1. Drivers of divergent trends in tropospheric ozone hotspots in Spain, 2008–2019
- Author
-
Universitat Politècnica de Catalunya. Doctorat en Recursos Naturals i Medi Ambient, Barcelona Supercomputing Center, Massagué Obradors, Jordi, Escudero Tellechea, Miguel, Alastuey Urós, Andrés, Monfort Gimeno, Eliseo, Gangoiti Bengoa, Gotzon, Petetin, Hervé, Pérez García-Pando, Carlos, Querol Carceller, Xavier, Universitat Politècnica de Catalunya. Doctorat en Recursos Naturals i Medi Ambient, Barcelona Supercomputing Center, Massagué Obradors, Jordi, Escudero Tellechea, Miguel, Alastuey Urós, Andrés, Monfort Gimeno, Eliseo, Gangoiti Bengoa, Gotzon, Petetin, Hervé, Pérez García-Pando, Carlos, and Querol Carceller, Xavier
- Abstract
This study aimed to investigate the causes of contrasting ozone (O3) trends in Spanish O3 hotspots between 2008 and 2019, as documented in recent studies. The analysis involved data on key O3 precursors, such as nitrogen oxides (NOx) and volatile organic compounds (VOCs), among other species, along with meteorological parameters associated with O3. The dataset comprised ground-level and satellite observations, emissions inventory estimates, and meteorological reanalysis. The results suggest that the increasing O3 trends observed in the Madrid area were mostly due to major decreases in NOx emissions from the road transport sector in this urban VOC-limited environment, as well as variations in meteorological parameters conducive to O3 production. Conversely, the decreasing O3 trends in the Sevilla area likely resulted from a decrease in NOx emissions in a peculiar urban NOx-limited regime caused by substantial VOC contributions from a large upwind petrochemical area. Unchanged O3 concentrations in other NOx-limited hotspots may be attributed to the stagnation of emissions from sectors other than road transport, coupled with increased emissions from certain sectors, likely due to the economic recovery from the 2008 financial crisis, and the absence of meteorological variations favorable to O3 production. In this study, the parameters influencing O3 varied distinctively across the different hotspots, emphasizing the significance of adopting an independent regional/local approach for O3 mitigation planning. Overall, our findings provide valuable insights into the causes of contrasting O3 trends in different regions of Spain, which can be used as a basis for guiding future measures to mitigate O3 levels., Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. The present work was supported by the Spanish Ministry of Ecological Transition and Demographic Challenge (Spanish National Ozone Plan); European Union’s Horizon 2020 research and innovation program under grant agreement; the “Agencia Estatal de Investigación,” from the Spanish Ministry of Science and Innovation, and FEDER funds under the project CAIAC (PID2019-108990RB-I00); the Generalitat de Catalunya (AGAUR 2021 SGR 00447); and the Ministerio de Ciencia e Innovación through the MITIGATE project (grant no. PID2020-113840RA-I00 funded by MCIN/AEI/10.13039/501100011033). This work was also supported by the Autonomous Government of Valencia (GVA) through the Valencian Institute for Business Competitiveness (IVACE) by means of the project Gaia (IMAMCA/2022/1). Carlos Pérez García-Pando acknowledges the support of the AXA Research Fund. We would like to thank NASA and the QA4ECV project for providing satellite-based data and the Climate Data Store (CDS) from the Copernicus Program for the ERA5 meteorological data., Peer Reviewed, Postprint (published version)
- Published
- 2024