1. Reciprocal Learning of Intent Inferral with Augmented Visual Feedback for Stroke
- Author
-
Xu, Jingxi, Chen, Ava, Winterbottom, Lauren, Palacios, Joaquin, Chivukula, Preethika, Nilsen, Dawn M., Stein, Joel, and Ciocarlie, Matei
- Subjects
Computer Science - Robotics ,Computer Science - Artificial Intelligence ,Computer Science - Human-Computer Interaction ,Computer Science - Machine Learning - Abstract
Intent inferral, the process by which a robotic device predicts a user's intent from biosignals, offers an effective and intuitive way to control wearable robots. Classical intent inferral methods treat biosignal inputs as unidirectional ground truths for training machine learning models, where the internal state of the model is not directly observable by the user. In this work, we propose reciprocal learning, a bidirectional paradigm that facilitates human adaptation to an intent inferral classifier. Our paradigm consists of iterative, interwoven stages that alternate between updating machine learning models and guiding human adaptation with the use of augmented visual feedback. We demonstrate this paradigm in the context of controlling a robotic hand orthosis for stroke, where the device predicts open, close, and relax intents from electromyographic (EMG) signals and provides appropriate assistance. We use LED progress-bar displays to communicate to the user the predicted probabilities for open and close intents by the classifier. Our experiments with stroke subjects show reciprocal learning improving performance in a subset of subjects (two out of five) without negatively impacting performance on the others. We hypothesize that, during reciprocal learning, subjects can learn to reproduce more distinguishable muscle activation patterns and generate more separable biosignals.
- Published
- 2024