Summary: Reinforced concrete (RC) dual systems are composed of RC moment‐resisting frames (MRFs) and RC shear walls, where MRFs are barely designed to handle gravity loads. Investigations have demonstrated that shear walls exert negative effects on the upper part of MRFs. In this paper, the interaction of shear walls and MRFs is inspected using endurance time (ET) method. ET is a dynamic time history‐based pushover procedure in which structures are exposed to a set of predefined intensifying ET acceleration functions. In this method, seismic performance of the considered structure is assessed based on earthquake return periods; during which, required predefined seismic performance objectives are fulfilled. In this study, several buildings with RC dual systems were designed based on the conventional codes. Next, their nonlinear duplicates were generated for the application of the ET analysis. It was revealed that shear wall elements impose considerable rotational demands—exceeding the criteria established by ASCE41‐13—on the beams and columns, especially those located on the upper parts of the buildings. This paper puts forth and reviews certain methods to cushion the negative effects brought about by RC shear walls, along with a detailed discussion on their merits and demerits. [ABSTRACT FROM AUTHOR]