mathivanan, S, Stojanovski, D, Kang, Y, Baker, MJ, Liem, M, Louber, J, McKenzie, M, Atukorala, I, Ang, C-S, Keerthikumar, S, Mathivanan, S, and Stojanovski, D
- Abstract
The TIM22 complex mediates the import of hydrophobic carrier proteins into the mitochondrial inner membrane. While the TIM22 machinery has been well characterised in yeast, the human complex remains poorly characterised. Here, we identify Tim29 (C19orf52) as a novel, metazoan-specific subunit of the human TIM22 complex. The protein is integrated into the mitochondrial inner membrane with it's C-terminus exposed to the intermembrane space. Tim29 is required for the stability of the TIM22 complex and functions in the assembly of hTim22. Furthermore, Tim29 contacts the Translocase of the Outer Mitochondrial Membrane, TOM complex, enabling a mechanism for transport of hydrophobic carrier substrates across the aqueous intermembrane space. Identification of Tim29 highlights the significance of analysing mitochondrial import systems across phylogenetic boundaries, which can reveal novel components and mechanisms in higher organisms.
- Published
- 2016
40. Extending gene ontology in the context of extracellular RNA and vesicle communication
- Author
-
Cheung, K-H, Keerthikumar, S, Roncaglia, P, Subramanian, SL, Roth, ME, Samuel, M, Anand, S, Gangoda, L, Gould, S, Alexander, R, Galas, D, Gerstein, MB, Hill, AF, Kitchen, RR, Lotvall, J, Patel, T, Procaccini, DC, Quesenberry, P, Rozowsky, J, Raffai, RL, Shypitsyna, A, Su, AI, Thery, C, Vickers, K, Wauben, MHM, Mathivanan, S, Milosavljevic, A, Laurent, LC, Cheung, K-H, Keerthikumar, S, Roncaglia, P, Subramanian, SL, Roth, ME, Samuel, M, Anand, S, Gangoda, L, Gould, S, Alexander, R, Galas, D, Gerstein, MB, Hill, AF, Kitchen, RR, Lotvall, J, Patel, T, Procaccini, DC, Quesenberry, P, Rozowsky, J, Raffai, RL, Shypitsyna, A, Su, AI, Thery, C, Vickers, K, Wauben, MHM, Mathivanan, S, Milosavljevic, A, and Laurent, LC
- Abstract
BACKGROUND: To address the lack of standard terminology to describe extracellular RNA (exRNA) data/metadata, we have launched an inter-community effort to extend the Gene Ontology (GO) with subcellular structure concepts relevant to the exRNA domain. By extending GO in this manner, the exRNA data/metadata will be more easily annotated and queried because it will be based on a shared set of terms and relationships relevant to extracellular research. METHODS: By following a consensus-building process, we have worked with several academic societies/consortia, including ERCC, ISEV, and ASEMV, to identify and approve a set of exRNA and extracellular vesicle-related terms and relationships that have been incorporated into GO. In addition, we have initiated an ongoing process of extractions of gene product annotations associated with these terms from Vesiclepedia and ExoCarta, conversion of the extracted annotations to Gene Association File (GAF) format for batch submission to GO, and curation of the submitted annotations by the GO Consortium. As a use case, we have incorporated some of the GO terms into annotations of samples from the exRNA Atlas and implemented a faceted search interface based on such annotations. RESULTS: We have added 7 new terms and modified 9 existing terms (along with their synonyms and relationships) to GO. Additionally, 18,695 unique coding gene products (mRNAs and proteins) and 963 unique non-coding gene products (ncRNAs) which are associated with the terms: "extracellular vesicle", "extracellular exosome", "apoptotic body", and "microvesicle" were extracted from ExoCarta and Vesiclepedia. These annotations are currently being processed for submission to GO. CONCLUSIONS: As an inter-community effort, we have made a substantial update to GO in the exRNA context. We have also demonstrated the utility of some of the new GO terms for sample annotation and metadata search.
- Published
- 2016
41. Extracellular peptidases of the cereal pathogen Fusarium graminearum
- Author
-
Lowe, RGT, McCorkelle, O, Bleackley, M, Collins, C, Faou, P, Mathivanan, S, Anderson, M, Lowe, RGT, McCorkelle, O, Bleackley, M, Collins, C, Faou, P, Mathivanan, S, and Anderson, M
- Abstract
The plant pathogenic fungus Fusarium graminearum (Fgr) creates economic and health risks in cereals agriculture. Fgr causes head blight (or scab) of wheat and stalk rot of corn, reducing yield, degrading grain quality, and polluting downstream food products with mycotoxins. Fungal plant pathogens must secrete proteases to access nutrition and to breakdown the structural protein component of the plant cell wall. Research into the proteolytic activity of Fgr is hindered by the complex nature of the suite of proteases secreted. We used a systems biology approach comprising genome analysis, transcriptomics and label-free quantitative proteomics to characterize the peptidases deployed by Fgr during growth. A combined analysis of published microarray transcriptome datasets revealed seven transcriptional groupings of peptidases based on in vitro growth, in planta growth, and sporulation behaviors. A high resolution mass spectrometry-based proteomics analysis defined the extracellular proteases secreted by F. graminearum. A meta-classification based on sequence characters and transcriptional/translational activity in planta and in vitro provides a platform to develop control strategies that target Fgr peptidases.
- Published
- 2015
42. Inhibition of cathepsin proteases attenuates migration and sensitizes aggressive N-Myc amplified human neuroblastoma cells to doxorubicin
- Author
-
Gangoda, L, Keerthikumar, S, Fonseka, P, Edgington, LE, Ang, C-S, Ozcitti, C, Bogyo, M, Parker, BS, Mathivanan, S, Gangoda, L, Keerthikumar, S, Fonseka, P, Edgington, LE, Ang, C-S, Ozcitti, C, Bogyo, M, Parker, BS, and Mathivanan, S
- Abstract
Neuroblastoma arises from the sympathetic nervous system and accounts for 15% of childhood cancer mortality. Amplification of the oncogene N-Myc is reported to occur in more than 20% of patients. While N-Myc amplification status strongly correlates with higher tumour aggression and resistance to treatment, the role of N-Myc in the aggressive progression of the disease is poorly understood. N-Myc being a transcription factor can modulate the secretion of key proteins that may play a pivotal role in tumorigenesis. Characterising the soluble secreted proteins or secretome will aid in understanding their role in the tumour microenvironment, such as promoting cancer cell invasion and resistance to treatment. The aim of this study is to characterise the secretome of human malignant neuroblastoma SK-N-BE2 (N-Myc amplified, more aggressive) and SH-SY5Y (N-Myc non-amplified, less aggressive) cells. Conditioned media from SK-N-BE2 and SH-SY5Y cell lines were subjected to proteomics analysis. We report a catalogue of 894 proteins identified in the secretome isolated from the two neuroblastoma cell lines, SK-N-BE2 and SH-SY5Y. Functional enrichment analysis using FunRich software identified enhanced secretion of proteins implicated in cysteine peptidase activity in the aggressive N-Myc amplified SK-N-BE2 secretome compared to the less tumorigenic SH-SY5Y cells. Protein-protein interaction-based network analysis highlighted the enrichment of cathepsin and epithelial-to-mesenchymal transition sub-networks. For the first time, inhibition of cathepsins by inhibitors sensitized the resistant SK-N-BE2 cells to doxorubicin as well as decreased its migratory potential. The dataset of secretome proteins of N-Myc amplified (more aggressive) and non-amplified (less aggressive) neuroblastoma cells represent the first inventory of neuroblastoma secretome. The study also highlights the prominent role of cathepsins in the N-Myc amplified neuroblastoma pathogenesis. As N-Myc amplification corr
- Published
- 2015
43. Proteogenomic analysis reveals exosomes are more oncogenic than ectosomes
- Author
-
Keerthikumar, S, Gangoda, L, Liem, M, Fonseka, P, Atukorala, I, Ozcitti, C, Mechler, A, Adda, CG, Ang, C-S, Mathivanan, S, Keerthikumar, S, Gangoda, L, Liem, M, Fonseka, P, Atukorala, I, Ozcitti, C, Mechler, A, Adda, CG, Ang, C-S, and Mathivanan, S
- Abstract
Extracellular vesicles (EVs) include the exosomes (30-100 nm) that are produced through the endocytic pathway via the multivesicular bodies and the ectosomes (100-1000 nm) that are released through the budding of the plasma membrane. Despite the differences in the mode of biogenesis and size, reliable markers that can distinguish between exosomes and ectosomes are non-existent. Moreover, the precise functional differences between exosomes and ectosomes remains poorly characterised. Here, using label-free quantitative proteomics, we highlight proteins that could be exploited as markers to discriminate between exosomes and ectosomes. For the first time, a global proteogenomics analysis unveiled the secretion of mutant proteins that are implicated in cancer progression through tumor-derived EVs. Follow up integrated bioinformatics analysis highlighted the enrichment of oncogenic cargo in exosomes and ectosomes. Interestingly, exosomes induced significant cell proliferation and migration in recipient cells compared to ectosomes confirming the oncogenic nature of exosomes. These findings ascertain that cancer cells facilitate oncogenesis by the secretion of mutant and oncoproteins into the tumor microenvironment via exosomes and ectosomes. The integrative proteogenomics approach utilized in this study has the potential to identify disease biomarker candidates which can be later assayed in liquid biopsies obtained from cancer patients.
- Published
- 2015
44. Extracellular vesicles including exosomes in cross kingdom regulation: a viewpoint from plant-fungal interactions
- Author
-
Samuel, M, Bleackley, M, Anderson, M, Mathivanan, S, Samuel, M, Bleackley, M, Anderson, M, and Mathivanan, S
- Published
- 2015
45. Vesiclepedia:A Compendium for Extracellular Vesicles with Continuous Community Annotation
- Author
-
Kalra, H., Simpson, R.J., Ji, H., Aikawa, E., Altevogt, P., Askenase, P., Bond, V.C., Borras, F.E., Breakefield, X., Budnik, V., Buzas, E., Camussi, G., Clayton, A., Cocucci, E., Falcon-Perez, J.M., Gabrielsson, S., Gho, Y.S., Gupta, D., Harsha, H.C., Hendrix, A., Hill, A.F., Inal, J.M., Jenster, G., Kramer-Albers, E.M., Lim, S.K., Llorente, A., Lotvall, J., Marcilla, A., Mincheva-Nilsson, L., Nazarenko, I., Nieuwland, R., Nolte-'t Hoen, E.N.M., Pandey, A, Patel, T., Piper, M.G., Pluchino, S., Prasad, T.S., Rajendran, L., Raposo, G., Record, M., Reid, G.E., Sanchez-Madrid, F., Schiffelers, R.M., Siljander, P., Stensballe, A., Stoorvogel, W., Taylor, D., Thery, C., Valadi, H., van Balkom, B.W.M., Vazquez, J., Vidal, M., Wauben, M.H.M., Yanez-Mo, M., Zoeller, M., Mathivanan, S., Strategic Infection Biology, Dep Biochemie en Celbiologie, Sub Atmospheric physics and chemistry, dB&C I&I, LS Celbiologie-Algemeen, Urology, Medical Microbiology & Infectious Diseases, University of Zurich, Mathivanan, Suresh, Strategic Infection Biology, Dep Biochemie en Celbiologie, Sub Atmospheric physics and chemistry, dB&C I&I, LS Celbiologie-Algemeen, ACS - Amsterdam Cardiovascular Sciences, CCA -Cancer Center Amsterdam, and Laboratory Specialized Diagnostics & Research
- Subjects
human proteinpedia ,exosomal proteins ,delivery-system ,breast-milk ,url decay ,cells ,microvesicles ,update ,rna ,biogenesis ,QH301-705.5 ,Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy) ,610 Medicine & health ,Apoptosis ,Computational biology ,1100 General Agricultural and Biological Sciences ,Biology ,Vesiclepedia ,Exosomes ,Exosome ,General Biochemistry, Genetics and Molecular Biology ,03 medical and health sciences ,Annotation ,0302 clinical medicine ,SDG 3 - Good Health and Well-being ,1300 General Biochemistry, Genetics and Molecular Biology ,2400 General Immunology and Microbiology ,Community Page ,ExoCarta ,Biology (General) ,Medicinsk bioteknologi (med inriktning mot cellbiologi (inklusive stamcellsbiologi), molekylärbiologi, mikrobiologi, biokemi eller biofarmaci) ,Biología y Biomedicina ,030304 developmental biology ,Uncategorized ,0303 health sciences ,General Immunology and Microbiology ,General Neuroscience ,Microvesicle ,Research ,2800 General Neuroscience ,Extracellular vesicle ,11359 Institute for Regenerative Medicine (IREM) ,Extracellular vesicles ,Microvesicles ,Compendium ,Cell biology ,Data sharing ,Databases as Topic ,030220 oncology & carcinogenesis ,General Agricultural and Biological Sciences ,Extracellular Space - Abstract
Vesiclepedia is a community-annotated compendium of molecular data on extracellular vesicles., Extracellular vesicles (EVs) are membraneous vesicles released by a variety of cells into their microenvironment. Recent studies have elucidated the role of EVs in intercellular communication, pathogenesis, drug, vaccine and gene-vector delivery, and as possible reservoirs of biomarkers. These findings have generated immense interest, along with an exponential increase in molecular data pertaining to EVs. Here, we describe Vesiclepedia, a manually curated compendium of molecular data (lipid, RNA, and protein) identified in different classes of EVs from more than 300 independent studies published over the past several years. Even though databases are indispensable resources for the scientific community, recent studies have shown that more than 50% of the databases are not regularly updated. In addition, more than 20% of the database links are inactive. To prevent such database and link decay, we have initiated a continuous community annotation project with the active involvement of EV researchers. The EV research community can set a gold standard in data sharing with Vesiclepedia, which could evolve as a primary resource for the field.
- Published
- 2012
46. Effect of vermicompost on the growth and nutrient status in groundnut (Arachishypogaea. L)
- Author
-
Mathivanan, S., Kalaikandhan, R., Sundramoorthy, P., and Aparajita, Banerjee
- Subjects
[SDV] Life Sciences [q-bio] - Published
- 2011
47. Crystal structure of Salmonella typhimurium propionate kinase A88G mutant, in complex with AMPPNP and propionate
- Author
-
Murthy, A.M., primary, Mathivanan, S., additional, Chittori, S., additional, Savithri, H.S., additional, and Murthy, M.R.N., additional
- Published
- 2015
- Full Text
- View/download PDF
48. Crystal structure of Salmonella typhimurium propionate kinase in complex with AMPPNP and propionate
- Author
-
Murthy, A.M.V., primary, Mathivanan, S., additional, Chittori, S., additional, Savithri, H.S., additional, and Murthy, M.R.N., additional
- Published
- 2015
- Full Text
- View/download PDF
49. Crystal structure of Salmonella typhimurium propionate kinase A88V mutant, in complex with AMPPNP and propionate
- Author
-
Murthy, A.M.V., primary, Mathivanan, S., additional, Chittori, S., additional, Savithri, H.S., additional, and Murthy, M.R.N., additional
- Published
- 2015
- Full Text
- View/download PDF
50. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles.
- Author
-
Lötvall, J, Hill, AF, Hochberg, F, Buzás, EI, Di Vizio, D, Gardiner, C, Gho, YS, Kurochkin, IV, Mathivanan, S, Quesenberry, P, Sahoo, S, Tahara, H, Wauben, MH, Witwer, KW, Théry, C, Lötvall, J, Hill, AF, Hochberg, F, Buzás, EI, Di Vizio, D, Gardiner, C, Gho, YS, Kurochkin, IV, Mathivanan, S, Quesenberry, P, Sahoo, S, Tahara, H, Wauben, MH, Witwer, KW, and Théry, C
- Abstract
Secreted membrane-enclosed vesicles, collectively called extracellular vesicles (EVs), which include exosomes, ectosomes, microvesicles, microparticles, apoptotic bodies and other EV subsets, encompass a very rapidly growing scientific field in biology and medicine. Importantly, it is currently technically challenging to obtain a totally pure EV fraction free from non-vesicular components for functional studies, and therefore there is a need to establish guidelines for analyses of these vesicles and reporting of scientific studies on EV biology. Here, the International Society for Extracellular Vesicles (ISEV) provides researchers with a minimal set of biochemical, biophysical and functional standards that should be used to attribute any specific biological cargo or functions to EVs.
- Published
- 2014
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.