280 results on '"Masashi Hazumi"'
Search Results
2. Development of Superconducting Tunnel Junction detectors as a far-infrared photon-by-photon spectrometer for neutrino decay search.
- Author
-
Yuji Takeuchi, Shin-Hong Kim, Kenichi Takemasa, Kenji Kiuchi, Kazuki Nagata, Kota Kasahara, Takuya Okudaira, Tatsuya Ichimura, Masahiro Kanamaru, Kouya Moriuchi, Ren Senzaki, Shunsuke Yagi, Hirokazu Ikeda, Shuji Matsuura, Takehiko Wada, Takuo Yoshida, Shota Komura, Keisuke Orikasa, Ryuta Hirose, Yukihiro Kato, Masashi Hazumi, Yasuo Arai, Shigetomo Shiki, Masahiro Ukibe, Go Fujii, Tetsuya Adachi, Masataka Ohkubo, Erik Ramberg, Jonghee Yoo, Mark Kozlovsky, Paul Rubinov, Dmitri Sergatskov, Hirokazu Ishino, Atsuko Kibayashi, Satoru Mima, and Soo-Bong Kim
- Published
- 2015
- Full Text
- View/download PDF
3. The Simons Observatory: science goals andforecasts
- Author
-
Peter Ade, James Aguirre, Zeeshan Ahmed, Simone Aiola, Aamir Ali, David Alonso, Marcelo A. Alvarez, Kam Arnold, Peter Ashton, Jason Austermann, Humna Awan, Carlo Baccigalupi, Taylor Baildon, Darcy Barron, Nick Battaglia, Richard Battye, Eric Baxter, Andrew Bazarko, James A. Beall, Rachel Bean, Dominic Beck, Shawn Beckman, Benjamin Beringue, Federico Bianchini, Steven Boada, David Boettger, J. Richard Bond, Julian Borrill, Michael L. Brown, Sarah Marie Bruno, Sean Bryan, Erminia Calabrese, Victoria Calafut, Paolo Calisse, Julien Carron, Anthony Challinor, Grace Chesmore, Yuji Chinone, Jens Chluba, Hsiao-Mei Sherry Cho, Steve Choi, Gabriele Coppi, Nicholas F. Cothard, Kevin Coughlin, Devin Crichton, Kevin D. Crowley, Kevin T. Crowley, Ari Cukierman, John M. D'Ewart, Rolando Dünner, Tijmen de Haan, Mark Devlin, Simon Dicker, Joy Didier, Matt Dobbs, Bradley Dober, Cody J. Duell, Shannon Duff, Adri Duivenvoorden, Jo Dunkley, John Dusatko, Josquin Errard, Giulio Fabbian, Stephen Feeney, Simone Ferraro, Pedro Fluxà, Katherine Freese, Josef C. Frisch, Andrei Frolov, George Fuller, Brittany Fuzia, Nicholas Galitzki, Patricio A. Gallardo, Jose Tomas Galvez Ghersi, Jiansong Gao, Eric Gawiser, Martina Gerbino, Vera Gluscevic, Neil Goeckner-Wald, Joseph Golec, Sam Gordon, Megan Gralla, Daniel Green, Arpi Grigorian, John Groh, Chris Groppi, Yilun Guan, Jon E. Gudmundsson, Dongwon Han, Peter Hargrave, Masaya Hasegawa, Matthew Hasselfield, Makoto Hattori, Victor Haynes, Masashi Hazumi, Yizhou He, Erin Healy, Shawn W. Henderson, Carlos Hervias-Caimapo, Charles A. Hill, J. Colin Hill, Gene Hilton, Matt Hilton, Adam D. Hincks, Gary Hinshaw, Renée Hložek, Shirley Ho, Shuay-Pwu Patty Ho, Logan Howe, Zhiqi Huang, Johannes Hubmayr, Kevin Huffenberger, John P. Hughes, Anna Ijjas, Margaret Ikape, Kent Irwin, Andrew H. Jaffe, Bhuvnesh Jain, Oliver Jeong, Daisuke Kaneko, Ethan D. Karpel, Nobuhiko Katayama, Brian Keating, Sarah S. Kernasovskiy, Reijo Keskitalo, Theodore Kisner, Kenji Kiuchi, Jeff Klein, Kenda Knowles, Brian Koopman, Arthur Kosowsky, Nicoletta Krachmalnicoff, Stephen E. Kuenstner, Chao-Lin Kuo, Akito Kusaka, Jacob Lashner, Adrian Lee, Eunseong Lee, David Leon, Jason S.-Y. Leung, Antony Lewis, Yaqiong Li, Zack Li, Michele Limon, Eric Linder, Carlos Lopez-Caraballo, Thibaut Louis, Lindsay Lowry, Marius Lungu, Mathew Madhavacheril, Daisy Mak, Felipe Maldonado, Hamdi Mani, Ben Mates, Frederick Matsuda, Loïc Maurin, Phil Mauskopf, Andrew May, Nialh McCallum, Chris McKenney, Jeff McMahon, P. Daniel Meerburg, Joel Meyers, Amber Miller, Mark Mirmelstein, Kavilan Moodley, Moritz Munchmeyer, Charles Munson, Sigurd Naess, Federico Nati, Martin Navaroli, Laura Newburgh, Ho Nam Nguyen, Michael Niemack, Haruki Nishino, John Orlowski-Scherer, Lyman Page, Bruce Partridge, Julien Peloton, Francesca Perrotta, Lucio Piccirillo, Giampaolo Pisano, Davide Poletti, Roberto Puddu, Giuseppe Puglisi, Chris Raum, Christian L. Reichardt, Mathieu Remazeilles, Yoel Rephaeli, Dominik Riechers, Felipe Rojas, Anirban Roy, Sharon Sadeh, Yuki Sakurai, Maria Salatino, Mayuri Sathyanarayana Rao, Emmanuel Schaan, Marcel Schmittfull, Neelima Sehgal, Joseph Seibert, Uros Seljak, Blake Sherwin, Meir Shimon, Carlos Sierra, Jonathan Sievers, Precious Sikhosana, Maximiliano Silva-Feaver, Sara M. Simon, Adrian Sinclair, Praween Siritanasak, Kendrick Smith, Stephen R. Smith, David Spergel, Suzanne T. Staggs, George Stein, Jason R. Stevens, Radek Stompor, Aritoki Suzuki, Osamu Tajima, Satoru Takakura, Grant Teply, Daniel B. Thomas, Ben Thorne, Robert Thornton, Hy Trac, Calvin Tsai, Carole Tucker, Joel Ullom, Sunny Vagnozzi, Alexander van Engelen, Jeff Van Lanen, Daniel D. Van Winkle, Eve M. Vavagiakis, Clara Vergès, Michael Vissers, Kasey Wagoner, Samantha Walker, Jon Ward, Ben Westbrook, Nathan Whitehorn, Jason Williams, Joel Williams, Edward J. Wollack, Zhilei Xu, Byeonghee Yu, Cyndia Yu, Fernando Zago, Hezi Zhang, and Ningfeng Zhu
- Subjects
Astrophysics ,Astronomy - Abstract
The Simons Observatory (SO) is a new cosmic microwave background experiment being built on Cerro Toco in Chile, due to begin observations in the early 2020s. We describe the scientific goals of the experiment, motivate the design, and forecast its performance. SO will measure the temperature and polarization anisotropy of the cosmic microwave background in six frequency bands centered at: 27, 39, 93, 145, 225 and 280 GHz. The initial configuration of SO will have three small-aperture 0.5-m telescopes and one large-aperture 6-m telescope, with a total of 60,000 cryogenic bolometers. Our key science goals are to characterize the primordial perturbations, measure the number of relativistic species and the mass of neutrinos, test for deviations from a cosmological constant, improve our understanding of galaxy evolution, and constrain the duration of reionization. The small aperture telescopes will target the largest angular scales observable from Chile, mapping ≈ 10% of the sky to a white noise level of 2 μK-arcmin in combined 93 and 145 GHz bands, to measure the primordial tensor-to-scalar ratio, r, at a target level of σ(r)=0.003. The large aperture telescope will map ≈ 40% of the sky at arcminute angular resolution to an expected white noise level of 6 μK-arcmin in combined 93 and 145 GHz bands, overlapping with the majority of the Large Synoptic Survey Telescope sky region and partially with the Dark Energy Spectroscopic Instrument. With up to an order of magnitude lower polarization noise than maps from the Planck satellite, the high-resolution sky maps will constrain cosmological parameters derived from the damping tail, gravitational lensing of the microwave background, the primordial bispectrum, and the thermal and kinematic Sunyaev-Zel'dovich effects, and will aid in delensing the large-angle polarization signal to measure the tensor-to-scalar ratio. The survey will also provide a legacy catalog of 16,000 galaxy clusters and more than 20,000 extragalactic sources.
- Published
- 2019
- Full Text
- View/download PDF
4. LiteBIRD Low- and mid-frequency detectors: design and status
- Author
-
Gregory Jaehnig, Kam S. Arnold, Jason E. Austermann, James A. Beall, Dan T. Becker, Jake A. Connors, Shannon M. Duff, Nils W. Halverson, Masashi Hazumi, Gene C. Hilton, Johannes Hubmayr, Chao-Lin Kuo, Adrian T. Lee, Michael J. Link, Christopher R. Raum, Sarah A. Stevenson, Aritoki Suzuki, Keith L. Thompson, Jeff Van Lanen, Michael R. Vissers, S. Walker, and Benjamin Westbrook
- Published
- 2022
5. Instrumental Performance and Scientific Requirements of Polarization Modulation Unit for LiteBIRD low frequency telescope
- Author
-
Yuki Sakurai, Tomotake Matsumura, Nobuhiko Katayama, Kunimoto Komatsu, Ryota Takaku, Shinya Sugiyama, Yurika Hoshino, Takashi Hasebe, Tommaso Ghigna, Thuong D. Hoang, Teruhito Iida, Yusuke Takase, Hirokazu Ishino, Masashi Hazumi, Hiroyuki Ohsaki, Yutaka Terao, Takemi Onoue, Satsuki Okumura, Kuniaki Konishi, Junji Yumoto, Haruyuki Sakurai, Makoto K. Gonokami, and Akito Kusaka
- Published
- 2022
6. GroundBIRD: A CMB Polarization Experiment with MKID Arrays
- Author
-
Tohru Taino, Rafael Rebolo, Junya Suzuki, Osamu Tajima, T. Uchida, Shunsuke Honda, Eunil Won, Michael W. Peel, Kenichi Karatsu, Satoru Mima, Makoto Hattori, M. Nagai, Ryo Koyano, Chiko Otani, Masato Naruse, Kenji Kiuchi, Yutaro Sekimoto, Kyung Min Lee, Masashi Hazumi, M. Minowa, Hidesato Ishida, Shugo Oguri, Ricardo Genova-Santos, M. Yoshida, Takuji Ikemitsu, Hiroki Kutsuma, Jose Alberto Rubino-Martin, Taketo Nagasaki, Yonggil Jo, Junta Komine, Jihoon Choi, Joonhyeok Moon, N. Tomita, and H. Ishitsuka
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,media_common.quotation_subject ,Cosmic microwave background ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,law.invention ,Telescope ,Optics ,Observatory ,law ,General Materials Science ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,media_common ,Physics ,business.industry ,Astrophysics::Instrumentation and Methods for Astrophysics ,Condensed Matter Physics ,Polarization (waves) ,Atomic and Molecular Physics, and Optics ,Cardinal point ,Sky ,Astrophysics - Instrumentation and Methods for Astrophysics ,business ,Microwave ,Noise (radio) ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
GroundBIRD is a ground-based experiment for the precise observation of the polarization of the cosmic microwave background (CMB). To achieve high sensitivity at large angular scale, we adopt three features in this experiment: fast rotation scanning, microwave kinetic inductance detector (MKID) and cold optics. The rotation scanning strategy has the advantage to suppress $1/f$ noise. It also provides a large sky coverage of 40\%, which corresponds to the large angular scales of $l \sim 6$. This allows us to constrain the tensor-to-scalar ratio by using low $l$ B-mode spectrum. The focal plane consists of 7 MKID arrays for two target frequencies, 145 GHz and 220 GHz band. There are 161 pixels in total, of which 138 are for 144 GHz and 23 are for 220 GHz. This array is currently under development and the prototype will soon be evaluated in telescope. The GroundBIRD telescope will observe the CMB at the Teide observatory. The telescope was moved from Japan to Tenerife and is now under test. We present the status and plan of the GroundBIRD experiment., 7 pages, 5 figures, LTD18 proceeding, Published in JLTP
- Published
- 2020
7. Development of Space-Optimized TES Bolometer Arrays for LiteBIRD
- Author
-
Kam Arnold, J. Austermann, Michael J. Link, N. W. Halverson, Michael R. Vissers, Adrian T. Lee, G. Jaehnig, Shannon M. Duff, Gene C. Hilton, Masashi Hazumi, Samantha Walker, Benjamin Westbrook, A. Suzuki, Johannes Hubmayr, and Dan Becker
- Subjects
Physics ,business.industry ,Cosmic microwave background ,Detector ,Bolometer ,Astrophysics::Instrumentation and Methods for Astrophysics ,Condensed Matter Physics ,Polarization (waves) ,01 natural sciences ,Atomic and Molecular Physics, and Optics ,Radio spectrum ,010305 fluids & plasmas ,law.invention ,Optics ,Band-pass filter ,law ,0103 physical sciences ,General Materials Science ,Transition edge sensor ,010306 general physics ,business ,Space environment - Abstract
LiteBIRD is a cosmic microwave background polarization experiment with the goal of measuring the tensor-to-scalar ratio with a total uncertainty of $$\delta r
- Published
- 2020
8. Effect of Stray Impedance in Frequency-Division Multiplexed Readout of TES Sensors in POLARBEAR-2b
- Author
-
Darcy Barron, Masashi Hazumi, L. N. Lowry, M. A. Dobbs, Joseph Seibert, Kam Arnold, Maximiliano Silva-Feaver, Oliver Jeong, Adrian T. Lee, Charles A. Hill, Jennifer Ito, John Groh, Kevin T. Crowley, Tucker Elleflot, S. Takakura, L. Howe, Masaya Hasegawa, Praween Siritanasak, Benjamin Westbrook, A. Suzuki, D. Kaneko, Christopher Raum, Brian Keating, Akito Kusaka, S. Takatori, C. Tsai, and Nobuhiko Katayama
- Subjects
Physics ,Frequency division multiplexed ,business.industry ,Cosmic microwave background ,Bolometer ,Condensed Matter Physics ,Polarization (waves) ,01 natural sciences ,Multiplexing ,Atomic and Molecular Physics, and Optics ,010305 fluids & plasmas ,law.invention ,Frequency-division multiplexing ,Optics ,law ,0103 physical sciences ,General Materials Science ,Transition edge sensor ,010306 general physics ,business ,Electrical impedance - Abstract
POLARBEAR-2b (PB-2b) is the second of three cryogenic receivers of the Simons Array cosmic microwave background polarization experiment. PB-2b contains over 7500 transition-edge sensor (TES) bolometers cooled to 250 mK and read out using digital frequency-division multiplexing (DfMux). Stray impedance in the DfMux circuit obscures TES characterization and affects TES dynamic behavior. In order to accurately characterize TESs, it is necessary to account for stray impedance in the bias circuit. We define a stray impedance model, and we describe the technique used to measure model parameters in situ and to remove their effects on TES characterization. We use the same model to predict TES dynamic behavior and show good agreement between data and the model.
- Published
- 2020
9. Irradiation Tests of Superconducting Detectors and Comparison with Simulations
- Author
-
Yuto Minami, Christopher Raum, Masashi Hazumi, C. L. Kuo, Trevor Sasse, Adrian T. Lee, A. Suzuki, Satoru Mima, Hiroki Kutsuma, Noah Kurinsky, Y. Akiba, Benjamin Westbrook, S. Beckman, and S. L. Stever
- Subjects
Materials science ,Silicon ,Physics::Instrumentation and Detectors ,Detector ,Bolometer ,Astrophysics::Instrumentation and Methods for Astrophysics ,chemistry.chemical_element ,Cosmic ray ,Substrate (electronics) ,Condensed Matter Physics ,01 natural sciences ,Atomic and Molecular Physics, and Optics ,Charged particle ,010305 fluids & plasmas ,law.invention ,Computational physics ,chemistry ,law ,0103 physical sciences ,General Materials Science ,Irradiation ,Transition edge sensor ,010306 general physics - Abstract
For the future satellite mission at the second sun–earth Lagrangian point (L2), we need to mitigate phonon propagation created by cosmic rays to superconducting detectors. We simulate phonon propagation in silicon substrate and show that putting a metal layer on the substrate or making hole in the substrate reduces the propagation. We also show a function which shows the response of a TES bolometer on a substrate. To validate these theoretical expectations, we make irradiation tests using two types of superconducting detectors: transition edge sensor bolometers and kinetic inductance detectors. From the tests, we show that putting metal can reduce correlations between detectors and number of hit events from charged particles.
- Published
- 2020
10. Design of a Testbed for the Study of System Interference in Space CMB Polarimetry
- Author
-
Tomotake Matsumura, Yuki Sakurai, T. Ghigna, Masashi Hazumi, Benjamin Westbrook, Nobuhiko Katayama, Aritoki Suzuki, S. Stever, and Adrian T. Lee
- Subjects
Physics - Instrumentation and Detectors ,Physics::Instrumentation and Detectors ,Cosmic microwave background ,Polarimetry ,FOS: Physical sciences ,01 natural sciences ,010305 fluids & plasmas ,law.invention ,Telescope ,EMI ,law ,0103 physical sciences ,General Materials Science ,Aerospace engineering ,010306 general physics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Physics ,business.industry ,Testbed ,Detector ,Bolometer ,Astrophysics::Instrumentation and Methods for Astrophysics ,Instrumentation and Detectors (physics.ins-det) ,Condensed Matter Physics ,Polarization (waves) ,Atomic and Molecular Physics, and Optics ,Astrophysics - Instrumentation and Methods for Astrophysics ,business - Abstract
LiteBIRD is a proposed JAXA satellite mission to measure the CMB B-mode polarization with unprecedented sensitivity ($\sigma_r\sim 0.001$). To achieve this goal, $4676$ state-of-the-art TES bolometers will observe the whole sky for 3 years from L2. These detectors, as well as the SQUID readout, are extremely susceptible to EMI and other instrumental disturbances e.g. static magnetic field and vibration. As a result, careful analysis of the interference between the detector system and the rest of the telescope instruments is essential. This study is particularly important during the early phase of the project, in order to address potential problems before the final assembly of the whole instrument. We report our plan for the preparation of a cryogenic testbed to study the interaction between the detectors and other subsystems, especially a polarization modulator unit consisting of a magnetically-rotating half wave plate. We also present the requirements, current status and preliminary results., Comment: 7 pages, 4 figures, 2 tables, submitted to the Journal of Low Temperature Physics: LTD18 Special Edition
- Published
- 2020
11. Planck and BICEP/Keck Array 2018 constraints on primordial gravitational waves and perspectives for future B-mode polarization measurements
- Author
-
Daniela Paoletti, Fabio Finelli, Jussi Valiviita, Masashi Hazumi, Helsinki Institute of Physics, and Particle Physics and Astrophysics
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,FOS: Physical sciences ,115 Astronomy, Space science ,114 Physical sciences ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Current and future B-mode polarization data are the most powerful observables to constrain gravitational waves from the early Universe. We set conservative constraints on tensor modes when relaxing the inflationary consistency condition $n_t=-r/8$ between the tensor tilt $n_t$ and the tensor-to-scalar ratio r. By adding a power-law spectrum of tensor perturbations to $Λ$CDM, and parameterizing this tensor contribution by two independent primordial tensor-to-scalar ratios $(r_1,r_2)$ at $k_1 = 0.005$ Mpc$^{-1}$ and $k_2 = 0.02$ Mpc$^{-1}$, Planck and BICEP/Keck Array 2018 data (BK18) lead to constraints $r_{0.005} < 0.030$ and $r_{0.02} < 0.098$ at 95% CL. The corresponding upper bound $r_{0.01} < 0.039$ is by a factor of 2 tighter than the one obtained with Planck 2018 and the older BK15 data. We then study the perspectives for future CMB experiments that will measure both the reionization bump and recombination peak of the B-mode polarization angular power spectrum, such as LiteBIRD. We test the robustness of the results to the choice of the scales for $(r_1,r_2)$ in these future perspectives. Whereas distinguishing $n_t=-r/8$ from exact scale invariance is impossible as expected, we show how radical, theoretically motivated departures from $n_t=-r/8$, which are consistent with the current data, could be distinguished with LiteBIRD. Moreover, LiteBIRD will be able to shrink the allowed parameter space area in the $(r_{0.005},r_{0.02})$ plane to less than one hundredth of the currently allowed area by Planck 2018 and BK18., V2 matches PRD 106, 083528 (2022). 13 pages, 13 figures (2 added)
- Published
- 2022
- Full Text
- View/download PDF
12. Development of an epoxy-based millimeter absorber with expanded polystyrenes and carbon black for an astronomical telescope
- Author
-
Yuki Inoue, Masaya Hasegawa, Masashi Hazumi, Suguru Takada, and Takayuki Tomaru
- Subjects
Electrical and Electronic Engineering ,Engineering (miscellaneous) ,Atomic and Molecular Physics, and Optics - Abstract
We recently developed and characterized an absorber for millimeter wavelengths. To absorb a millimeter wave efficiently, we had to develop a low reflection and high absorption material. To meet these requirements, we added polystyrene beads in the epoxy for multiscattering in the absorber. The typical diameter of polystyrene beads corresponded to the scale of Mie scattering for photon multiscattering in the absorber. The absorber consists of epoxy, carbon black, and expanded polystyrene beads. The typical size of the expanded polystyrene beads is consistent with the peak of a cross-section of Mie scattering to increase the mean free path in the absorber. By applying this effect, we successfully improved the absorber’s performance. In this paper, we measured the optical property of epoxy to calculate the Mie scattering effect. Based on the calculation results, we developed eight types of samples by changing the ratio in the absorber material. To compare the eight samples, we characterized the reflectance and transmittance of the absorber in a millimeter wavelength. The measured reflectance and transmittance of a 2 mm thick sample with optimized parameters are, respectively, less than 20% and 10%. We also measured the transmittance in a submillimeter wavelength. The measured transmittance is less than 1%. The shape of absorber can be modified for any shape, such as chip and pyramidal shapes. This absorber can be used to mitigate the stray light of a millimeter wave telescope with any shapes.
- Published
- 2023
13. Simulations of systematic effects arising from cosmic rays in the LiteBIRD space telescope, and effects on the measurements of CMB $B$-modes
- Author
-
Mayu Tominaga, Masashi Hazumi, Yuto Minami, M. Baratto, Giuseppe Puglisi, G. Patanchon, T. Ghigna, Masahiro Tsujimoto, Tomotake Matsumura, A. Kato, Shinya Sugiyama, M. Tomasi, S.L. Stever, Hirokazu Ishino, M. Zeccoli Marazzini, AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
- Subjects
CMBR polarisation ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Physics - Instrumentation and Detectors ,Astrophysics::High Energy Astrophysical Phenomena ,Cosmic microwave background ,FOS: Physical sciences ,Cosmic ray ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,7. Clean energy ,Spitzer Space Telescope ,0103 physical sciences ,CMBR experiments ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,010306 general physics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,010303 astronomy & astrophysics ,Physics ,Settore FIS/05 ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy ,Astronomy and Astrophysics ,Instrumentation and Detectors (physics.ins-det) ,13. Climate action ,CMBR detectors ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Systematic effects arising from cosmic rays have been shown to be a significant threat to space telescopes using high-sensitivity bolometers. The LiteBIRD space mission aims to measure the polarised Cosmic Microwave Background with unprecedented sensitivity, but its positioning in space will also render it susceptible to cosmic ray effects. We present an end-to-end simulator for evaluating the expected scale of cosmic ray effect on the LiteBIRD space mission, which we demonstrate on a subset of detectors on the 166 GHz band of the Low Frequency Telescope. The simulator couples the expected proton flux at L2 with a model of the thermal response of the LFT focal plane and the electrothermal response of its superconducting detectors, producing time-ordered data which is projected into simulated sky maps and subsequent angular power spectra., To submit to the Journal of Cosmology and Astroparticle Physics (JCAP)
- Published
- 2021
14. Development of FD-SOI cryogenic amplifier for application to STJ readout in COBAND project
- Author
-
H. Ikeda, Satoru Mima, G. Maekawa, Koichi Nagase, Rena Wakasa, S. H. Kim, Go Fujii, S. Nakahara, C. Asano, Kenji Kiuchi, Erik Ramberg, Takashi Iida, Ikuo Kurachi, S.B. Kim, H.J. Lee, Dmitri Sergatskov, Y.H. Kim, T. Yoshida, A. Kibayashi, R. Yamane, Shuji Matsuura, Shigetomo Shiki, Masataka Ohkubo, Masashi Hazumi, Yoshio Arai, Shoji Kawahito, P. Rubinov, Hirokazu Ishino, T. Wada, Y. Kato, Masahiro Ukibe, and Y. Takeuchi
- Subjects
Physics ,COSMIC cancer database ,Zodiacal light ,Photon ,Age of the universe ,Physics::Instrumentation and Detectors ,Astrophysics::High Energy Astrophysical Phenomena ,High Energy Physics::Phenomenology ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Physical cosmology ,Nuclear physics ,Cosmic infrared background ,Superconducting tunnel junction ,High Energy Physics::Experiment ,Neutrino - Abstract
The COBAND is a project of an experimental search for the cosmic background neutrino decay [1] – [9] . The existence of the cosmic background neutrino is predicted as a relic of the big bang in the theoretical cosmology. Since the neutrino is found to have mass generations and mixing between them, a heavier neutrino is possible to decay to a lighter neutrino with a far-infrared photon, even though its lifetime is expected to be much longer than the age of the universe [10] . However, neither the cosmic background neutrino nor the neutrino decay is yet established experimentally. Only a lower limit in the order of 10 12 years is given on the heaviest neutrino lifetime. We, thus, search for photons which come from the cosmic background neutrino decays. The photons from the cosmic background neutrino decays are expected to shape a spectrum of a unique signature with a sharp edge at a wavelength of around 50μm depending on the heaviest neutrino mass. To identify the signature against the overwhelming zodiacal emission foreground as well as the cosmic infrared background, the photodetectors are required to have an ability to measure the FIR spectrum around 50pm with sufficient precision. Thus, we aim at developing a photodetector with capability of FIR photon-by-photon spectrometry. We employ superconducting tunnel junction (STJ) sensors in combination with cryogenic amplifiers for signal readout to maximize the potential of STJ.
- Published
- 2021
15. A forecast of the sensitivity on the measurement of the optical depth to reionization with the GroundBIRD experiment
- Author
-
Hiroki Kutsuma, Osamu Tajima, Ricardo Genova-Santos, Shunsuke Honda, Masashi Hazumi, Chiko Otani, Michael W. Peel, Junya Suzuki, Yoshinori Sueno, Shugo Oguri, Kyung Min Lee, and Eunil Won
- Subjects
Physics ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,media_common.quotation_subject ,Cosmic microwave background ,Astrophysics::Instrumentation and Methods for Astrophysics ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Polarization (waves) ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,Space and Planetary Science ,Sky ,Observatory ,Optical depth (astrophysics) ,Sensitivity (control systems) ,Reionization ,Noise (radio) ,Astrophysics::Galaxy Astrophysics ,media_common ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We compute the expected sensitivity on measurements of optical depth to reionization for a ground-based experiment at Teide Observatory. We simulate polarized partial sky maps for the GroundBIRD experiment at the frequencies 145 and 220 GHz. We perform fits for the simulated maps with our pixel-based likelihood to extract the optical depth to reionization. The noise levels of polarization maps are estimated as 110 $\mu\mathrm{K~arcmin}$ and 780 $ \mu\mathrm{K~arcmin}$ for 145 and 220 GHz, respectively, by assuming a three-year observing campaign and sky coverages of 0.537 for 145 GHz and 0.462 for 220 GHz. Our sensitivities for the optical depth to reionization are found to be $\sigma_\tau$=0.030 with the simulated GroundBIRD maps, and $\sigma_\tau$=0.012 by combining with the simulated QUIJOTE maps at 11, 13, 17, 19, 30, and 40 GHz., Comment: 14 pages, 6 figures, 4 tables, submitted to ApJ
- Published
- 2021
- Full Text
- View/download PDF
16. Overview of the Medium and High Frequency Telescopes of the LiteBIRD satellite mission
- Author
-
Ludovic Montier, Baptiste Mot, Paolo de Bernardis, Bruno Maffei, Giampaolo Pisano, Fabio Columbro, Jon E. Gudmundsson, Sophie Henrot-Versillé, Luca Lamagna, Joshua Montgomery, Thomas Prouvé, Megan Russell, Giorgio Savini, Samantha Stever, Keith L. Thompson, Masahiro Tsujimoto, Carole Tucker, Benjamin Westbrook, Peter A. Ade, Alexandre Adler, Erwan Allys, Kam Arnold, Didier Auguste, Jonathan Aumont, Ragnhild Aurlien, Jason Austermann, Carlo Baccigalupi, Anthony J. Banday, Ranajoy Banerji, Rita B. Barreiro, Soumen Basak, Jim Beall, Dominic Beck, Shawn Beckman, Juan Bermejo, Marco Bersanelli, Julien Bonis, Julian Borrill, Francois Boulanger, Sophie Bounissou, Maksym Brilenkov, Michael Brown, Martin Bucher, Erminia Calabrese, Paolo Campeti, Alessandro Carones, Francisco J. Casas, Anthony Challinor, Victor Chan, Kolen Cheung, Yuji Chinone, Jean F. Cliche, Loris Colombo, Javier Cubas, Ari Cukierman, David Curtis, Giuseppe D'Alessandro, Nadia Dachlythra, Marco De Petris, Clive Dickinson, Patricia Diego-Palazuelos, Matt Dobbs, Tadayasu Dotani, Lionel Duband, Shannon Duff, Jean M. Duval, Ken Ebisawa, Tucker Elleflot, Hans K. Eriksen, Josquin Errard, Thomas Essinger-Hileman, Fabio Finelli, Raphael Flauger, Cristian Franceschet, Unni Fuskeland, Mathew Galloway, Ken Ganga, Jian R. Gao, Ricardo Genova-Santos, Martina Gerbino, Massimo Gervasi, Tommaso Ghigna, Eirik Gjerløw, Marcin L. Gradziel, Julien Grain, Frank Grupp, Alessandro Gruppuso, Tijmen de Haan, Nils W. Halverson, Peter Hargrave, Takashi Hasebe, Masaya Hasegawa, Makoto Hattori, Masashi Hazumi, Daniel Herman, Diego Herranz, Charles A. Hill, Gene Hilton, Yukimasa Hirota, Eric Hivon, Renee A. Hlozek, Yurika Hoshino, Elena de la Hoz, Johannes Hubmayr, Kiyotomo Ichiki, Teruhito Iida, Hiroaki Imada, Kosei Ishimura, Hirokazu Ishino, Greg Jaehnig, Tooru Kaga, Shingo Kashima, Nobuhiko Katayama, Akihiro Kato, Takeo Kawasaki, Reijo Keskitalo, Theodore Kisner, Yohei Kobayashi, Nozomu Kogiso, Alan Kogut, Kazunori Kohri, Eiichiro Komatsu, Kunimoto Komatsu, Kuniaki Konishi, Nicoletta Krachmalnicoff, Ingo Kreykenbohm, Chao-Lin L. Kuo, Akihiro Kushino, Jeff V. Lanen, Massimiliano Lattanzi, Adrian T. Lee, Clément Leloup, François Levrier, Eric Linder, Thibaut Louis, Gemma Luzzi, Thierry Maciaszek, Davide Maino, Muneyoshi Maki, Stefano Mandelli, Enrique Martinez-Gonzalez, Silvia Masi, Tomotake Matsumura, Aniello Mennella, Marina Migliaccio, Yuto Minami, Kazuhisa Mitsuda, Gianluca Morgante, Yasuhiro Murata, John A. Murphy, Makoto Nagai, Yuya Nagano, Taketo Nagasaki, Ryo Nagata, Shogo Nakamura, Toshiya Namikawa, Paolo Natoli, Simran Nerval, Toshiyuki Nishibori, Haruki Nishino, Créidhe O'Sullivan, Hideo Ogawa, Hiroyuki Ogawa, Shugo Oguri, Hiroyuki Ohsaki, Izumi S. Ohta, Norio Okada, Nozomi Okada, Luca Pagano, Alessandro Paiella, Daniela Paoletti, Guillaume Patanchon, Julien Peloton, Francesco Piacentini, Gianluca Polenta, Davide Poletti, Giuseppe Puglisi, Damien Rambaud, Christopher Raum, Sabrina Realini, Martin Reinecke, Mathieu Remazeilles, Alessia Ritacco, Gilles Roudil, Jose A. Rubino-Martin, Haruyuki Sakurai, Yuki Sakurai, Maura Sandri, Manami Sasaki, Douglas Scott, Joseph Seibert, Yutaro Sekimoto, Blake Sherwin, Keisuke Shinozaki, Maresuke Shiraishi, Peter Shirron, Giovanni Signorelli, Graeme Smecher, Radek Stompor, Hajime Sugai, Shinya Sugiyama, Aritoki Suzuki, Junichi Suzuki, Trygve L. Svalheim, Eric Switzer, Ryota Takaku, Hayato Takakura, Satoru Takakura, Yusuke Takase, Youichi Takeda, Andrea Tartari, Ellen Taylor, Yutaka Terao, Harald Thommesen, Ben Thorne, Takayuki Toda, Maurizio Tomasi, Mayu Tominaga, Neil Trappe, Matthieu Tristram, Masatoshi Tsuji, Joe Ullom, Gerard Vermeulen, Patricio Vielva, Fabrizio Villa, Michael Vissers, Nicola Vittorio, Ingunn Wehus, Jochen Weller, Joern Wilms, Berend Winter, Edward J. Wollack, Noriko Y. Yamasaki, Tetsuya Yoshida, Junji Yumoto, Mario Zannoni, Andrea Zonca, Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire de physique de l'ENS - ENS Paris (LPENS (UMR_8023)), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre National d’Études Spatiales [Paris] (CNES), LiteBIRD, Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), European Commission, European Research Council, Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Laboratoire de physique de l'ENS - ENS Paris (LPENS), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Département de Physique de l'ENS-PSL, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Département des Systèmes Basses Températures (DSBT ), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Laboratoire des Cryoréfrigérateurs et Cryogénie Spatiale (LCCS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Lystrup, Makenzie, Montier, L, Mot, B, de Bernardis, P, Maffei, B, Pisano, G, Columbro, F, Gudmundsson, J, Henrot-Versillé, S, Lamagna, L, Montgomery, J, Prouvé, T, Russell, M, Savini, G, Stever, S, Thompson, K, Tsujimoto, M, Tucker, C, Westbrook, B, Ade, P, Adler, A, Allys, E, Arnold, K, Auguste, D, Aumont, J, Aurlien, R, Austermann, J, Baccigalupi, C, Banday, A, Banerji, R, Barreiro, R, Basak, S, Beall, J, Beck, D, Beckman, S, Bermejo, J, Bersanelli, M, Bonis, J, Borrill, J, Boulanger, F, Bounissou, S, Brilenkov, M, Brown, M, Bucher, M, Calabrese, E, Campeti, P, Carones, A, Casas, F, Challinor, A, Chan, V, Cheung, K, Chinone, Y, Cliche, J, Colombo, L, Cubas, J, Cukierman, A, Curtis, D, D'Alessandro, G, Dachlythra, N, De Petris, M, Dickinson, C, Diego-Palazuelos, P, Dobbs, M, Dotani, T, Duband, L, Duff, S, Duval, J, Ebisawa, K, Elleflot, T, Eriksen, H, Errard, J, Essinger-Hileman, T, Finelli, F, Flauger, R, Franceschet, C, Fuskeland, U, Galloway, M, Ganga, K, Gao, J, Genova-Santos, R, Gerbino, M, Gervasi, M, Ghigna, T, Gjerløw, E, Gradziel, M, Grain, J, Grupp, F, Gruppuso, A, de Haan, T, Halverson, N, Hargrave, P, Hasebe, T, Hasegawa, M, Hattori, M, Hazumi, M, Herman, D, Herranz, D, Hill, C, Hilton, G, Hirota, Y, Hivon, E, Hlozek, R, Hoshino, Y, de la Hoz, E, Hubmayr, J, Ichiki, K, Iida, T, Imada, H, Ishimura, K, Ishino, H, Jaehnig, G, Kaga, T, Kashima, S, Katayama, N, Kato, A, Kawasaki, T, Keskitalo, R, Kisner, T, Kobayashi, Y, Kogiso, N, Kogut, A, Kohri, K, Komatsu, E, Komatsu, K, Konishi, K, Krachmalnicoff, N, Kreykenbohm, I, Kuo, C, Kushino, A, Lanen, J, Lattanzi, M, Lee, A, Leloup, C, Levrier, F, Linder, E, Louis, T, Luzzi, G, Maciaszek, T, Maino, D, Maki, M, Mandelli, S, Martinez-Gonzalez, E, Masi, S, Matsumura, T, Mennella, A, Migliaccio, M, Minami, Y, Mitsuda, K, Morgante, G, Murata, Y, Murphy, J, Nagai, M, Nagano, Y, Nagasaki, T, Nagata, R, Nakamura, S, Namikawa, T, Natoli, P, Nerval, S, Nishibori, T, Nishino, H, O'Sullivan, C, Ogawa, H, Oguri, S, Ohsaki, H, Ohta, I, Okada, N, Pagano, L, Paiella, A, Paoletti, D, Patanchon, G, Peloton, J, Piacentini, F, Polenta, G, Poletti, D, Puglisi, G, Rambaud, D, Raum, C, Realini, S, Reinecke, M, Remazeilles, M, Ritacco, A, Roudil, G, Rubino-Martin, J, Sakurai, H, Sakurai, Y, Sandri, M, Sasaki, M, Scott, D, Seibert, J, Sekimoto, Y, Sherwin, B, Shinozaki, K, Shiraishi, M, Shirron, P, Signorelli, G, Smecher, G, Stompor, R, Sugai, H, Sugiyama, S, Suzuki, A, Suzuki, J, Svalheim, T, Switzer, E, Takaku, R, Takakura, H, Takakura, S, Takase, Y, Takeda, Y, Tartari, A, Taylor, E, Terao, Y, Thommesen, H, Thorne, B, Toda, T, Tomasi, M, Tominaga, M, Trappe, N, Tristram, M, Tsuji, M, Ullom, J, Vermeulen, G, Vielva, P, Villa, F, Vissers, M, Vittorio, N, Wehus, I, Weller, J, Wilms, J, Winter, B, Wollack, E, Yamasaki, N, Yoshida, T, Yumoto, J, Zannoni, M, Zonca, A, and Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-École normale supérieure - Paris (ENS Paris)
- Subjects
cosmological model ,experimental methods ,detector: satellite ,Cosmic microwave background ,cosmic background radiation: polarization ,detector: noise ,magnetic field ,02 engineering and technology ,LiteBIRD, cosmic microwave background, polarization measurements, space telescopes ,7. Clean energy ,01 natural sciences ,law.invention ,law ,detector: calibration ,media_common ,Physics ,conductivity: thermal ,Settore FIS/05 ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,021001 nanoscience & nanotechnology ,Polarization (waves) ,inflation: model ,experimental equipment ,B-mode ,cosmic radiation ,cryogenics ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics - Instrumentation and Methods for Astrophysics ,0210 nano-technology ,cosmic background radiation: detector ,Astrophysics - Cosmology and Nongalactic Astrophysics ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,lens ,Astrophysics::High Energy Astrophysical Phenomena ,media_common.quotation_subject ,FOS: Physical sciences ,LiteBIRD ,Polarization measurements ,Space telescopes ,Astrophysics::Cosmology and Extragalactic Astrophysics ,bolometer: superconductivity ,frequency: high ,Radio spectrum ,tensor scalar: ratio ,010309 optics ,Telescope ,FIS/05 - ASTRONOMIA E ASTROFISICA ,Settore FIS/05 - Astronomia e Astrofisica ,0103 physical sciences ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,numerical calculations ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,detector: angular resolution ,Astrophysics::Galaxy Astrophysics ,Gravitational wave ,synchrotron radiation ,gravitational radiation: primordial ,Astronomy ,Physics::History of Physics ,optics ,detector: sensitivity ,13. Climate action ,Sky ,Satellite ,temperature: stability ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
Event: SPIE Astronomical Telescopes + Instrumentation, 2020, Online.-- et al., LiteBIRD is a JAXA-led Strategic Large-Class mission designed to search for the existence of the primordial gravitational waves produced during the inflationary phase of the Universe, through the measurements of their imprint onto the polarization of the cosmic microwave background (CMB). These measurements, requiring unprecedented sensitivity, will be performed over the full sky, at large angular scales, and over 15 frequency bands from 34 GHz to 448 GHz. The LiteBIRD instruments consist of three telescopes, namely the Low-, Medium-and High-Frequency Telescope (respectively LFT, MFT and HFT). We present in this paper an overview of the design of the Medium-Frequency Telescope (89{224 GHz) and the High-Frequency Telescope (166{448 GHz), the so-called MHFT, under European responsibility, which are two cryogenic refractive telescopes cooled down to 5 K. They include a continuous rotating half-wave plate as the first optical element, two high-density polyethylene (HDPE) lenses and more than three thousand transition-edge sensor (TES) detectors cooled to 100 mK. We provide an overview of the concept design and the remaining specific challenges that we have to face in order to achieve the scientific goals of LiteBIRD., This work is supported in Japan by ISAS/JAXA for Pre-Phase A2 studies, by the acceleration program of JAXA research and development directorate, by the World Premier International Research Center Initiative (WPI) of MEXT, by the JSPS Core-to-Core Program of A. Advanced Research Networks, and by JSPS KAKENHI Grant Numbers JP15H05891, JP17H01115, and JP17H01125. The Italian LiteBIRD phase A contribution is supported by the Italian Space Agency (ASI Grants No. 2020-9-HH.0 and 2016-24-H.1-2018), the National Institute for Nuclear Physics (INFN) and the National Institute for Astrophysics (INAF). The French LiteBIRD phase A contribution is supported by the Centre National d’Etudes Spatiale (CNES), by the Centre National de la Recherche Scientifique (CNRS), and by the Commissariat a l’Energie Atomique (CEA). The Canadian contribution is supported by the Canadian Space Agency. The US contribution is supported by NASA grant no. 80NSSC18K0132. Norwegian participation in LiteBIRD is supported by the Research Council of Norway (Grant No. 263011). The Spanish LiteBIRD phase A contribution is supported by the Spanish Agencia Estatal de Investigacion (AEI), project refs. PID2019-110610RB-C21 and AYA2017-84185-P. Funds that support the Swedish contributions come from the Swedish National Space Agency (SNSA/Rymdstyrelsen) and the Swedish Research Council (Reg. no. 2019-03959). The German participation in LiteBIRD is supported in part by the Excellence Cluster ORIGINS, which is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy (Grant No. EXC-2094 - 390783311). This research used resources of the Central Computing System owned and operated by the Computing Research Center at KEK, as well as resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy. European collaborators acknowledge support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement Nos. 772253, 819478, and 849169). The European Space Agency (ESA) has led a Concurrent Design Facility study, focused on the MHFT and Sub-Kelvin coolers, and funded Technology Research Programmes for “Large radii Half-Wave Plate (HWP) development” (contract number: 4000123266/18/NL/AF) and for the ‘Development of Large Anti-Reflection Coated Lenses for Passive (Sub)Millimeter-Wave Science Instruments” (contract number: 4000128517/19/NL/AS).
- Published
- 2020
17. LiteBIRD: JAXA's new strategic L-class mission for all-sky surveys of cosmic microwave background polarization
- Author
-
Masashi Hazumi, Peter A. Ade, Alexandre Adler, Erwan Allys, Kam Arnold, Didier Auguste, Jonathan Aumont, Ragnhild Aurlien, Jason Austermann, Carlo Baccigalupi, Anthony J. Banday, R. Banjeri, Rita B. Barreiro, Soumen Basak, Jim Beall, Dominic Beck, Shawn Beckman, Juan Bermejo, Paolo de Bernardis, Marco Bersanelli, Julien Bonis, Julian Borrill, Francois Boulanger, Sophie Bounissou, Maksym Brilenkov, Michael Brown, Martin Bucher, Erminia Calabrese, Paolo Campeti, Alessandro Carones, Francisco J. Casas, Anthony Challinor, Victor Chan, Kolen Cheung, Yuji Chinone, Jean F. Cliche, Loris Colombo, Fabio Columbro, Javier Cubas, Ari Cukierman, David Curtis, Giuseppe D'Alessandro, Nadia Dachlythra, Marco De Petris, Clive Dickinson, Patricia Diego-Palazuelos, Matt Dobbs, Tadayasu Dotani, Lionel Duband, Shannon Duff, Jean M. Duval, Ken Ebisawa, Tucker Elleflot, Hans K. Eriksen, Josquin Errard, Thomas Essinger-Hileman, Fabio Finelli, Raphael Flauger, Cristian Franceschet, Unni Fuskeland, Mathew Galloway, Ken Ganga, Jian R. Gao, Ricardo Genova-Santos, Martina Gerbino, Massimo Gervasi, Tommaso Ghigna, Eirik Gjerløw, Marcin L. Gradziel, Julien Grain, Frank Grupp, Alessandro Gruppuso, Jon E. Gudmundsson, Tijmen de Haan, Nils W. Halverson, Peter Hargrave, Takashi Hasebe, Masaya Hasegawa, Makoto Hattori, Sophie Henrot-Versillé, Daniel Herman, Diego Herranz, Charles A. Hill, Gene Hilton, Yukimasa Hirota, Eric Hivon, Renee A. Hlozek, Yurika Hoshino, Elena de la Hoz, Johannes Hubmayr, Kiyotomo Ichiki, Teruhito Iida, Hiroaki Imada, Kosei Ishimura, Hirokazu Ishino, Greg Jaehnig, Tooru Kaga, Shingo Kashima, Nobuhiko Katayama, Akihiro Kato, Takeo Kawasaki, Reijo Keskitalo, Theodore Kisner, Yohei Kobayashi, Nozomu Kogiso, Alan Kogut, Kazunori Kohri, Eiichiro Komatsu, Kunimoto Komatsu, Kuniaki Konishi, Nicoletta Krachmalnicoff, Ingo Kreykenbohm, Chao-Lin L. Kuo, Akihiro Kushino, Luca Lamagna, Jeff V. Lanen, Massimiliano Lattanzi, Adrian T. Lee, Clément Leloup, François Levrier, Eric Linder, Thibaut Louis, Gemma Luzzi, Thierry Maciaszek, Bruno Maffei, Davide Maino, Muneyoshi Maki, Stefano Mandelli, Enrique Martinez-Gonzalez, Silvia Masi, Tomotake Matsumura, Aniello Mennella, Marina Migliaccio, Yuto Minami, Kazuhisa Mitsuda, Joshua Montgomery, Ludovic Montier, Gianluca Morgante, Baptiste Mot, Yasuhiro Murata, John A. Murphy, Makoto Nagai, Yuya Nagano, Taketo Nagasaki, Ryo Nagata, Shogo Nakamura, Toshiya Namikawa, Paolo Natoli, Simran Nerval, Toshiyuki Nishibori, Haruki Nishino, Fabio Noviello, Créidhe O'Sullivan, Hideo Ogawa, Hiroyuki Ogawa, Shugo Oguri, Hiroyuki Ohsaki, Izumi S. Ohta, Norio Okada, Nozomi Okada, Luca Pagano, Alessandro Paiella, Daniela Paoletti, Guillaume Patanchon, Julien Peloton, Francesco Piacentini, Giampaolo Pisano, Gianluca Polenta, Davide Poletti, Thomas Prouvé, Giuseppe Puglisi, Damien Rambaud, Christopher Raum, Sabrina Realini, Martin Reinecke, Mathieu Remazeilles, Alessia Ritacco, Gilles Roudil, Jose A. Rubino-Martin, Megan Russell, Haruyuki Sakurai, Yuki Sakurai, Maura Sandri, Manami Sasaki, Giorgio Savini, Douglas Scott, Joseph Seibert, Yutaro Sekimoto, Blake Sherwin, Keisuke Shinozaki, Maresuke Shiraishi, Peter Shirron, Giovanni Signorelli, Graeme Smecher, Samantha Stever, Radek Stompor, Hajime Sugai, Shinya Sugiyama, Aritoki Suzuki, Junichi Suzuki, Trygve L. Svalheim, Eric Switzer, Ryota Takaku, Hayato Takakura, Satoru Takakura, Yusuke Takase, Youichi Takeda, Andrea Tartari, Ellen Taylor, Yutaka Terao, Harald Thommesen, Keith L. Thompson, Ben Thorne, Takayuki Toda, Maurizio Tomasi, Mayu Tominaga, Neil Trappe, Matthieu Tristram, Masatoshi Tsuji, Masahiro Tsujimoto, Carole Tucker, Joe Ullom, Gerard Vermeulen, Patricio Vielva, Fabrizio Villa, Michael Vissers, Nicola Vittorio, Ingunn Wehus, Jochen Weller, Benjamin Westbrook, Joern Wilms, Berend Winter, Edward J. Wollack, Noriko Y. Yamasaki, Tetsuya Yoshida, Junji Yumoto, Mario Zannoni, Andrea Zonca, Astrophysique, Laboratoire de physique de l'ENS - ENS Paris (LPENS), Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11), Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre National d’Études Spatiales [Paris] (CNES), Centre National d'Études Spatiales [Toulouse] (CNES), Institut Néel (NEEL), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), LiteBIRD, Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Département de Physique de l'ENS-PSL, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Département de Physique de l'ENS-PSL, Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Département des Systèmes Basses Températures (DSBT ), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Laboratoire des Cryoréfrigérateurs et Cryogénie Spatiale (LCCS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Hélium : du fondamental aux applications (NEEL - HELFA), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), European Commission, Laboratoire de physique de l'ENS - ENS Paris (LPENS (UMR_8023)), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Lystrup, Makenzie, Hazumi, M, Ade, P, Adler, A, Allys, E, Arnold, K, Auguste, D, Aumont, J, Aurlien, R, Austermann, J, Baccigalupi, C, Banday, A, Banjeri, R, Barreiro, R, Basak, S, Beall, J, Beck, D, Beckman, S, Bermejo, J, de Bernardis, P, Bersanelli, M, Bonis, J, Borrill, J, Boulanger, F, Bounissou, S, Brilenkov, M, Brown, M, Bucher, M, Calabrese, E, Campeti, P, Carones, A, Casas, F, Challinor, A, Chan, V, Cheung, K, Chinone, Y, Cliche, J, Colombo, L, Columbro, F, Cubas, J, Cukierman, A, Curtis, D, D'Alessandro, G, Dachlythra, N, De Petris, M, Dickinson, C, Diego-Palazuelos, P, Dobbs, M, Dotani, T, Duband, L, Duff, S, Duval, J, Ebisawa, K, Elleflot, T, Eriksen, H, Errard, J, Essinger-Hileman, T, Finelli, F, Flauger, R, Franceschet, C, Fuskeland, U, Galloway, M, Ganga, K, Gao, J, Genova-Santos, R, Gerbino, M, Gervasi, M, Ghigna, T, Gjerløw, E, Gradziel, M, Grain, J, Grupp, F, Gruppuso, A, Gudmundsson, J, de Haan, T, Halverson, N, Hargrave, P, Hasebe, T, Hasegawa, M, Hattori, M, Henrot-Versillé, S, Herman, D, Herranz, D, Hill, C, Hilton, G, Hirota, Y, Hivon, E, Hlozek, R, Hoshino, Y, de la Hoz, E, Hubmayr, J, Ichiki, K, Iida, T, Imada, H, Ishimura, K, Ishino, H, Jaehnig, G, Kaga, T, Kashima, S, Katayama, N, Kato, A, Kawasaki, T, Keskitalo, R, Kisner, T, Kobayashi, Y, Kogiso, N, Kogut, A, Kohri, K, Komatsu, E, Komatsu, K, Konishi, K, Krachmalnicoff, N, Kreykenbohm, I, Kuo, C, Kushino, A, Lamagna, L, Lanen, J, Lattanzi, M, Lee, A, Leloup, C, Levrier, F, Linder, E, Louis, T, Luzzi, G, Maciaszek, T, Maffei, B, Maino, D, Maki, M, Mandelli, S, Martinez-Gonzalez, E, Masi, S, Matsumura, T, Mennella, A, Migliaccio, M, Minami, Y, Mitsuda, K, Montgomery, J, Montier, L, Morgante, G, Mot, B, Murata, Y, Murphy, J, Nagai, M, Nagano, Y, Nagasaki, T, Nagata, R, Nakamura, S, Namikawa, T, Natoli, P, Nerval, S, Nishibori, T, Nishino, H, Noviello, F, O'Sullivan, C, Ogawa, H, Oguri, S, Ohsaki, H, Ohta, I, Okada, N, Pagano, L, Paiella, A, Paoletti, D, Patanchon, G, Peloton, J, Piacentini, F, Pisano, G, Polenta, G, Poletti, D, Prouvé, T, Puglisi, G, Rambaud, D, Raum, C, Realini, S, Reinecke, M, Remazeilles, M, Ritacco, A, Roudil, G, Rubino-Martin, J, Russell, M, Sakurai, H, Sakurai, Y, Sandri, M, Sasaki, M, Savini, G, Scott, D, Seibert, J, Sekimoto, Y, Sherwin, B, Shinozaki, K, Shiraishi, M, Shirron, P, Signorelli, G, Smecher, G, Stever, S, Stompor, R, Sugai, H, Sugiyama, S, Suzuki, A, Suzuki, J, Svalheim, T, Switzer, E, Takaku, R, Takakura, H, Takakura, S, Takase, Y, Takeda, Y, Tartari, A, Taylor, E, Terao, Y, Thommesen, H, Thompson, K, Thorne, B, Toda, T, Tomasi, M, Tominaga, M, Trappe, N, Tristram, M, Tsuji, M, Tsujimoto, M, Tucker, C, Ullom, J, Vermeulen, G, Vielva, P, Villa, F, Vissers, M, Vittorio, N, Wehus, I, Weller, J, Westbrook, B, Wilms, J, Winter, B, Wollack, E, Yamasaki, N, Yoshida, T, Yumoto, J, Zannoni, M, and Zonca, A
- Subjects
cosmological model ,experimental methods ,detector: satellite ,Physics beyond the Standard Model ,Cosmic microwave background ,LiteBIRD, cosmic inflation, cosmic microwave background, B-mode polarization, primordial gravi- tational waves, quantum gravity, space telescope ,cosmic background radiation: polarization ,detector: noise ,02 engineering and technology ,7. Clean energy ,01 natural sciences ,expansion: multipole ,Cosmology ,General Relativity and Quantum Cosmology ,B-mode: primordial ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,High Energy Physics - Phenomenology (hep-ph) ,general relativity ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,B-mode polarization ,media_common ,Physics ,new physics ,quantum mechanics ,Astrophysics::Instrumentation and Methods for Astrophysics ,021001 nanoscience & nanotechnology ,BICEP ,inflation: model ,High Energy Physics - Phenomenology ,error: statistical ,experimental equipment ,cryogenics ,power spectrum: angular dependence ,[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc] ,readout ,Astrophysics::Earth and Planetary Astrophysics ,dust ,control system ,0210 nano-technology ,Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics ,cosmic microwave background ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,satellite: Planck ,cosmic inflation ,media_common.quotation_subject ,Astrophysics::High Energy Astrophysical Phenomena ,primordial gravi- tational waves ,Cosmic background radiation ,space telescope ,Lagrangian point ,FOS: Physical sciences ,LiteBIRD ,General Relativity and Quantum Cosmology (gr-qc) ,Astrophysics::Cosmology and Extragalactic Astrophysics ,polarization: sensitivity ,010309 optics ,FIS/05 - ASTRONOMIA E ASTROFISICA ,Settore FIS/05 - Astronomia e Astrofisica ,gravitation: lens ,0103 physical sciences ,ionization ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,cosmic background radiation: power spectrum ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Astrophysics::Galaxy Astrophysics ,Inflation (cosmology) ,synchrotron radiation ,primordial gravitational waves ,gravitational radiation: primordial ,Astronomy ,calibration ,Physics::History of Physics ,recombination ,detector: sensitivity ,angular resolution ,Sky ,quantum gravity ,gravitational radiation: emission ,[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph] ,Satellite ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,experimental results - Abstract
Event: SPIE Astronomical Telescopes + Instrumentation, 2020, Online.-- et al., LiteBIRD, the Lite (Light) satellite for the study of B-mode polarization and Inflation from cosmic background Radiation Detection, is a space mission for primordial cosmology and fundamental physics. JAXA selected LiteBIRD in May 2019 as a strategic large-class (L-class) mission, with its expected launch in the late 2020s using JAXA’s H3 rocket. LiteBIRD plans to map the cosmic microwave background (CMB) polarization over the full sky with unprecedented precision. Its main scientific objective is to carry out a definitive search for the signal from cosmic inflation, either making a discovery or ruling out well-motivated inflationary models. The measurements of LiteBIRD will also provide us with an insight into the quantum nature of gravity and other new physics beyond the standard models of particle physics and cosmology. To this end, LiteBIRD will perform full-sky surveys for three years at the Sun-Earth Lagrangian point L2 for 15 frequency bands between 34 and 448 GHz with three telescopes, to achieve a total sensitivity of 2.16 µK-arcmin with a typical angular resolution of 0.5◦ at 100 GHz. We provide an overview of the LiteBIRD project, including scientific objectives, mission requirements, top-level system requirements, operation concept, and expected scientific outcomes., This work is supported in Japan by ISAS/JAXA for Pre-Phase A2 studies, by the acceleration program of JAXA research and development directorate, by the World Premier International Research Center Initiative (WPI) of MEXT, by the JSPS Core-to-Core Program of A. Advanced Research Networks, and by JSPS KAKENHI Grant Numbers JP15H05891, JP17H01115, and JP17H01125. The Italian LiteBIRD phase A contribution is supported by the Italian Space Agency (ASI Grants No. 2020-9-HH.0 and 2016-24-H.1-2018), the National Institute for Nuclear Physics (INFN) and the National Institute for Astrophysics (INAF). The French LiteBIRD phase A contribution is supported by the Centre National d’Etudes Spatiale (CNES), by the Centre National de la Recherche Scientifique (CNRS), and by the Commissariat a l’Energie Atomique (CEA). The Canadian contribution is supported by the Canadian Space Agency. The US contribution is supported by NASA grant no. 80NSSC18K0132. Norwegian participation in LiteBIRD is supported by the Research Council of Norway (Grant No. 263011). The Spanish LiteBIRD phase A contribution is supported by the Spanish Agencia Estatal de Investigacion (AEI), project refs. PID2019-110610RB-C21 and AYA2017-84185-P. Funds that support the Swedish contributions come from the Swedish National Space Agency (SNSA/Rymdstyrelsen) and the Swedish Research Council (Reg. no. 2019-03959). The German participation in LiteBIRD is supported in part by the Excellence Cluster ORIGINS, which is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy (Grant No. EXC-2094 - 390783311). This research used resources of the Central Computing System owned and operated by the Computing Research Center at KEK, as well as resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy.
- Published
- 2020
18. Detector and readout characterization for POLARBEAR-2b
- Author
-
Charles A. Hill, Masashi Hazumi, Kayla Mitchell, M. Navaroli, Kam Arnold, P. Siritanasak, Oliver Jeong, Jennifer Ito, Calvin Tsai, A. T. P. Pham, Trevor Sasse, Darcy Barron, Christopher Raum, L. N. Lowry, Tucker Elleflot, Carlo Baccigalupi, Aritoki Suzuki, Akito Kusaka, Joseph Seibert, B. Bixler, Brian Keating, Yuji Chinone, L. Howe, Kevin T. Crowley, Benjamin Westbrook, Christian L. Reichardt, John Groh, Adrian T. Lee, Tylor Adkins, S. Takakura, and Grant Teply
- Subjects
Physics ,Gravitational wave ,business.industry ,Detector ,Cosmic microwave background ,Bolometer ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Multiplexing ,law.invention ,Telescope ,Resonator ,Optics ,law ,Astrophysics::Earth and Planetary Astrophysics ,Antenna (radio) ,business ,Astrophysics::Galaxy Astrophysics - Abstract
The Simons Array is a set of three millimeter-wavelength telescopes in the Atacama Desert in northern Chile. It is designed to measure the polarization of the cosmic microwave background caused by density perturbations, gravitational lensing, and primordial gravitational waves. Polarbear-2b (PB-2b) is the receiver that will be mounted onto the Paul Simons Telescope, the second Simons Array telescope. Each pixel in the PB-2b focal plane has a broadband sinuous antenna coupled to transition-edge sensor (TES) bolometers. In all, there are more than 7,500 antenna-coupled TES bolometers which are biased and read out using a digital frequency-domain multiplexing framework. We implement a multiplexing factor of 40 with resonator frequencies ranging from 1.6 MHz to 4.6 MHz. These resonators are connected to superconducting quantum interference device arrays that provide a signal amplification stage. We present Polarbear-2b detector and readout characterization results from in-lab testing that enabled the deployment of PB-2b to Chile in March 2020.
- Published
- 2020
19. Data acquisition and management system for the CMB polarization experiment: Simons Array
- Author
-
Theodore Kisner, P. Siritanasak, Nathan Whitehorn, Kevin T. Crowley, Y. Zhou, Daisuke Kaneko, Tucker Elleflot, Akito Kusaka, Benjamin Westbrook, Alexandra S. Rahlin, S. Takakura, L. Howe, Haruaki Hirose, H. Nishino, John Groh, Joshua Montgomery, Masashi Hazumi, Masaya Hasegawa, Darcy Barron, S. Kikuchi, A. Zahn, Charles A. Hill, D. Tanabe, S. Takatori, Graeme Smecher, Amy N. Bender, and Yuji Chinone
- Subjects
Data acquisition ,business.industry ,Observatory ,Computer science ,Data management ,Cosmic microwave background ,Real-time computing ,Bandwidth (signal processing) ,Management system ,business ,Data rate ,Raw data - Abstract
The Simons Array upgrades the POLARBEAR experiment, which measures the cosmic microwave background from the Atacama Desert in Chile, with three newly developed receivers. Each receiver has 7,588 transition-edge sensor bolometers with a raw data rate of approximately 20 MB/s. This significantly increased data rate required us to develop a new data-acquisition (DAQ) and data-management system. As the network bandwidth from our observatory to our data-storage sites outside Chile is not high enough to send all the raw data, we compress the raw data on-site. The expected yearly compressed data rate is approximately 60 TB from each receiver. We have also developed a new housekeeping DAQ system. The new housekeeping DAQ system is a distributed system to handle the various newly added monitoring systems and to better understand our instruments and environments. Those data can also be fetched by another module for real-time monitoring of our instrument from all over the world with latencies on the order of minutes. We deployed the first receiver in late 2018 and started the commissioning of the DAQ system. The DAQ system has been working without significant problems and already accumulates a considerable amount of the new receiver data from the commissioning observations. In this presentation, we summarize and report the status of the new systems.
- Published
- 2020
20. On-site performance of GroundBIRD, a CMB polarization telescope for large angular scale observations
- Author
-
Mitsuhiro Yoshida, Shunsuke Honda, Takuji Ikemitsu, Makoto Hattori, Tomohisa Uchida, Yutaro Sekimoto, Yonggil Jo, Makoto Minowa, Ricardo Génova-Santos, Junya Suzuki, Kenji Kiuchi, Tohru Taino, Chiko Otani, Eunil Won, Yoshinori Sueno, Masato Naruse, Junta Komine, Satoru Mima, N. Tomita, Hidesato Ishida, Michael W. Peel, M. Nagai, Kyung Min Lee, Ryo Koyano, Hiroki Kutsuma, Jihoon Choi, Rafael Rebolo-López, Yuta Tsuji, Jose Alberto Rubino-Martin, K. Karatsu, Joonhyeok Moon, Osamu Tajima, H. Ishitsuka, Masashi Hazumi, Shugo Oguri, and Takeo Nagasaki
- Subjects
Physics ,Gravitational wave ,media_common.quotation_subject ,Cosmic microwave background ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy ,Astrophysics::Cosmology and Extragalactic Astrophysics ,First light ,Polarization (waves) ,law.invention ,Telescope ,Observatory ,Sky ,law ,Reionization ,media_common - Abstract
GroundBIRD is a millimeter-wave telescope to observe the polarization patterns of the cosmic microwave background (CMB). The target science topics are primordial gravitational waves from cosmic inflation and reionization optical depth. Therefore, this telescope is designed to achieve the highest sensitivity at large angular scales, e = 6 - 300. For wide sky observations (~40% full-sky), scanning at a high rotation speed (120°/s) is important to remove atmospheric fluctuations. Microwave kinetic inductance detector (MKID) is utilized with the fast GroundBIRD rotation since its good time response. We have started the commissioning run at the Teide Observatory in the Canary Islands. We report the performance of the telescope, receiver, and data acquisition system, including cooling achievements, observations of astronomical objects, and observations taken during several days ahead of our main survey observations.
- Published
- 2020
21. Breadboard model of polarization modulator unit based on a continuously rotating half-wave plate for the low-frequency telescope of the LiteBIRD space mission
- Author
-
H. Enokida, Masashi Hazumi, Junji Yumoto, Doa Ahmad, T. Toda, K. Komatsu, Charles Hill, Hiroaki Imada, Yutaka Terao, Hiroyuki Ohsaki, Yosuke Iwata, Haruyuki Sakurai, Tomotake Matsumura, Hajime Sugai, Hirokazu Ishino, Nobuhiko Katayama, Kuniaki Konishi, Makoto Kuwata-Gonokami, Akito Kusaka, Yuki Sakurai, Yusuke Ishida, Shinya Sugiyama, T. Iida, Yoshiki Nomura, Ryota Takaku, and T. Ghigna
- Subjects
Physics ,business.industry ,Cosmic microwave background ,Astrophysics::Instrumentation and Methods for Astrophysics ,Low frequency ,Breadboard ,Polarization (waves) ,Waveplate ,law.invention ,Telescope ,Optics ,Computer Science::Systems and Control ,Achromatic lens ,law ,Broadband ,business - Abstract
We present a breadboard model development status of the polarization modulator unit (PMU) for a low-frequency telescope (LFT) of the LiteBIRD space mission. LiteBIRD is a next-generation cosmic microwave background polarization satellite to measure the primordial B-mode with the science goal of σr < 0.001. The baseline design of LiteBIRD consists of reflective low-frequency and refractive medium-and-high-frequency telescopes. Each telescope employs the PMU based on a continuous rotating half-wave plate (HWP) at the aperture. The PMU is a critical instrument for the LiteBIRD to achieve the science goal because it significantly suppresses 1/f noise and mitigates systematic uncertainties. The LiteBIRD LFT PMU consists of a broadband achromatic HWP and a cryogenic rotation mechanism. In this presentation, we discuss requirements, design and systematic studies of the PMU, and we report the development status of the broadband HWP and the space-compatible cryogenic rotation mechanism.
- Published
- 2020
22. Results of gravitational lensing and primordial gravitational waves from the POLARBEAR experiment
- Author
-
Peter A. R. Ade, Davide Poletti, C. Verges, Shunsuke Adachi, Kam Arnold, Yuji Chinone, A. Suzuki, Yuto Minami, Chang Feng, J. Peloton, Nathan Whitehorn, Oliver Jeong, N. W. Halverson, Yuki Inoue, T. Hamada, Akito Kusaka, Y. Zhou, A. Zahn, A. Cukierman, M. Aguilar, Carole Tucker, D. Beck, Nicoletta Krachmalnicoff, Rolando Dünner, Brian Keating, Paul L. Richards, Stephen M. Feeney, J. C. Groh, Julian Borrill, C. Tsai, Joshua Montgomery, Darcy Barron, Theodore Kisner, R. Stompor, G. Hall, D. Boettger, Tucker Elleflot, Josquin Errard, Frederick Matsuda, L. N. Lowry, D. Leon, Takayuki Tomaru, Reijo Keskitalo, Benjamin Westbrook, M. Navaroli, D. Kaneko, K. Cheung, Osamu Tajima, A. T. P. Pham, Eric V. Linder, Giulio Fabbian, A. J. Gilbert, L. Howe, Neil Goeckner-Wald, H. El-Bouhargani, Max Silva-Feaver, Hans P. Paar, M. A. Dobbs, S. Takatori, Federico Bianchini, Colin Ross, Christian L. Reichardt, John Groh, Praween Siritanasak, Julien Carron, Tomotake Matsumura, T. Fujino, Y. Akiba, H. Nishino, G. Jaehnig, Giuseppe Puglisi, Charles A. Hill, D. Tanabe, Andrew H. Jaffe, Masashi Hazumi, Nicholas Galitzki, Blake D. Sherwin, S. Kikuchi, Carlo Baccigalupi, E. M. Leitch, S. Beckman, N. Katayama, Grant Teply, A. Ducout, Aashrita Mangu, M. LeJeune, Adrian T. Lee, Nathan Stebor, Masaya Hasegawa, S. Takakura, Y. Segawa, Scott Chapman, Kevin T. Crowley, Chinone, Y, Adachi, S, Ade, P, Aguilar, M, Akiba, Y, Arnold, K, Baccigalupi, C, Barron, D, Beck, D, Beckman, S, Bianchini, F, Boettger, D, Borrill, J, Elbouhargani, H, Carron, J, Chapman, S, Cheung, K, Crowley, K, Cukierman, A, Dunner, R, Dobbs, M, Ducout, A, Elleflot, T, Errard, J, Fabbian, G, Feeney, S, Feng, C, Fujino, T, Galitzki, N, Gilbert, A, Goeckner-Wald, N, Groh, J, Hall, G, Halverson, N, Hamada, T, Hasegawa, M, Hazumi, M, Hill, C, Howe, L, Inoue, Y, Jaehnig, G, Jaffe, A, Jeong, O, Lejeune, M, Kaneko, D, Katayama, N, Keating, B, Keskitalo, R, Kikuchi, S, Kisner, T, Krachmalnicoff, N, Kusaka, A, Lee, A, Leitch, E, Leon, D, Linder, E, Lowry, L, Mangu, A, Matsuda, F, Matsumura, T, Minami, Y, Montgomery, J, Navaroli, M, Nishino, H, Paar, H, Peloton, J, Pham, A, Poletti, D, Puglisi, G, Reichardt, C, Richards, P, Ross, C, Segawa, Y, Sherwin, B, Silva-Feaver, M, Siritanasak, P, Stebor, N, Stompor, R, Suzuki, A, Tajima, O, Takakura, S, Takatori, S, Tanabe, D, Teply, G, Tomaru, T, Tsai, C, Tucker, C, Verges, C, Westbrook, B, Whitehorn, N, Zahn, A, Zhou, Y, AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), POLARBEAR, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
- Subjects
History ,satellite: Planck ,Cosmic microwave background ,gravitational lensing ,cosmic background radiation: polarization ,detector: noise ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Gravity waves ,power spectrum ,01 natural sciences ,Education ,Primary mirror ,symbols.namesake ,Settore FIS/05 - Astronomia e Astrofisica ,gravitation: lens ,Polarization ,0103 physical sciences ,Planck ,mirror ,010303 astronomy & astrophysics ,Physics ,COSMIC cancer database ,010308 nuclear & particles physics ,Gravitational wave ,Settore FIS/05 ,POLARBEAR experiment ,Gravitational effects ,gravitational radiation: primordial ,Astrophysics::Instrumentation and Methods for Astrophysics ,Polarization (waves) ,Galaxy ,Computer Science Applications ,Gravitational lens ,B-mode ,symbols ,[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc] ,galaxy - Abstract
POLARBEAR is a Cosmic Microwave Background radiation (CMB) polarization experiment that is located in the Atacama Desert in Chile. The scientific goals of the experiment are to characterize the B-mode signal from gravitational lensing, as well as to search for B-mode signals created by primordial gravitational waves (PGWs). Polarbear started observations in 2012 and has published a series of results. These include the first measurement of a nonzero B-mode angular auto-power spectrum at sub-degree scales where the dominant signal is gravitational lensing of the CMB. In addition, we have achieved the first measurement of crosscorrelation between the lensing potential, which was reconstructed from the CMB polarization data alone by Polarbear, and the cosmic shear field from galaxy shapes by the Subaru Hyper Suprime-Cam (HSC) survey. In 2014, we installed a continuously rotating half-wave plate (CRHWP) at the focus of the primary mirror to search for PGWs and demonstrated the control of low-frequency noise. We have found that the low-frequency B-mode power in the combined dataset with the Planck high-frequency maps is consistent with Galactic dust foreground, thus placing an upper limit on the tensor-to-scalar ratio of r < 0.90 at the 95% confidence level after marginalizing over the foregrounds.
- Published
- 2020
23. Concept design of low frequency telescope for CMB B-mode polarization satellite LiteBIRD
- Author
-
Mario G. Lattanzi, Carlo Baccigalupi, François Levrier, J. M. Duval, J. Austermann, M. Brilenkov, B. Thorne, Eiichiro Komatsu, D. Rambaud, T. Nagasaki, Peter Shirron, H. Imada, Nozomu Kogiso, Jeff Van Lanen, H. Takakura, T. Kawasaki, Lionel Duband, Ingunn Kathrine Wehus, Y. Hoshino, Tadayasu Dotani, Enrique Martinez-Gonzalez, Tucker Elleflot, S. Beckman, T. Kaga, Shogo Nakamura, A. Kato, Giorgio Savini, S. Bounissou, S. Mandelli, Peter Charles Hargrave, Francois Boulanger, Julien Grain, S. Realini, Reijo Keskitalo, Bruno Maffei, Y. Nagano, Davide Maino, D. Herman, Michael R. Vissers, B. Mot, R. Banerji, N. Katayama, James A. Beall, Johannes Hubmayr, Tomotake Matsumura, Shugo Oguri, G. Patanchon, S. Basak, S. Takakura, Créidhe O'Sullivan, Massimo Gervasi, Y. Takase, S. Stever, A. Carones, Raphael Flauger, F. J. Casas, T. de Haan, Yasuhiro Murata, T. Prouvé, Douglas Scott, P. Vielva, Toshiya Namikawa, Mayu Tominaga, Yuki Sakurai, Luca Lamagna, Eric Hivon, S. Nerval, Ken Ebisawa, Noriko Y. Yamasaki, Julian Borrill, Shingo Kashima, Hajime Sugai, M. De Petris, R. Nagata, Ted Kisner, D. W. Curtis, A. Mennella, P. de Bernardis, Alexandre E. Adler, Misao Sasaki, Jiansong Gao, Kam Arnold, K. Ganga, T. Ghigna, Kazunori Kohri, Ben Westbrook, R. Aurlien, T. Toda, Yasuhiro Takeda, U. Fuskeland, Alessandro Gruppuso, Giuseppe Puglisi, A. Ritacco, I. Kreykenbohm, C. Leloup, M. A. Dobbs, Jochen Weller, Joel N. Ullom, Chao-Lin Kuo, M. Migliaccio, Charles A. Hill, E. Allys, Nicola Vittorio, T. Yoshida, R. Takaku, Thomas Essinger-Hileman, Alessandro Paiella, J. Aumont, Berend Winter, Junji Yumoto, Yutaka Terao, Aritoki Suzuki, T. Hasebe, Toshiyuki Nishibori, A. Cukierman, P. Campeti, Y. Hirota, Alan J. Kogut, Josquin Errard, S. Sugiyama, L. P. L. Colombo, Anthony Challinor, Yohei Kobayashi, A. Kushino, Gemma Luzzi, Makoto Nagai, M. Sandri, Christopher Raum, Giuseppe D'Alessandro, Masashi Hazumi, Masaya Hasegawa, Renée Hlozek, Silvia Masi, Joseph Seibert, F. Piacentini, J. A. Murphy, Greg Jaehnig, Jose Alberto Rubino-Martin, Davide Poletti, Michael L. Brown, Blake D. Sherwin, Daniela Paoletti, Joshua Montgomery, F. Columbro, Gianluca Morgante, J. Bermejo, M. Tomasi, Haruki Nishino, P. Diego-Palazuelos, Hirokazu Ishino, T. Iida, Kazuhisa Mitsuda, Haruyuki Sakurai, Keith L. Thompson, Javier Cubas, Neil Trappe, Keisuke Shinozaki, Adrian T. Lee, Hiroyuki Ohsaki, Martina Gerbino, D. Herranz, M. Tsuji, Marco Bersanelli, Nadia Dachlythra, M. Russell, E. Gjerløw, Maresuke Shiraishi, E. de la Hoz, Eric V. Linder, Graeme Smecher, Eric R. Switzer, Erminia Calabrese, G. Roudil, Mario Zannoni, T. Maciaszek, L. Pagano, D. Auguste, Frank Grupp, Kosei Ishimura, Fabrizio Villa, Kuniaki Konishi, I. S. Ohta, G. Signorelli, J. Bonis, A. Tartari, Jun-ichi Suzuki, R. B. Barreiro, J. F. Cliche, M. Maki, Douglas H Beck, Ricardo Genova-Santos, A. J. Banday, M. Galloway, T. L. Svalheim, Fabio Finelli, L. A. Montier, H. K. Eriksen, Nicoletta Krachmalnicoff, Karen C. Cheung, Cristian Franceschet, Matthieu Tristram, V. Chan, G. Polenta, Clive Dickinson, N. W. Halverson, Kiyotomo Ichiki, Yuji Chinone, Mathieu Remazeilles, Giampaolo Pisano, Jon E. Gudmundsson, J. Peloton, M. Reinecke, Shannon M. Duff, Carole Tucker, Y. Minanmi, Gene C. Hilton, Martin Bucher, P. A. R. Ade, G. Vermeulen, K. Komatsu, Norio Okada, Thibaut Louis, Sophie Henrot-Versille, Edward J. Wollack, Paolo Natoli, Hideo Ogawa, Jörn Wilms, E. Taylor, Andrea Zonca, Makoto Hattori, Radek Stompor, Masahiro Tsujimoto, Yutaro Sekimoto, Marcin Gradziel, H. Thommesen, Zmuidzinas, Jonas, Sekimoto, Y, Ade, P, Adler, A, Allys, E, Arnold, K, Auguste, D, Aumont, J, Aurlien, R, Austermann, J, Baccigalupi, C, Banday, A, Banerji, R, Barreiro, R, Basak, S, Beall, J, Beck, D, Beckman, S, Bermejo, J, de Bernardis, P, Bersanelli, M, Bonis, J, Borrill, J, Boulanger, F, Bounissou, S, Brilenkov, M, Brown, M, Bucher, M, Calabrese, E, Campeti, P, Carones, A, Casas, F, Challinor, A, Chan, V, Cheung, K, Chinone, Y, Cliche, J, Colombo, L, Columbro, F, Cubas, J, Cukierman, A, Curtis, D, D'Alessandro, G, Dachlythra, N, De Petris, M, Dickinson, C, Diego-Palazuelos, P, Dobbs, M, Dotani, T, Duband, L, Duff, S, Duval, J, Ebisawa, K, Elleflot, T, Eriksen, H, Errard, J, Essinger-Hileman, T, Finelli, F, Flauger, R, Franceschet, C, Fuskeland, U, Galloway, M, Ganga, K, Gao, J, Genova-Santos, R, Gerbino, M, Gervasi, M, Ghigna, T, Gjerløw, E, Gradziel, M, Grain, J, Grupp, F, Gruppuso, A, Gudmundsson, J, de Haan, T, Halverson, N, Hargrave, P, Hasebe, T, Hasegawa, M, Hattori, M, Hazumi, M, Henrot-Versillé, S, Herman, D, Herranz, D, Hill, C, Hilton, G, Hirota, Y, Hivon, E, Hlozek, R, Hoshino, Y, de la Hoz, E, Hubmayr, J, Ichiki, K, Iida, T, Imada, H, Ishimura, K, Ishino, H, Jaehnig, G, Kaga, T, Kashima, S, Katayama, N, Kato, A, Kawasaki, T, Keskitalo, R, Kisner, T, Kobayashi, Y, Kogiso, N, Kogut, A, Kohri, K, Komatsu, E, Komatsu, K, Konishi, K, Krachmalnicoff, N, Kreykenbohm, I, Kuo, C, Kushino, A, Lamagna, L, Lanen, J, Lattanzi, M, Lee, A, Leloup, C, Levrier, F, Linder, E, Louis, T, Luzzi, G, Maciaszek, T, Maffei, B, Maino, D, Maki, M, Mandelli, S, Martinez-Gonzalez, E, Masi, S, Matsumura, T, Mennella, A, Migliaccio, M, Minanmi, Y, Mitsuda, K, Montgomery, J, Montier, L, Morgante, G, Mot, B, Murata, Y, Murphy, J, Nagai, M, Nagano, Y, Nagasaki, T, Nagata, R, Nakamura, S, Namikawa, T, Natoli, P, Nerval, S, Nishibori, T, Nishino, H, O'Sullivan, C, Ogawa, H, Oguri, S, Osaki, H, Ohta, I, Okada, N, Pagano, L, Paiella, A, Paoletti, D, Patanchon, G, Peloton, J, Piacentini, F, Pisano, G, Polenta, G, Poletti, D, Prouvé, T, Puglisi, G, Tambaud, D, Raum, C, Realini, S, Reinecke, M, Remazeilles, M, Ritacco, A, Roudil, G, Rubino-Martin, J, Russell, M, Sakurai, H, Sakurai, Y, Sandri, M, Sasaki, M, Savini, G, Scott, D, Seibert, J, Sherwin, B, Shinozaki, K, Shiraishi, M, Shirron, P, Signorelli, G, Smecher, G, Stever, S, Stompor, R, Sugai, H, Sugiyama, S, Suzuki, A, Suzuki, J, Svalheim, T, Switzer, E, Takaku, R, Takakura, H, Takakura, S, Takase, Y, Takeda, Y, Tartari, A, Taylor, E, Terao, Y, Thommesen, H, Thompson, K, Thorne, B, Toda, T, Tomasi, M, Tominaga, M, Trappe, N, Tristram, M, Tsuji, M, Tsujimoto, M, Tucker, C, Ullom, J, Vermeulen, G, Vielva, P, Villa, F, Vissers, M, Vittorio, N, Wehus, I, Weller, J, Westbrook, B, Wilms, J, Winter, B, Wollack, E, Yamasaki, N, Yoshida, T, Yumoto, J, Zannoni, M, Zonca, A, Astrophysique, Laboratoire de physique de l'ENS - ENS Paris (LPENS (UMR_8023)), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Théorique de l'ENS (LPTENS), Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Théorique et Hautes Energies (LPTHE), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS), Observatoire de Paris - Site de Paris (OP), Centre National de la Recherche Scientifique (CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Centre National d’Études Spatiales [Paris] (CNES), Centre National d'Études Spatiales [Toulouse] (CNES), Institut Néel (NEEL), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), LiteBIRD, Laboratoire de physique de l'ENS - ENS Paris (LPENS), Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Département de Physique de l'ENS-PSL, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Département de Physique de l'ENS-PSL, Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Département des Systèmes Basses Températures (DSBT ), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Laboratoire des Cryoréfrigérateurs et Cryogénie Spatiale (LCCS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Laboratoire de Physique Théorique de l'ENS [École Normale Supérieure] (LPTENS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Hélium : du fondamental aux applications (NEEL - HELFA), and Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Aperture ,FOS: Physical sciences ,7. Clean energy ,cryogenic telescope ,law.invention ,Cosmic microwave background ,Entrance pupil ,Telescope ,FIS/05 - ASTRONOMIA E ASTROFISICA ,Optics ,millimeter-wave polarization ,space program ,Settore FIS/05 - Astronomia e Astrofisica ,law ,Angular resolution ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Physics ,Stray light ,business.industry ,Astrophysics::Instrumentation and Methods for Astrophysics ,Polarization (waves) ,Lens (optics) ,Cardinal point ,Astrophysics - Instrumentation and Methods for Astrophysics ,business ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
LiteBIRD has been selected as JAXA's strategic large mission in the 2020s, to observe the cosmic microwave background (CMB) $B$-mode polarization over the full sky at large angular scales. The challenges of LiteBIRD are the wide field-of-view (FoV) and broadband capabilities of millimeter-wave polarization measurements, which are derived from the system requirements. The possible paths of stray light increase with a wider FoV and the far sidelobe knowledge of $-56$ dB is a challenging optical requirement. A crossed-Dragone configuration was chosen for the low frequency telescope (LFT : 34--161 GHz), one of LiteBIRD's onboard telescopes. It has a wide field-of-view ($18^\circ \times 9^\circ$) with an aperture of 400 mm in diameter, corresponding to an angular resolution of about 30 arcminutes around 100 GHz. The focal ratio f/3.0 and the crossing angle of the optical axes of 90$^\circ$ are chosen after an extensive study of the stray light. The primary and secondary reflectors have rectangular shapes with serrations to reduce the diffraction pattern from the edges of the mirrors. The reflectors and structure are made of aluminum to proportionally contract from warm down to the operating temperature at $5\,$K. A 1/4 scaled model of the LFT has been developed to validate the wide field-of-view design and to demonstrate the reduced far sidelobes. A polarization modulation unit (PMU), realized with a half-wave plate (HWP) is placed in front of the aperture stop, the entrance pupil of this system. A large focal plane with approximately 1000 AlMn TES detectors and frequency multiplexing SQUID amplifiers is cooled to 100 mK. The lens and sinuous antennas have broadband capability. Performance specifications of the LFT and an outline of the proposed verification plan are presented., Comment: 21 pages, 14 figures
- Published
- 2020
24. A measurement of the CMB E-mode angular power spectrum at subdegree scales from 670 square degrees of POLARBEAR data
- Author
-
Osamu Tajima, T. Fujino, Andrew H. Jaffe, Scott Chapman, Eric V. Linder, S. Kikuchi, N. Katayama, D. Leon, Masashi Hazumi, Oliver Jeong, D. Tanabe, Grant Teply, Nicholas Galitzki, Tucker Elleflot, S. Takakura, Christian L. Reichardt, Praween Siritanasak, Josquin Errard, Akito Kusaka, Giulio Fabbian, John Groh, Brian Keating, Federico Bianchini, Ben Westbrook, M. A. O. Aguilar Faúndez, Shunsuke Adachi, Ted Kisner, K. Cheung, Adrian T. Lee, Y. Zhou, C. Tsai, Neil Goeckner-Wald, Frederick Matsuda, Tomotake Matsumura, D. Beck, Kam Arnold, Masaya Hasegawa, S. Takatori, Darcy Barron, Carlo Baccigalupi, L. N. Lowry, Davide Poletti, Clara Vergès, Kevin D. Crowley, G. Hall, M. Navaroli, Haruki Nishino, Yuto Minami, Haruaki Hirose, A. T. P. Pham, Chang Feng, Yuji Chinone, H. El Bouhargani, Y. Segawa, M. A. Dobbs, Daisuke Kaneko, AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), APC - Cosmologie, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Polarbear, Adachi, S, Aguilar Faundez, M, Arnold, K, Baccigalupi, C, Barron, D, Beck, D, Bianchini, F, Chapman, S, Cheung, K, Chinone, Y, Crowley, K, Dobbs, M, El Bouhargani, H, Elleflot, T, Errard, J, Fabbian, G, Feng, C, Fujino, T, Galitzki, N, Goeckner-Wald, N, Groh, J, Hall, G, Hasegawa, M, Hazumi, M, Hirose, H, Jaffe, A, Jeong, O, Kaneko, D, Katayama, N, Keating, B, Kikuchi, S, Kisner, T, Kusaka, A, Lee, A, Leon, D, Linder, E, Lowry, L, Matsuda, F, Matsumura, T, Minami, Y, Navaroli, M, Nishino, H, Pham, A, Poletti, D, Reichardt, C, Segawa, Y, Siritanasak, P, Tajima, O, Takakura, S, Takatori, S, Tanabe, D, Teply, G, Tsai, C, Verges, C, Westbrook, B, Zhou, Y, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
- Subjects
cosmological model ,010504 meteorology & atmospheric sciences ,Cosmic microwave background ,cosmic background radiation: polarization ,detector: noise ,Astrophysics ,cosmic background radiation ,01 natural sciences ,Physical Chemistry ,Atomic ,expansion: multipole ,Cosmology ,Particle and Plasma Physics ,Cosmic microwave background radiation ,Big Bang nucleosynthesis ,polarbear data ,polarization: power spectrum ,010303 astronomy & astrophysics ,helium: primordial ,Physics ,Hubble constant ,symbols ,astro-ph.CO ,power spectrum: angular dependence ,Astronomical and Space Sciences ,Physical Chemistry (incl. Structural) ,Astrophysics - Cosmology and Nongalactic Astrophysics ,satellite: Planck ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,nucleosynthesis: big bang ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astronomy & Astrophysics ,symbols.namesake ,Settore FIS/05 - Astronomia e Astrofisica ,statistical analysis ,Nucleosynthesis ,0103 physical sciences ,Nuclear ,Planck ,cosmic background radiation: power spectrum ,0105 earth and related environmental sciences ,Spectral density ,Molecular ,Astronomy and Astrophysics ,Abundance of the chemical elements ,detector: sensitivity ,Space and Planetary Science ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Hubble's law - Abstract
We report a measurement of the E-mode polarization power spectrum of the cosmic microwave background (CMB) using 150 GHz data taken from July 2014 to December 2016 with the POLARBEAR experiment. We reach an effective polarization map noise level of $32\,\mu\mathrm{K}$-$\mathrm{arcmin}$ across an observation area of 670 square degrees. We measure the EE power spectrum over the angular multipole range $500 \leq \ell, Comment: 15 pages, 5 figures, submitted to ApJ
- Published
- 2020
- Full Text
- View/download PDF
25. Frequency-Domain Multiplexing Readout with a Self-Trigger System for Pulse Signals from Kinetic Inductance Detectors
- Author
-
Nobuaki Sato, K. Sakai, Yasuhiro Yamada, Satoshi Kohjiro, N. Hidehira, Fuminori Hirayama, A. Kibayashi, Hirotake Yamamori, Y. Kida, K. Komatsu, Hirokazu Ishino, and Masashi Hazumi
- Subjects
Physics ,Phonon detection ,010308 nuclear & particles physics ,business.industry ,Bandwidth (signal processing) ,Time constant ,Condensed Matter Physics ,01 natural sciences ,Multiplexing ,Atomic and Molecular Physics, and Optics ,Kinetic inductance ,Article ,Resonator ,Kinetic inductance detectors ,Optics ,Frequency domain ,0103 physical sciences ,General Materials Science ,Frequency-domain multiplexing readout ,Self-trigger system ,010306 general physics ,business ,Microwave ,Data transmission - Abstract
We present the development of a frequency-domain multiplexing readout of kinetic inductance detectors (KIDs) for pulse signals with a self-trigger system. The KIDs consist of an array of superconducting resonators that have different resonant frequencies individually, allowing us to read out multiple channels in the frequency domain with a single wire using a microwave-frequency comb. The energy deposited to the resonators break Cooper pairs, changing the kinetic inductance and, hence, the amplitude and the phase of the probing microwaves. For some applications such as X-ray detections, the deposited energy is detected as a pulse signal shaped by the time constants of the quasiparticle lifetime, the resonator quality factor, and the ballistic phonon lifetime in the substrate, ranging from microseconds to milliseconds. A readout system commonly used converts the frequency-domain data to the time-domain data. For the short pulse signals, the data rate may exceed the data transfer bandwidth, as the short time constant pulses require us to have a high sampling rate. In order to overcome this circumstance, we have developed a KID readout system that contains a self-trigger system to extract relevant signal data and reduces the total data rate with a commercial off-the-shelf FPGA board. We have demonstrated that the system can read out pulse signals of 15 resonators simultaneously with about 10 Hz event rate by irradiating \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}α particles from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{241}$$\end{document}241Am to the silicon substrate on whose surface aluminum KID resonators are formed.
- Published
- 2018
26. Development of an Optical Coupling with Ground-Side Absorption for Antenna-Coupled Kinetic Inductance Detectors
- Author
-
A. Kibayashi, H. Ishitsuka, Masashi Hazumi, Hiroki Watanabe, Osamu Tajima, Hirokazu Ishino, Nobuaki Sato, Chiko Otani, Satoru Mima, N. Tomita, M. Yoshida, and Shugo Oguri
- Subjects
010302 applied physics ,Materials science ,business.industry ,Kinetic inductance detectors ,01 natural sciences ,Optical coupling ,Kinetic inductance ,Electronic, Optical and Magnetic Materials ,0103 physical sciences ,Electronic engineering ,Optoelectronics ,Electrical and Electronic Engineering ,Antenna (radio) ,010306 general physics ,Absorption (electromagnetic radiation) ,business - Published
- 2017
27. Internal delensing of cosmic microwave background polarization B-modes with the POLARBEAR experiment
- Author
-
Kam Arnold, Grant Teply, D. Leon, R. Stompor, Neil Goeckner-Wald, Yuji Chinone, D. Beck, J. Borrill, H. El Bouhargani, Kevin T. Crowley, S. Takatori, Toshiya Namikawa, M. A. O. Aguilar Faúndez, Max Silva-Feaver, M. Navaroli, Christian L. Reichardt, J. Peloton, Tucker Elleflot, Josquin Errard, Darcy Barron, Davide Poletti, Osamu Tajima, K. Cheung, C. Verges, L. N. Lowry, N. Katayama, Federico Bianchini, Eric V. Linder, Giulio Fabbian, Praween Siritanasak, Yuto Minami, Brian Keating, Julien Carron, L. Howe, Shunsuke Adachi, Tomotake Matsumura, A. T. P. Pham, Y. Segawa, Carlo Baccigalupi, Aamir Ali, Akito Kusaka, Masaya Hasegawa, Frederick Matsuda, Aaron Lee, Chang Feng, Giuseppe Puglisi, Charles A. Hill, T. Fujino, Y. Akiba, D. Tanabe, S. Kikuchi, H. Nishino, Masashi Hazumi, Blake D. Sherwin, AstroParticule et Cosmologie (APC (UMR_7164)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), Laboratoire de l'Accélérateur Linéaire (LAL), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), POLARBEAR, Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Adachi, S, Aguilar Faundez, M, Akiba, Y, Ali, A, Arnold, K, Baccigalupi, C, Barron, D, Beck, D, Bianchini, F, Borrill, J, Carron, J, Cheung, K, Chinone, Y, Crowley, K, El Bouhargani, H, Elleflot, T, Errard, J, Fabbian, G, Feng, C, Fujino, T, Goeckner-Wald, N, Hasegawa, M, Hazumi, M, Hill, C, Howe, L, Katayama, N, Keating, B, Kikuchi, S, Kusaka, A, Lee, A, Leon, D, Linder, E, Lowry, L, Matsuda, F, Matsumura, T, Minami, Y, Namikawa, T, Navaroli, M, Nishino, H, Peloton, J, Pham, A, Poletti, D, Puglisi, G, Reichardt, C, Segawa, Y, Sherwin, B, Silva-Feaver, M, Siritanasak, P, Stompor, R, Tajima, O, Takatori, S, Tanabe, D, Teply, G, Verges, C, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), APC - Cosmologie, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Cosmic Microwave Background Polarization ,Cosmic microwave background ,FOS: Physical sciences ,General Physics and Astronomy ,cosmic background radiation: polarization ,General Relativity and Quantum Cosmology (gr-qc) ,Gravitation and Astrophysics ,01 natural sciences ,General Relativity and Quantum Cosmology ,B-mode: primordial ,Settore FIS/05 - Astronomia e Astrofisica ,QB0980 ,0103 physical sciences ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,010306 general physics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,QC ,QB ,Physics ,Settore FIS/05 ,Polarization (waves) ,inflation: model ,Computational physics ,POLARBEAR Experiment ,[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc] ,Instrumentation and Methods for Astrophysics ,Variance reduction ,Cosmology and Nongalactic Astrophysics ,Astrophysics - Instrumentation and Methods for Astrophysics ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Using only cosmic microwave background polarization data from the POLARBEAR experiment, we measure $B$-mode polarization delensing on subdegree scales at more than $5\sigma$ significance. We achieve a 14% $B$-mode power variance reduction, the highest to date for internal delensing, and improve this result to 2% by applying for the first time an iterative maximum a posteriori delensing method. Our analysis demonstrates the capability of internal delensing as a means of improving constraints on inflationary models, paving the way for the optimal analysis of next-generation primordial $B$-mode experiments., Comment: Matches version published in Physical Review Letters
- Published
- 2019
28. A Measurement of the Degree Scale CMB B-mode Angular Power Spectrum with POLARBEAR
- Author
-
Julien Carron, M. A. Dobbs, C. Tsai, Dominic Beck, D. Leon, Ted Kisner, Aashrita Mangu, D. Boettger, Christian L. Reichardt, A. T. P. Pham, Kam Arnold, Akito Kusaka, Nicoletta Krachmalnicoff, T. Hamada, John Groh, S. Beckman, Josquin Errard, Ben Westbrook, Nathan Stebor, Neil Goeckner-Wald, Reijo Keskitalo, Daisuke Kaneko, Greg Jaehnig, Kevin T. Crowley, S. Takatori, Masaya Hasegawa, D. Tanabe, Tucker Elleflot, Giulio Fabbian, L. Howe, A. Cukierman, T. Fujino, Y. Zhou, S. Takakura, Eric V. Linder, Julian Borrill, N. Katayama, Yuki Inoue, Davide Poletti, Praween Siritanasak, Haruki Nishino, Yuto Minami, Yuji Chinone, Y. Segawa, H. El Bouhargani, Osamu Tajima, Aritoki Suzuki, N. W. Halverson, Darcy Barron, Masashi Hazumi, L. N. Lowry, G. Hall, Frederick Matsuda, Federico Bianchini, Scott Chapman, M. Navaroli, R. Stompor, Nicholas Galitzki, Clara Vergès, Maximiliano Silva-Feaver, Oliver Jeong, M. A. O. Aguilar Faúndez, Grant Teply, Brian Keating, Shunsuke Adachi, S. Kikuchi, K. Cheung, Adrian T. Lee, Giuseppe Puglisi, Charles A. Hill, Chang Feng, C. Baccigalupi, AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), POLARBEAR, Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), Adachi, S, Aguilar Faundez, M, Arnold, K, Baccigalupi, C, Barron, D, Beck, D, Beckman, S, Bianchini, F, Boettger, D, Borrill, J, Carron, J, Chapman, S, Cheung, K, Chinone, Y, Crowley, K, Cukierman, A, Dobbs, M, Bouhargani, H, Elleflot, T, Errard, J, Fabbian, G, Feng, C, Fujino, T, Galitzki, N, Goeckner-Wald, N, Groh, J, Hall, G, Halverson, N, Hamada, T, Hasegawa, M, Hazumi, M, Hill, C, Howe, L, Inoue, Y, Jaehnig, G, Jeong, O, Kaneko, D, Katayama, N, Keating, B, Keskitalo, R, Kikuchi, S, Kisner, T, Krachmalnicoff, N, Kusaka, A, Lee, A, Leon, D, Linder, E, Lowry, L, Mangu, A, Matsuda, F, Minami, Y, Navaroli, M, Nishino, H, Pham, A, Poletti, D, Puglisi, G, Reichardt, C, Segawa, Y, Silva-Feaver, M, Siritanasak, P, Stebor, N, Stompor, R, Suzuki, A, Tajima, O, Takakura, S, Takatori, S, Tanabe, D, Teply, G, Tsai, C, Verges, C, Westbrook, B, Zhou, Y, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), APC - Cosmologie, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Cosmic microwave background radiation ,Cosmic inflation ,Cosmology ,Observational cosmology ,cosmological model ,010504 meteorology & atmospheric sciences ,Cosmic microwave background ,Astrophysics ,01 natural sciences ,Atomic ,Physical Chemistry ,Spectral line ,thermal ,Cosmic microwave background radiationCosmic inflationCosmologyObservational cosmology ,Particle and Plasma Physics ,polarization: power spectrum ,010303 astronomy & astrophysics ,media_common ,Physics ,Settore FIS/05 ,Polarization (waves) ,symbols ,astro-ph.CO ,power spectrum: angular dependence ,Astronomical and Space Sciences ,Physical Chemistry (incl. Structural) ,Astrophysics - Cosmology and Nongalactic Astrophysics ,data analysis method ,noise ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,satellite: Planck ,media_common.quotation_subject ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astronomy & Astrophysics ,frequency: high ,cosmic background radiation: B-mode ,symbols.namesake ,Settore FIS/05 - Astronomia e Astrofisica ,gravitation: lens ,statistical analysis ,0103 physical sciences ,Nuclear ,Planck ,cosmic background radiation: power spectrum ,inflation ,0105 earth and related environmental sciences ,gravitational radiation: primordial ,gravitational radiation ,Spectral density ,Molecular ,Astronomy and Astrophysics ,Square degree ,detector: sensitivity ,Space and Planetary Science ,Sky ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
We present a measurement of the $B$-mode polarization power spectrum of the cosmic microwave background (CMB) using taken from July 2014 to December 2016 with the POLARBEAR experiment. The CMB power spectra are measured using observations at 150 GHz with an instantaneous array sensitivity of $\mathrm{NET}_\mathrm{array}=23\, \mu \mathrm{K} \sqrt{\mathrm{s}}$ on a 670 square degree patch of sky centered at (RA, Dec)=($+0^\mathrm{h}12^\mathrm{m}0^\mathrm{s},-59^\circ18^\prime$). A continuously rotating half-wave plate is used to modulate polarization and to suppress low-frequency noise. We achieve $32\,\mu\mathrm{K}$-$\mathrm{arcmin}$ effective polarization map noise with a knee in sensitivity of $\ell = 90$, where the inflationary gravitational wave signal is expected to peak. The measured $B$-mode power spectrum is consistent with a $\Lambda$CDM lensing and single dust component foreground model over a range of multipoles $50 \leq \ell \leq 600$. The data disfavor zero $C_\ell^{BB}$ at $2.2\sigma$ using this $\ell$ range of POLARBEAR data alone. We cross-correlate our data with Planck high frequency maps and find the low-$\ell$ $B$-mode power in the combined dataset to be consistent with thermal dust emission. We place an upper limit on the tensor-to-scalar ratio $r < 0.90$ at 95% confidence level after marginalizing over foregrounds.
- Published
- 2019
29. CMB-S4 Decadal Survey APC White Paper
- Author
-
Shaul Hanany, Georges Obied, J. Colin Hill, Thomas Cecil, Keith L. Thompson, Adam Anderson, Michael L. Brown, Doug Johnstone, Lorenzo Moncelsi, Erminia Calabrese, Howard Hui, Haruki Nishino, Sara M. Simon, James Kerby, Theodore Kisner, K. T. Story, Moritz Münchmeyer, Aritoki Suzuki, Joseph J. Mohr, Adrian T. Lee, Bradley R. Johnson, Sanah Bhimani, W. C. Jones, A. E. Lowitz, Nathan Whitehorn, Valentine Novosad, Marcelo A. Alvarez, Anze Slosar, Kam Arnold, Kevork N. Abazajian, Mustafa A. Amin, Evan Grohs, Abigail G. Vieregg, Siavash Yasini, Mathew S. Madhavacheril, Julien Carron, Ritoban Basu Thakur, Jean-Baptiste Melin, Shawn W. Henderson, Asantha Cooray, Chris Stoughton, Peter Timbie, Matteo Bonato, Ki Won Yoon, Blakesley Burkhart, Salman Habib, T. Natoli, Jacques Delabrouille, Carlo Baccigalupi, Victor Guarino, Steven W. Allen, Kathy Bailey, Aurelien A. Fraisse, Osamu Tajima, Silvia Galli, Denis Barkats, Antony Lewis, Ari Cukierman, Johannes Hubmayr, Marilena LoVerde, Erik Shirokoff, G. P. Holder, James G. Bartlett, James Yeck, Dale Li, N. W. Halverson, Graeme E. Addison, Adam Mantz, Matthieu Tristram, Laura Newburgh, Sarah Shandera, Alessandro Schillaci, Lindsey Bleem, Raphael Flauger, Marcel Schmittfull, S. Pandey, Kent D. Irwin, N. Kurita, Gregory S. Tucker, Matthew Hasselfield, Reijo Keskitalo, Levon Pogosian, Rachel S. Somerville, C. D. Sheehy, Srini Rajagopalan, Jesse Treu, Giuseppe Puglisi, Eric J. Baxter, John M Kovac, Emmanuel Schaan, Marcel Demarteau, Akito Kusaka, Suzanne T. Staggs, Kirit Karkare, Josquin Errard, Thomas Essinger-Hileman, Anne Lähteenmäki, Mattia Negrello, Toshiya Namikawa, Zhilei Xu, Mark Halpern, Simone Ferraro, Edo Berger, François R. Bouchet, Zeeshan Ahmed, Frederick Matsuda, Joseph Eimer, Alexandra S. Rahlin, W. L. Kimmy Wu, Giulio Fabbian, Chao-Lin Kuo, Christian L. Reichardt, Marius Millea, Stephen Padin, A. T. Crites, Joel Meyers, William Edwards, R. Gualtieri, Jason W. Henning, Arthur Kosowsky, Edward J. Wollack, W. L. Holzapfel, Michael D. Niemack, John E. Carlstrom, Rachel Bean, Cora Dvorkin, Ely D. Kovetz, David Alonso, Nicholas Battaglia, Sean Bryan, Gianfranco De Zotti, Anthony Challinor, Graca Rocha, Federico Nati, Jeffrey P. Filippini, Katrin Heitmann, Eric V. Linder, Antony A. Stark, Martin Nordby, Grant Teply, Benjamin Saliwanchik, Peter Adshead, P. Daniel Meerburg, Victoria Calafut, Francis-Yan Cyr-Racine, M.E. Huffer, Chris Bebek, Lloyd Knox, Masashi Hazumi, Eleonora Di Valentino, Natalie A. Roe, Nicholas Galitzki, Masaya Hasegawa, Sarah Kernovsky, Victor Buza, Darcy Barron, C. Pryke, Tijmen de Haan, Tony Mroczkowski, Vera Gluscevic, Andrea Zonca, Daniel Green, Kimberly K. Boddy, Srinivasan Raghunathan, Jeff McMahon, J. E. Ruhl, Steve Kuhlmann, Blake D. Sherwin, Joaquin Vieira, Peter S. Barry, Daisuke Nagai, Karen Byrum, Neelima Sehgal, Murdock Gilchriese, Marco Raveri, M. Tomasi, Douglas Scott, James J. Bock, Martin White, Chang Feng, Ken Ganga, Martina Gerbino, Suvodip Mukherjee, Radek Stompor, Gensheng Wang, B. Racine, Mark Reichanadter, Paul O'Connor, Alexander van Engelen, Kevin M. Huffenberger, Maria Salatino, Kathleen Harrington, Nobuhiko Katayama, Bradford Benson, Daniel Grin, Colin A. Bischoff, Charles R. Lawrence, Mark Vogelsberger, Shannon M. Duff, Scott Watson, Sebastian Bocquet, C. Umiltà, Andrei V. Frolov, C. L. Chang, Johanna Nagy, J. Richard Bond, Philip Daniel Mauskopf, B. Flaugher, Robert R. Caldwell, Mark J. Devlin, Renée Hlozek, Anirban Roy, Elena Pierpaoli, Amy N. Bender, Bruce Partridge, E. Y. Young, Matt Dobbs, Julian Borrill, Adriaan J. Duivenvoorden, Yuji Chinone, Mathieu Remazeilles, T. M. Crawford, Jon E. Gudmundsson, Hsiao-Mei Sherry Cho, and Gunther Haller
- Subjects
White paper ,010308 nuclear & particles physics ,0103 physical sciences ,Cosmic microwave background ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy ,Environmental science ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Project plan ,010306 general physics ,01 natural sciences - Abstract
We provide an overview of the science case, instrument configuration and project plan for the next-generation ground-based cosmic microwave background experiment CMB-S4, for consideration by the 2020 Decadal Survey.
- Published
- 2019
30. Deployment of Polarbear-2A
- Author
-
Chang Feng, Radek Stompor, Takayuki Tomaru, Rolando Dünner, Josquin Errard, D. Tanabe, Praween Siritanasak, N. Stebor, Julien Carron, D. Leon, Davide Poletti, K. Cheung, C. Tsai, S. Takakura, Grant Teply, Yuto Minami, Yuki Inoue, Stephen M. Feeney, Yuji Chinone, Frederick Matsuda, D. Beck, Akito Kusaka, Y. Akiba, A. Suzuki, Nicoletta Krachmalnicoff, Adrian T. Lee, M. Aguilar Faúndez, J. Peloton, Colin Ross, Osamu Tajima, D. Boettger, B. Westbrook, A. T. P. Pham, M. Navaroli, N. W. Halverson, Y. Zhou, Federico Bianchini, A. Cukierman, Aashrita Mangu, Nobuhiko Katayama, T. Hamada, Tucker Elleflot, Y. Segawa, Masaya Hasegawa, G. Hall, Julian Borrill, Peter A. R. Ade, Eric V. Linder, Giulio Fabbian, H. Nishino, G. Jaehnig, Giuseppe Puglisi, Charles A. Hill, Shunsuke Adachi, S. Takatori, L. Howe, A. J. Gilbert, H. El-Bouhargani, Christian L. Reichardt, Kam Arnold, John Groh, Masashi Hazumi, Neil Goeckner-Wald, Nicholas Galitzki, S. Beckman, Brian Keating, M. A. Dobbs, Carlo Baccigalupi, Clara Vergès, Theodore Kisner, Reijo Keskitalo, Daisuke Kaneko, T. Fujino, S. Kikuchi, Darcy Barron, L. N. Lowry, Scott Chapman, Maximiliano Silva-Feaver, Oliver Jeong, Kevin T. Crowley, AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Kaneko, D, Adachi, S, Ade, P, Aguilar Faundez, M, Akiba, Y, Arnold, K, Baccigalupi, C, Barron, D, Beck, D, Beckman, S, Bianchini, F, Boettger, D, Borrill, J, Carron, J, Chapman, S, Cheung, K, Chinone, Y, Crowley, K, Cukierman, A, Dobbs, M, Dunner, R, El-Bouhargani, H, Elleflot, T, Errard, J, Fabbian, G, Feeney, S, Feng, C, Fujino, T, Galitzki, N, Gilbert, A, Goeckner-Wald, N, Groh, J, Hall, G, Halverson, N, Hamada, T, Hasegawa, M, Hazumi, M, Hill, C, Howe, L, Inoue, Y, Jaehnig, G, Jeong, O, Katayama, N, Keating, B, Keskitalo, R, Kikuchi, S, Kisner, T, Krachmalnicoff, N, Kusaka, A, Lee, A, Leon, D, Linder, E, Lowry, L, Mangu, A, Matsuda, F, Minami, Y, Navaroli, M, Nishino, H, Peloton, J, Pham, A, Poletti, D, Puglisi, G, Reichardt, C, Ross, C, Segawa, Y, Silva-Feaver, M, Siritanasak, P, Stebor, N, Stompor, R, Suzuki, A, Tajima, O, Takakura, S, Takatori, S, Tanabe, D, Teply, G, Tomaru, T, Tsai, C, Verges, C, Westbrook, B, Zhou, Y, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
- Subjects
[PHYS]Physics [physics] ,Settore FIS/05 ,Gravitational wave ,Cosmic microwave background ,Millimeter wave ,First light ,CMB ,Condensed Matter Physics ,7. Clean energy ,01 natural sciences ,Atomic and Molecular Physics, and Optics ,010305 fluids & plasmas ,Microwave emission ,Settore FIS/05 - Astronomia e Astrofisica ,TES bolometer ,Planet ,Software deployment ,0103 physical sciences ,Extremely high frequency ,B-mode polarization ,General Materials Science ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,010306 general physics ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Remote sensing - Abstract
International audience; Polarbear-2A is the first of three receivers in the Simons array, a cosmic microwave background experiment located on the Atacama Plateau in Chile. Polarbear-2A was deployed and achieved the first light in January 2019 by mapping the microwave emission from planet observations. Commissioning work is underway to prepare the receiver for science observations.
- Published
- 2019
31. LiteBIRD: A Satellite for the Studies of B-Mode Polarization and Inflation from Cosmic Background Radiation Detection
- Author
-
Josquin Errard, Kent D. Irwin, Ingunn Kathrine Wehus, Kazunori Kohri, Kam Arnold, Atsushi Okamoto, Osamu Tajima, T. Tomida, Hirokazu Ishino, L. Montier, T. Kawasaki, M. Willer, Ryo Yamamoto, Nobuhiko Katayama, B. Thorne, Eiichiro Komatsu, Takayuki Tomaru, Benjamin Westbrook, Toshiaki Iida, Tadayasu Dotani, Yuki Inoue, T. Funaki, Chiko Otani, Bruno Maffei, L. Hayes, Charles A. Hill, F. Vansyngel, T. Nagasaki, L. Duband, Tucker Elleflot, H. Imada, Johannes Hubmayr, A. Cukierman, M. Nakajima, T. Hasebe, Paul Turin, A. Dominjon, Eric V. Linder, S. Takatori, Toshifumi Shimizu, Yuto Minami, Shin Utsunomiya, Y. Sato, Yoshinori Uzawa, D. Tanabe, J. M. Duval, F. Boulanger, Takahiro Okamura, Jo Dunkley, Hiroyuki Sugita, Masato Naruse, Julian Borrill, Makoto Hattori, Theodore Kisner, Yuji Chinone, Tom Nitta, Dale Li, Mathieu Remazeilles, K. Ganga, Hideo Ogawa, Reijo Keskitalo, Masashi Hazumi, Giampaolo Pisano, E. Taylor, S. Takakura, H. Kanai, Jun-ichi Suzuki, N. Sato, Masahiro Tsujimoto, Yutaro Sekimoto, Shin-ichiro Sakai, Kimihiro Kimura, M. Nagai, N. W. Halverson, Anna Mangilli, Seongjae Cho, M. Tristram, S. A. Kernasovskiy, Jonathan Aumont, Blake D. Sherwin, Carole Tucker, Tomotake Matsumura, Kiyotomo Ichiki, Satoru Mima, T. de Haan, T. Hamada, N. Tomita, G. Patanchon, K. Komatsu, Shuji Matsuura, J. Grain, Paul L. Richards, Norio Okada, N. Hidehira, Kazuhisa Mitsuda, Soumen Basak, Yasuhiro Yamada, Aritoki Suzuki, H. K. Eriksen, Hajime Sugai, Shogo Nakamura, Peter A. R. Ade, Alex Lazarian, T. Fujino, Y. Akiba, Gabriel M. Rebeiz, H. Nishino, Nathan Whitehorn, Martin Bucher, R. Stompor, Shingo Kashima, A. Kibayashi, Y. Kida, Noah Kurinsky, D. W. Curtis, M. Inoue, Masaya Hasegawa, Adrian T. Lee, Shugo Oguri, Y. Segawa, David Alonso, A. Ducout, Carlo Baccigalupi, U. Fuskeland, S. Beckman, Uroš Seljak, R. Nagata, J. Fischer, Mitsuhiro Yoshida, K. L. Thompson, Darcy Barron, Gene C. Hilton, Noriko Y. Yamasaki, Erminia Calabrese, Neil Goeckner-Wald, R. Takaku, Suguru Takada, M. A. Dobbs, Oliver Jeong, Toshiya Namikawa, Yuki Sakurai, Chao-Lin Kuo, Kaori Hattori, Keisuke Shinozaki, D. Meilhan, M. Maki, Makoto Sawada, D. Kaneko, T. Yamashita, S. Uozumi, Takashi Noguchi, Akito Kusaka, Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Service des Basses Températures (SBT ), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire des Cryoréfrigérateurs et Cryogénie Spatiale (LCCS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Laboratoire de l'Accélérateur Linéaire (LAL), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), and Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11)
- Subjects
detector: cryogenics ,Cosmic microwave background ,Cosmic background radiation ,cosmic background radiation: polarization ,Lagrangian point ,B-mode polarization ,Cosmic inflation ,Primordial gravitational wave ,Quantum gravity ,Satellite ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,01 natural sciences ,010305 fluids & plasmas ,law.invention ,Telescope ,Settore FIS/05 - Astronomia e Astrofisica ,bolometer ,law ,0103 physical sciences ,General Materials Science ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,detector: optical ,010306 general physics ,Physics ,Bolometer ,gravitational radiation: primordial ,Astrophysics::Instrumentation and Methods for Astrophysics ,Condensed Matter Physics ,Polarization (waves) ,inflation: model ,Atomic and Molecular Physics, and Optics ,detector: sensitivity ,modulation ,Cardinal point ,B-mode ,angular resolution ,moment: multipole ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Multipole expansion - Abstract
著者人数: 152名(所属. 宇宙航空研究開発機構宇宙科学研究所(JAXA)(ISAS): 羽澄, 昌史; 堂谷, 忠靖; 長谷部, 孝; 今田, 大皓; 満田, 和久; 坂井, 真一郎; 関本, 裕太郎; Tomida, T.; 辻本, 匡弘; Yamamoto, R.; 山崎, 典子), Accepted: 2019-01-18, 資料番号: SA1180402000
- Published
- 2019
32. The Simons Observatory: Astro2020 APC Whitepaper
- Author
-
Abitbol, Maximilian H., Shunsuke, Adachi, Peter, Ade, James, Aguirre, Zeeshan, Ahmed, Simone, Aiola, Aamir, Ali, David, Alonso, Alvarez, Marcelo A., Kam, Arnold, Peter, Ashton, Zachary, Atkins, Jason, Austermann, Humna, Awan, Carlo, Baccigalupi, Taylor, Baildon, Anton Baleato Lizancos, Darcy, Barron, Nick, Battaglia, Richard, Battye, Eric, Baxter, Andrew, Bazarko, Beall, James A., Rachel, Bean, Dominic, Beck, Shawn, Beckman, Benjamin, Beringue, Tanay, Bhandarkar, Sanah, Bhimani, Federico, Bianchini, Steven, Boada, David, Boettger, Boris, Bolliet, Richard Bond, J., Julian, Borrill, Brown, Michael L., Sarah Marie Bruno, Sean, Bryan, Erminia, Calabrese, Victoria, Calafut, Paolo, Calisse, Julien, Carron, Carl, Fred. M., Juan, Cayuso, Anthony, Challinor, Grace, Chesmore, Yuji, Chinone, Jens, Chluba, Hsiao-Mei Sherry Cho, Steve, Choi, Susan, Clark, Philip, Clarke, Carlo, Contaldi, Gabriele, Coppi, Cothard, Nicholas F., Kevin, Coughlin, Will, Coulton, Devin, Crichton, Crowley, Kevin D., Crowley, Kevin T., Ari, Cukierman, D'Ewart, John M., Rolando, Dünner, Tijmen de Haan, Mark, Devlin, Simon, Dicker, Bradley, Dober, Duell, Cody J., Shannon, Duff, Adri, Duivenvoorden, Dunkley, Jo, Hamza El Bouhargani, Josquin, Errard, Giulio, Fabbian, Stephen, Feeney, James, Fergusson, Simone, Ferraro, Pedro, Fluxà, Katherine, Freese, Frisch, Josef C., Andrei, Frolov, George, Fuller, Nicholas, Galitzki, Gallardo, Patricio A., Jose Tomas Galvez Ghersi, Jiansong, Gao, Eric, Gawiser, Martina, Gerbino, Vera, Gluscevic, Neil, Goeckner-Wald, Joseph, Golec, Sam, Gordon, Megan, Gralla, Daniel, Green, Arpi, Grigorian, John, Groh, Chris, Groppi, Yilun, Guan, Gudmundsson, Jon E., Mark, Halpern, Dongwon, Han, Peter, Hargrave, Kathleen, Harrington, Masaya, Hasegawa, Matthew, Hasselfield, Makoto, Hattori, Victor, Haynes, Masashi, Hazumi, Erin, Healy, Henderson, Shawn W., Brandon, Hensley, Carlos, Hervias-Caimapo, Hill, Charles A., Colin Hill, J., Gene, Hilton, Matt, Hilton, Hincks, Adam D., Gary, Hinshaw, Renée, Hložek, Shirley, Ho, Shuay-Pwu Patty Ho, Hoang, Thuong D., Jonathan, Hoh, Hotinli, Selim C., Zhiqi, Huang, Johannes, Hubmayr, Kevin, Huffenberger, Hughes, John P., Anna, Ijjas, Margaret, Ikape, Kent, Irwin, Jaffe, Andrew H., Bhuvnesh, Jain, Oliver, Jeong, Matthew, Johnson, Daisuke, Kaneko, Karpel, Ethan D., Nobuhiko, Katayama, Brian, Keating, Reijo, Keskitalo, Theodore, Kisner, Kenji, Kiuchi, Jeff, Klein, Kenda, Knowles, Anna, Kofman, Brian, Koopman, Arthur, Kosowsky, Nicoletta, Krachmalnicoff, Akito, Kusaka, Phil, Laplante, Jacob, Lashner, Adrian, Lee, Eunseong, Lee, Antony, Lewis, Yaqiong, Li, Zack, Li, Michele, Limon, Eric, Linder, Jia, Liu, Carlos, Lopez-Caraballo, Thibaut, Louis, Marius, Lungu, Mathew, Madhavacheril, Daisy, Mak, Felipe, Maldonado, Hamdi, Mani, Ben, Mates, Frederick, Matsuda, Loïc, Maurin, Phil, Mauskopf, Andrew, May, Nialh, Mccallum, Heather, Mccarrick, Chris, Mckenney, Jeff, Mcmahon, Daniel Meerburg, P., James, Mertens, Joel, Meyers, Amber, Miller, Mark, Mirmelstein, Kavilan, Moodley, Jenna, Moore, Moritz, Munchmeyer, Charles, Munson, Masaaki, Murata, Sigurd, Naess, Toshiya, Namikawa, Federico, Nati, Martin, Navaroli, Laura, Newburgh, Ho Nam Nguyen, Andrina, Nicola, Mike, Niemack, Haruki, Nishino, Yume, Nishinomiya, John, Orlowski-Scherer, Luca, Pagano, Bruce, Partridge, Francesca, Perrotta, Phumlani, Phakathi, Lucio, Piccirillo, Elena, Pierpaoli, Giampaolo, Pisano, Davide, Poletti, Roberto, Puddu, Giuseppe, Puglisi, Chris, Raum, Reichardt, Christian L., Mathieu, Remazeilles, Yoel, Rephaeli, Dominik, Riechers, Felipe, Rojas, Aditya, Rotti, Anirban, Roy, Sharon, Sadeh, Yuki, Sakurai, Maria, Salatino, Mayuri Sathyanarayana Rao, Lauren, Saunders, Emmanuel, Schaan, Marcel, Schmittfull, Neelima, Sehgal, Joseph, Seibert, Uros, Seljak, Paul, Shellard, Blake, Sherwin, Meir, Shimon, Carlos, Sierra, Jonathan, Sievers, Cristobal, Sifon, Precious, Sikhosana, Maximiliano, Silva-Feaver, Simon, Sara M., Adrian, Sinclair, Kendrick, Smith, Wuhyun, Sohn, Rita, Sonka, David, Spergel, Jacob, Spisak, Staggs, Suzanne T., George, Stein, Stevens, Jason R., Radek, Stompor, Aritoki, Suzuki, Osamu, Tajima, Satoru, Takakura, Grant, Teply, Thomas, Daniel B., Ben, Thorne, Robert, Thornton, Trac, Hy, Jesse, Treu, Calvin, Tsai, Carole, Tucker, Joel, Ullom, Vagnozzi, Sunny, Alexander van Engelen, Jeff Van Lanen, Van Winkle, Daniel D., Vavagiakis, Eve M., Clara, Vergès, Michael, Vissers, Kasey, Wagoner, Samantha, Walker, Yuhan, Wang, Jon, Ward, Ben, Westbrook, Nathan, Whitehorn, Jason, Williams, Joel, Williams, Edward, Wollack, Zhilei, Xu, Siavash, Yasini, Edward, Young, Byeonghee, Yu, Cyndia, Yu, Fernando, Zago, Mario, Zannoni, Hezi, Zhang, Kaiwen, Zheng, Ningfeng, Zhu, and Andrea, Zonca
- Published
- 2019
33. Radiation Tolerance of Aluminum Microwave Kinetic Inductance Detector
- Author
-
Shibo Shu, T. Yamashita, Masato Naruse, Takashi Noguchi, Shigeyuki Sekiguchi, Masashi Hazumi, Masakazu Sekine, Agnes Dominjon, Kenichi Karatsu, N. Oka, Tomotake Matsumura, Tom Nitta, Yasuhiro Yamada, Yutaro Sekimoto, K. Mizukami, T. Funaki, T. Fujino, Hirokazu Ishino, F. Irie, and Y. Kida
- Subjects
Physics ,Proton ,Physics::Instrumentation and Detectors ,business.industry ,Microwave kinetic inductance detectors ,Astrophysics::Instrumentation and Methods for Astrophysics ,LiteBIRD ,Substrate (electronics) ,Condensed Matter Physics ,01 natural sciences ,Atomic and Molecular Physics, and Optics ,Radiation tolerance ,Resonator ,Responsivity ,Optics ,Absorbed dose ,0103 physical sciences ,General Materials Science ,Irradiation ,Satellite mission ,010306 general physics ,business ,010303 astronomy & astrophysics ,Microwave ,Beam (structure) - Abstract
著者人数: 20名, Accepted: 2016-01-21, 資料番号: SA1160044000
- Published
- 2016
34. Development of Readout Electronics for POLARBEAR-2 Cosmic Microwave Background Experiment
- Author
-
Y. Hori, Kaja Rotermund, Aritoki Suzuki, Aaron Lee, Nathan Whitehorn, Kam Arnold, Masashi Hazumi, W. L. Holzapfel, Masaya Hasegawa, Y. Akiba, Brian Keating, Tucker Elleflot, Amy N. Bender, Kaori Hattori, I. Shirley, Darcy Barron, Akito Kusaka, M. A. Dobbs, T. de Haan, A. Cukierman, and Joshua Montgomery
- Subjects
Physics - Instrumentation and Detectors ,Physics::Instrumentation and Detectors ,Cosmic microwave background ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,02 engineering and technology ,01 natural sciences ,Multiplexing ,law.invention ,Responsivity ,law ,0103 physical sciences ,General Materials Science ,010306 general physics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Physics ,Equivalent series resistance ,business.industry ,Bolometer ,Astrophysics::Instrumentation and Methods for Astrophysics ,Instrumentation and Detectors (physics.ins-det) ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Atomic and Molecular Physics, and Optics ,Inductance ,Capacitor ,Frequency domain ,Optoelectronics ,Astrophysics - Instrumentation and Methods for Astrophysics ,0210 nano-technology ,business - Abstract
The readout of transition-edge sensor (TES) bolometers with a large multiplexing factor is key for the next generation cosmic microwave background (CMB) experiment, Polarbear-2 (Suzuki in J Low Temp Phys 176:719, 2014), having 7588 TES bolometers. To enable the large arrays, we have been developing a readout system with a multiplexing factor of 40 in the frequency domain. Extending that architecture to 40 bolometers requires an increase in the bandwidth of the SQUID electronics, above 4 MHz. This paper focuses on cryogenic readout and shows how it affects cross talk and the responsivity of the TES bolometers. A series resistance, such as equivalent series resistance of capacitors for LC filters, leads to non-linear response of the bolometers. A wiring inductance modulates a voltage across the bolometers and causes cross talk. They should be controlled well to reduce systematic errors in CMB observations. We have been developing a cryogenic readout with a low series impedance and have tuned bolometers in the middle of their transition at a high frequency ( $$>$$ 3 MHz).
- Published
- 2016
35. GroundBIRD: Observing Cosmic Microwave Polarization at Large Angular Scale with Kinetic Inductance Detectors and High-Speed Rotating Telescope
- Author
-
N. Tomita, T. Nagasaki, Chiko Otani, Osamu Tajima, M. Minowa, K. Karatsu, Shugo Oguri, H. Ishitsuka, E. Won, T. Damayanthi, Masashi Hazumi, M. Yoshida, Satoru Mima, Makoto Hattori, Yutaro Sekimoto, and Jinnil Choi
- Subjects
Cryostat ,Physics ,COSMIC cancer database ,Kinetic inductance detectors ,Cosmic microwave background ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Condensed Matter Physics ,Polarization (waves) ,01 natural sciences ,Atomic and Molecular Physics, and Optics ,law.invention ,Telescope ,law ,0103 physical sciences ,Electromagnetic shielding ,General Materials Science ,010306 general physics ,010303 astronomy & astrophysics ,Microwave - Abstract
Cosmic microwave background (CMB) is an important source of information about the origin of our universe. In particular, odd-parity large angular scale patterns in the CMB polarization, the primordial B-modes, are strong evidence for an inflationary universe, related to the accelerating expansion of the metric. We are developing a unique telescope, GroundBIRD, to take CMB polarization measurements. The telescope combines novel techniques: high-speed rotation scanning, cold optics, and microwave kinetic inductance detectors (MKIDs). We evaluated the response of MKIDs on the rotation stage. Method of shielding from the geo-magnetic field is established. We have also developed a receiver cryostat. We are able to maintain a sufficient cold status for observations on the optical configuration. We plan to start commissioning the system by observing CMB in Japan in 2015–2016. We will then deploy GroundBIRD in the Canary Islands for further scientific observations.
- Published
- 2015
36. Requirements for future CMB satellite missions: photometric and band-pass response calibration
- Author
-
Masashi Hazumi, Guillaume Patanchon, Hirokazu Ishino, T. Ghigna, Tomotake Matsumura, AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
- Subjects
Physics ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,010308 nuclear & particles physics ,Frequency band ,Detector ,Cosmic microwave background ,Astrophysics::Instrumentation and Methods for Astrophysics ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Polarization (waves) ,01 natural sciences ,Electromagnetic radiation ,Band-pass filter ,0103 physical sciences ,Satellite ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Astrophysics - Instrumentation and Methods for Astrophysics ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Astrophysics::Galaxy Astrophysics ,Microwave ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Current and future Cosmic Microwave Background (CMB) Radiation experiments are targeting the polarized $B$-mode signal. The small amplitude of this signal makes a successful measurement challenging for current technologies. Therefore, very accurate studies to mitigate and control possible systematic effects are vital to achieve a successful observation. An additional challenge is coming from the presence of polarized Galactic foreground signals that contaminate the CMB signal. When they are combined, the foreground signals dominate the polarized CMB signal at almost every relevant frequency. Future experiments, like the LiteBIRD space-borne mission, aim at measuring the CMB $B$-mode signal with high accuracy to measure the tensor-to-scalar ratio $r$ at the $10^{-3}$ level. We present a method to study the photometric calibration requirement needed to minimize the leakage of polarized Galactic foreground signals into CMB polarization maps for a multi-frequency CMB experiment. We applied this method to the LiteBIRD case, and we found precision requirements for the photometric calibration in the range $\sim10^{-4}-2.5\times10^{-3}$ depending on the frequency band. Under the assumption that the detectors are uncorrelated, we found requirements per detector in the range $\sim0.18\times10^{-2}-2.0\times10^{-2}$. Finally, we relate the calibration requirements to the band-pass resolution to define constraints for a few representative band-pass responses: $\Delta\nu\sim0.2-2$ GHz., Comment: 25 pages, 7 figures, 2 tables, Submitted to JCAP
- Published
- 2020
37. The optical design and physical optics analysis of a cross-Dragonian telescope for LiteBIRD
- Author
-
Junji Inatani, Hirokazu Ishino, Aritoki Suzuki, Masashi Hazumi, Nobuhiko Katayama, H. Imada, Yutaro Sekimoto, Kimihiro Kimura, Tomotake Matsumura, Shin Utsunomiya, Ryo Nagata, Shingo Kashima, T. Hasebe, Tadayasu Dotani, and Hajime Sugai
- Subjects
Physics ,Main lobe ,Stray light ,HFSS ,business.industry ,Cosmic microwave background ,Astrophysics::Instrumentation and Methods for Astrophysics ,Field of view ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Physical optics ,01 natural sciences ,law.invention ,010309 optics ,Telescope ,Optics ,Side lobe ,law ,0103 physical sciences ,business ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics - Abstract
The Lite satellite for the studies of B-mode polarization and Inflation from the cosmic microwave background (CMB) Radiation Detection (LiteBIRD) is a next generation CMB satellite dedicated to probing the inflationary universe. It has two telescopes, Low Frequency Telescope (LFT) and High Frequency Telescope (HFT) to cover wide observational bands from 34 GHz to 448 GHz. In this presentation, we report the optical design and characterization of the LFT. We have used the CODE-V to obtain the LFT optical design based on a cross- Dragonian telescope. It is an image-space telecentric system with an F number of 3.5 and 20 x 10 degrees2 field of view. The main, near and far side lobes at far-field have been calculated by using a combination of HFSS and GRASP 10. It is revealed that the LFT telescope has good main lobe properties to satisfy the requirements. On the other hand, the side lobes are affected by the stray light that stems from the triple reflection and the direct path from feed. In order to avoid the stray light, the way to block these paths is now under study.
- Published
- 2018
38. Thermal design utilizing radiative cooling for the payload module of LiteBIRD
- Author
-
T. Hasebe, Shingo Kashima, Masashi Hazumi, Hirokazu Ishino, Kazuhisa Mitsuda, H. Imada, Tomotake Matsumura, Masahiro Tsujimoto, Yutaro Sekimoto, Hajime Sugai, Shin Utsunomiya, Tadayasu Dotani, Hirofumi Noda, and S. Uozumi
- Subjects
Materials science ,Radiative cooling ,Spacecraft ,010308 nuclear & particles physics ,Payload ,business.industry ,Cryocooler ,01 natural sciences ,Shield ,0103 physical sciences ,Thermal ,Active cooling ,Aerospace engineering ,010306 general physics ,business ,Electrical conductor - Abstract
The conceptual thermal design of the payload module (PLM) of LiteBIRD utilizing radiative cooling is studied. The thermal environment and structure design of the PLM strongly depend on the precession angle α of the spacecraft. In this study, the geometrical models of the PLM that consist of the sunshield, three layers of Vgrooves, and 5 K shield were designed in the cases of α = 45° , 30° , and 5° . The mission instruments of LiteBIRD are cooled down below 5 K. Therefore, heat transfers down to the 5 K cryogenic part were estimated in each case of α. The radiative heat transfers were calculated by using geometrical models of the PLM. The conductive heat transfers and the active cooling with cryocoolers were considered. We also studied the case that the inner surface of the V-groove is coated by a high-emissivity material.
- Published
- 2018
39. Development of cosmic ray mitigation techniques for the LiteBIRD space mission (Conference Presentation)
- Author
-
Shawn M. Beckman, Adrian T. Lee, Masashi Hazumi, Aritoki Suzuki, Yuto Minami, Noah A. Kurinsky, and LiteBIRD Collaboration
- Subjects
Physics ,business.industry ,Detector ,Bolometer ,Cosmic microwave background ,Astrophysics::Instrumentation and Methods for Astrophysics ,Cosmic ray ,Astrophysics::Cosmology and Extragalactic Astrophysics ,law.invention ,Telescope ,symbols.namesake ,Optics ,law ,Refracting telescope ,symbols ,Planck ,business ,Ground plane - Abstract
The next generation inflationary satellite probe, LiteBIRD, aims to detect B-mode polarization at degree scales and larger. With 2,622 detectors, LiteBIRD will observe the sky using a reflector Low-Frequency Telescope (LFT) ranging from 40 – 235 GHz, and a refractor High-Frequency Telescope (HFT) ranging from 280 – 402 GHz. This allows for the characterization and subtraction of synchrotron foregrounds at low frequencies and thermal dust foregrounds at high frequencies. The U.S. LiteBIRD team proposes to deliver detector arrays, along with readout electronics, using lenslet-coupled sinuous antenna arrays in the LFT, and orthomode-transducer-coupled corrugated horn arrays in the HFT, both utilizing TES bolometer detectors cooled to 100 mK base temperatures. With insight from the Planck space mission, we know that an important consideration to make for the LiteBIRD experiment is the effect of cosmic ray impacts on low-ell systematics and data selection efficiency. The two primary mechanisms for these effects are events in on the 100 mK stage causing low-frequency variation in focal-plane temperature, and the propagation of ballistic phonons into nearby detectors causing “glitches”, or pulses in bolometer timestreams. LiteBIRD estimates a 5% data loss due to cosmic ray, utilizing straightforward mitigation techniques to increase thermal sinking and heat capacity of the detector wafers. We report on initial characterization and mitigation of ballistic phonon propagation in prototype detector wafers using 5.49 MeV alpha particles from an Americium-241 source. We look to present test results from mitigation techniques including removal of bulk silicon around the bolometer island, adding palladium and other conductors around the bolometer island, removal of the niobium ground plane around the bolometer island, and variations of the preceding methods.
- Published
- 2018
40. Performance evaluation of MKDs on a high-speed rotating system for CMB telescope: GroundBIRD (Conference Presentation)
- Author
-
Masato Naruse, Takeo Nagasaki, Ricardo Génova-Santos, Chiko Otani, Shugo Oguri, Makoto Hattori, Jihoon Choi, H. Ishitsuka, Satoru Mima, Jose Alberto Rubino-Martin, Masashi Hazumi, Kyung Min Lee, Rafael Rebolo, Yutaro Sekimoto, Ryo Koyano, Makoto Minowa, Munehisa Semoto, Hiroki Kutsuma, N. Tomita, Osamu Tajima, Kenji Kiuchi, Kenichi Karatsu, Tomohisa Uchida, Tohru Taino, Makoto Nagai, Junta Komine, Mitsuhiro Yoshida, Junya Suzuki, E. Won, and Fumiyasu Kanno
- Subjects
Physics ,Gravitational wave ,business.industry ,Cosmic microwave background ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Polarization (waves) ,law.invention ,Azimuth ,Telescope ,Cardinal point ,Optics ,law ,Telescope mount ,business ,Reionization - Abstract
The cosmic microwave background (CMB) radiation is an afterglow of the Big Bang. It contains the crucial keys to understand the beginning of the universe. In particular, the odd-parity patterns of CMB polarization, B-modes, at more than degree-scale, are the best probe to detect primordial gravitational waves at the cosmic inflation. The GroundBIRD experiment aims to detect this large angular scale patterns from the ground. The experiment employs novel techniques; a high-speed rotational scanning system (20 revolution-per-minutes) with cold optics below 4K, and microwave kinetic inductance detectors (MKIDs) as the focal plane detectors. The fast scanning modulation is a crucial characteristic in our observation strategy to mitigate effects of the atmospheric fluctuation. The telescope rotates and scans the sky along the azimuth at the elevation angle of 60 degrees at Teide observatory in the Canary Islands. It allows us to measure CMB polarization patterns at a wide multipole range, 6 < \ell < 300, i.e. aiming to catch the reionization bump. We have developed a telescope mount with 3-axis rotation mechanism (azimuth, elevation, and boresight). We are evaluating the vibration at the focal plane position with rotating the telescope mount. The focal plane consists of seven hexagonal corrugated horn coupled MKIDs array: six hexagon units are for 145 GHz band (55 pixels/unit), and one unit is for 220 GHz band (112 pixels). Each pixel consists of a corrugated horn, a planner OMT, millimeter wave circuits for transmission of dual-polarization signals with the suppression of crosstalk modes, and two MKIDs for each polarization. Magnetic shields are also mounted so as to suppress the external magnetic fields. Trapped magnetic fields inside of the superconducting materials decrease the performance of the MKID. The geomagnetism is the static and large magnetic fields. The telescope motion makes modulation of the geomagnetism as well as the modulation of CMB signals. Therefore, we need careful evaluation associating with the telescope rotation. By using a small evaluation system with modulated magnetic fields, we understand impacts the magnetic shield as well as responses of the MKID for the modulated magnetic field. We design the shield based on them. In this presentation, we will report an evaluation of detector responses on the high-speed rotating system along the azimuth. We will also show demonstrations of our own readout electronics which is well matching with the rapid scan modulation strategy.
- Published
- 2018
41. Design and development of a polarization modulator unit based on a continuous rotating half-wave plate for LiteBIRD
- Author
-
Akito Kusaka, Junji Yumoyo, Shin Utsunomiya, M. Maki, Hiroaki Imada, Toshiki Shimomura, T. Iida, T. Ghigna, Hajime Sugai, K. Komatsu, Hiroyuki Ohsaki, Masashi Hazumi, Yukikatsu Terada, Yuki Sakurai, Ryota Takaku, Shinya Sugiyama, Haruyuki Sakurai, Tomotake Matsumura, Yutaka Terao, Jun-ichi Suzuki, Shogo Nakamura, Ryo Yamamoto, Hirokazu Ishino, Nobuhiko Katayama, Makoto Tashiro, Kuniaki Konishi, Charles Hill, H. Kanai, and Hirokazu Kataza
- Subjects
Physics ,business.industry ,Detector ,Cosmic microwave background ,Astrophysics::Instrumentation and Methods for Astrophysics ,Rotation ,Polarization (waves) ,01 natural sciences ,Waveplate ,law.invention ,010309 optics ,Telescope ,Optics ,Achromatic lens ,law ,0103 physical sciences ,Broadband ,010306 general physics ,business - Abstract
We present our design and development of a polarization modulator unit (PMU) for LiteBIRD space mission. LiteBIRD is a next generation cosmic microwave background (CMB) polarization satellite to measure the primordial B-mode. The science goal of LiteBIRD is to measure the tensor-to-scalar ratio with the sensitivity of δr < 10-3. The baseline design of LiteBIRD is to employ the PMU based on a continuous rotating half-wave plate (HWP) at a telescope aperture with a diameter of 400 mm. It is an essential for LiteBIRD to achieve the science goal because it significantly reduces detector noise and systematic uncertainties. The LiteBIRD PMU consists of a multi-layered sapphire as a broadband achromatic HWP and a mechanism to continuously rotate it at 88 rpm. The whole system is maintained at below 10K to minimize the thermal emission from the HWP. In this paper, we discuss the current development status of the broadband achromatic HWP and the cryogenic rotation mechanism.
- Published
- 2018
42. Cross-polarization systematics due to Mizuguchi-Dragone condition breaking by a continuously rotating half-wave plate at prime focus in the Huan Tran telescope
- Author
-
Kam Arnold, Akito Kusaka, Masashi Hazumi, S. Takakura, Frederick Matsuda, Yuji Chinone, Adrian T. Lee, D. Boettger, and Brian Keating
- Subjects
Physics ,010308 nuclear & particles physics ,business.industry ,Cosmic microwave background ,Astrophysics::Instrumentation and Methods for Astrophysics ,Polarization (waves) ,Physical optics ,01 natural sciences ,Waveplate ,law.invention ,Telescope ,Optics ,Amplitude ,Cardinal point ,law ,0103 physical sciences ,Mueller calculus ,business ,010303 astronomy & astrophysics - Abstract
Polarization modulation using a continuously rotating half-wave plate (HWP) is a promising technique to reduce both low-frequency noise and instrumental systematics for Cosmic Microwave Background (CMB) polarization measurements targeting in ationary B-modes. Although a HWP is best placed sky-side of the telescope optics in order to minimize systematics, >0.5 meter aperture class telescopes must put the HWP elsewhere in the optics chain due to current fabrication limitations in the available HWP size. Polarbear is a ground-based CMB experiment installed on the 2.5m aperture off-axis Gregorian-Dragone type Huan Tran Telescope (HTT) designed to satisfy the Mizuguchi-Dragone condition. Polarbear-2 is a receiver that will be installed on a second HTT in 2018. Polarbear-2 is designed to have a larger field-of-view (FOV) and vastly increased sensitivity to the polarized CMB compared to Polarbear. From the third season of observations, Polarbear has installed a continuously rotating HWP at the spatially localized focus plane between the HTT primary and secondary re ectors which is an optimal location for minimizing the HWP diameter. The HWP's polarization angle re ection with respect to its birefringent axis will theoretically break the Mizuguchi-Dragone condition when placed between the two reflectors and increase cross-polarization systematics. In this study, we analyze how the Mizuguchi-Dragone condition is violated due to a HWP at this location. We then estimate the crosspolarization systematics of the HTT using physical optics simulations. We model an ideal HWP at various angles to estimate the effects of demodulation. We evaluate the increased cross-polarization as the Stokes Q-U mixing term using the Mueller Matrix formalism. It is calculated that this term creates a varying dipole beam pattern whose amplitude ranges from 1% at the center to 10% at the edge FOV pixels for Polarbear and potentially up to 20% for Polarbear-2. We also estimate the leakage of the E-mode into the B-mode angular power spectrum measurements due to this cross-polarization. We show that the cross-polarization systematic error leakage is sufficiently lower than the Polarbear-2 statistical uncertainty thanks to mitigations such as focal plane averaging and sky rotation. Currently for Polarbear-2 we are planning to place the HWP at Gregorian focus, but keeping the HWP at prime focus as a back-up solution in case that there are unforeseen telescope spatial and HWP material size constraints. Through this study we find that even though a HWP between the two reflectors will violate the Mizuguchi-Dragone condition, this HWP at prime focus will still have sufficiently low cross-polarization for Polarbear-2. The prime focus HWP is a potential configuration that can be applied to similar off-axis Gregorian-Dragone telescopes in order to minimize the required HWP diameter.
- Published
- 2018
43. Prototype design and evaluation of the nine-layer achromatic half-wave plate for the LiteBIRD low frequency telescope
- Author
-
Tomotake Matsumura, Masashi Hazumi, Ryota Takaku, Hiroaki Imada, Hirokazu Ishino, Nobuhiko Katayama, K. Komatsu, Hajime Sugai, Yuki Sakurai, Laboratoire de l'Accélérateur Linéaire (LAL), and Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11)
- Subjects
noise ,satellite ,measurement methods ,Cosmic microwave background ,cosmic background radiation: polarization ,Low frequency ,01 natural sciences ,Waveplate ,law.invention ,010309 optics ,Telescope ,Optics ,law ,0103 physical sciences ,Broadband ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,010303 astronomy & astrophysics ,activity report ,Physics ,business.industry ,Bandwidth (signal processing) ,Polarization (waves) ,B-mode ,efficiency ,Achromatic lens ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,business - Abstract
International audience; LiteBIRD is a satellite project to measure the polarization of the CMB with an unprecedented accuracy. LiteBIRD observes all sky for three years at the sun-earth second Lagrange point. The goal of LiteBIRD is to observe the B-mode polarization at large angular scales and to measure the tensor-to-scaler ratio r with an accuracy less than 0.001, exploring the energy scale of the inflation. In order to mitigate the system 1/f noise and systematics, we plan to use continuous rotating half-wave plates (HWPs) as a polarization modulator at each aperture of two telescopes. One of the telescopes, called a low frequency telescope (LFT), covers the frequency range from 34 to 270 GHz, requiring the HWP to have a high modulation efficiency in the wide bandwidth. We employ a Pancharatnam-type achromatic HWP (AHWP) to achieve the broadband coverage. The AHWP consists of nine layer stacked HWPs with the optic axes mutually rotated by the angles optimized for the LFT bandwidth. In this paper, we report our development status of the nine layer AHWP and measurement results on the modulation efficiency and the phase as a function of frequency.
- Published
- 2018
44. Reconstruction of primordial tensor power spectra from B -mode polarization of the cosmic microwave background
- Author
-
Eiichiro Komatsu, Masashi Hazumi, Takashi Hiramatsu, and Misao Sasaki
- Subjects
High Energy Physics - Theory ,Physics ,Particle physics ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,010308 nuclear & particles physics ,Cosmic microwave background ,FOS: Physical sciences ,Spectral density ,General Relativity and Quantum Cosmology (gr-qc) ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Cosmic variance ,Polarization (waves) ,01 natural sciences ,General Relativity and Quantum Cosmology ,Spectral line ,High Energy Physics - Phenomenology ,High Energy Physics - Phenomenology (hep-ph) ,Massive gravity ,High Energy Physics - Theory (hep-th) ,0103 physical sciences ,Wavenumber ,010303 astronomy & astrophysics ,Reionization ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Given observations of B-mode polarization power spectrum of the cosmic microwave background (CMB), we can reconstruct power spectra of primordial tensor modes from the early Universe without assuming their functional form such as a power-law spectrum. Shape of the reconstructed spectra can then be used to probe the origin of tensor modes in a model-independent manner. We use the Fisher matrix to calculate the covariance matrix of tensor power spectra reconstructed in bins. We find that the power spectra are best reconstructed at wavenumbers in the vicinity of $k\approx 6\times 10^{-4}$ and $5\times 10^{-3}~{\rm Mpc}^{-1}$, which correspond to the "reionization bump" at $\ell\lesssim 6$ and "recombination bump" at $\ell\approx 80$ of the CMB B-mode power spectrum, respectively. The error bar between these two wavenumbers is larger because of lack of the signal between the reionization and recombination bumps. The error bars increase sharply towards smaller (larger) wavenumbers because of the cosmic variance (CMB lensing and instrumental noise). To demonstrate utility of the reconstructed power spectra we investigate whether we can distinguish between various sources of tensor modes including those from the vacuum metric fluctuation and SU(2) gauge fields during single-field slow-roll inflation, open inflation and massive gravity inflation. The results depend on the model parameters, but we find that future CMB experiments are sensitive to differences in these models. We make our calculation tool available on-line., 9 pages, 2 figures, 4 tables; accepted version in Phys. Rev. D
- Published
- 2018
45. Electrical characterization and tuning of the integrated POLARBEAR-2a focal plane and readout (Conference Presentation)
- Author
-
J. Borrill, Paul L. Richards, Stephen M. Feeney, A. T. P. Pham, J. Peloton, Darcy Barron, Mario Aguilar, Josquin Errard, L. N. Lowry, D. Beck, A. Cukierman, Akito Kusaka, M. Le Jeune, Neil Goeckner-Wald, Max Silva Feaver, W. L. Holzapfel, Nicoletta Krachmalnicoff, Gabriele Coppi, H. Roberts, Peter Ashton, A. Tikhomirov, M. A. Dobbs, Osamu Tajima, D. Leon, Masashi Hazumi, P. A. R. Ade, Grant Teply, Nathan J. Miller, Colin Ross, Nicholas Galitzki, P. Siritanasak, Blake D. Sherwin, Tucker Elleflot, Y. Akiba, K. M. Rotermund, S. Beckman, A. J. Gilbert, Christian L. Reichardt, R. Dunner, Gary A. Fuller, Oliver Jeong, Eric V. Linder, A. Madurowicz, Giulio Fabbian, John Groh, Jessica Avva, Yuki Inoue, S. Takatori, G. Jaehnig, Carlo Baccigalupi, Giuseppe Puglisi, Charles A. Hill, S. Takakura, Andrew May, Scott Chapman, D. Plambeck, Kevin T. Crowley, D. Tanabe, Kam Arnold, Brian Keating, Aamir Ali, Benjamin Westbrook, M. Navroli, Adrian T. Lee, Jennifer Ito, Masaya Hasegawa, Aritoki Suzuki, Federico Bianchini, Theodore Kisner, Julien Carron, Tomotake Matsumura, Reijo Keskitalo, Daisuke Kaneko, Y. Segawa, T. Natoli, Frederick Matsuda, Yuji Chinone, N. W. Halverson, R. Stompor, T. de Haan, T. Hamada, A. Zahn, Amy N. Bender, D. Boettger, Takayuki Tomaru, R. Tat, A. Lowitz, Chang Feng, C. Tsai, Lucio Piccirillo, Leo Steinmetz, Nobuhiko Katayama, Daisy Mak, Davide Poletti, C. Verges, L. Howe, Haruki Nishino, A. Anderson, Yuto Minami, Gabriel M. Rebeiz, Nathan Whitehorn, Christopher Raum, Joshua Montgomery, AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, and PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)
- Subjects
temperature: transition ,Cosmic microwave background ,cosmic background radiation: polarization ,frequency-division multiplexing ,Astrophysics::Cosmology and Extragalactic Astrophysics ,SQUID ,01 natural sciences ,010305 fluids & plasmas ,law.invention ,cosmic background radiation: B-mode ,Optics ,bolometer ,gravitation: lens ,law ,0103 physical sciences ,millimeter-wave ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,inflation ,010306 general physics ,Physics ,Gravitational wave ,business.industry ,superconductivity ,Detector ,Bolometer ,Astrophysics::Instrumentation and Methods for Astrophysics ,gravitational radiation: primordial ,Spectral density ,cosmic microwave background polarization ,stability ,Polarization (waves) ,transition-edge sensor ,Extremely high frequency ,resonance: frequency ,power spectrum: angular dependence ,readout ,dfmux ,Transition edge sensor ,business ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
International audience; POLARBEAR is a cosmic microwave background (CMB) polarization experiment located in the Atacama desert in Chile. The science goals of the POLARBEAR project are to do a deep search for CMB B-mode polarization created by inflationary gravitational waves, as well as characterize the CMB B-mode signal from gravitational lensing. POLARBEAR-1 started observations in 2012, and the POLARBEAR team has published a series of results from its first two seasons of observations, including the first measurement of a non-zero B-mode polarization angular power spectrum, measured at sub-degree scales where the dominant signal is gravitational lensing of the CMB. The Simons Array expands POLARBEAR to include an additional two telescopes with next-generation POLARBEAR-2 multi-chroic receivers, observing at 95, 150, 220, and 270 GHz.The POLARBEAR-2A focal plane has 7,588 transition-edge sensor bolometers, read out with frequency-division multiplexing, with 40 frequency channels within the readout bandwidth of 1.5 to 4.5 MHz. The frequency channels are defined by a low-loss lithographed aluminum spiral inductor and interdigitated capacitor in series with each bolometer, creating a resonant frequency for each channel's unique voltage bias and current readout. Characterization of the readout includes measuring resonant peak locations and heights and fitting to a circuit model both above and below the bolometer superconducting transition temperature. This information is used determine the optimal detector bias frequencies and characterize stray impedances which may affect bolometer operation and stability. The detector electrical characterization includes measurements of the transition properties by sweeping in temperature and in voltage bias, measurements of the bolometer saturation power, as well as measuring and removing any biases introduced by the readout circuit. We present results from the characterization, tuning, and operation of the fully integrated focal plane and readout for the first POLARBEAR-2 receiver, POLARBEAR-2A, during its pre-deployment integration run.
- Published
- 2018
46. POLARBEAR-2: a new CMB polarization receiver system for the Simons array (Conference Presentation)
- Author
-
Frederick Matsuda, Colin Ross, Josquin Errard, Dominic Beck, Theodore Kisner, Masashi Hazumi, Peter A. R. Ade, Reijo Keskitalo, Daisuke Kaneko, Nicholas Galitzki, Davide Poletti, N. W. Halverson, W. L. Holzapfel, Carlo Baccigalupi, Junichi Suzuki, Rolando Dünner, Gabriel M. Rebeiz, Blake D. Sherwin, H. Roberts, Scott Chapman, Haruki Nishino, Paul L. Richards, Clara Vergès, Amy N. Bender, Yuto Minami, Raymond Tat, Takahiro Okamura, Akito Kusaka, Suet Ying D. Mak, Nathan Whitehorn, Kevin T. Crowley, Stephen M. Feeney, Richard Plambeck, Giuseppe Puglisi, Chang Feng, Charles Hill, T. Hamada, Nicoletta Krachmalnicoff, D. Tanabe, Takayuki Tomaru, D. Leon, Julian Borrill, M. Navaroli, Federico Bianchini, S. Beckman, Andrew H. Jaffe, Neil Goeckner-Wald, D. Boettger, C. Tsai, A. T. P. Pham, Lucio Piccirillo, Tijmen de Haan, Maximiliano Silva-Feaver, Aamir Ali, Kaja Rotermund, Oliver Jeong, Yuji Chinone, Maude Jeune, Andrew Gilbert, Christopher Raum, A. Zahn, Radek Stompor, Osamu Tajima, Joshua Montgomery, Brian Keating, J. Peloton, George M. Fuller, Yuki Inoue, Darcy Barron, L. N. Lowry, Mario Aguilar, S. Takatori, Gabriele Coppi, Nathan J. Miller, Christian L. Reichardt, John Groh, Kam Arnold, Jennifer Ito, Greg Jaehnig, Tucker Elleflot, Eric V. Linder, Giulio Fabbian, L. Howe, Peter Ashton, Leo Steinmetz, Grant Teply, Y. Akiba, Ali Cukierman, Praween Siritanasak, Alex Madurowicz, Nobuhiko Katayama, Matt Dobbs, Andrew May, Ben Westbrook, Aritoki Suzuki, Adrian T. Lee, Julien Carron, Masaya Hasegawa, Y. Segawa, Tomotake Matsumura, S. Takakura, AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Laboratoire de l'Accélérateur Linéaire (LAL), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, and PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)
- Subjects
010504 meteorology & atmospheric sciences ,Cosmic microwave background ,optics: design ,cosmic background radiation: polarization ,Astrophysics::Cosmology and Extragalactic Astrophysics ,7. Clean energy ,01 natural sciences ,Multiplexing ,neutrino mass ,law.invention ,Telescope ,Optics ,bolometer ,law ,Polarization ,0103 physical sciences ,Cosmic Microwave Background ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,010303 astronomy & astrophysics ,activity report ,detector: design ,0105 earth and related environmental sciences ,Physics ,business.industry ,Bolometer ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Polarization (waves) ,Inflation ,Cardinal point ,TES bolometer ,B-mode ,cryogenics ,electronics: readout ,Neutrino ,interference: quantum ,business ,performance - Abstract
International audience; POLARBEAR-2 is a new receiver system, which will be deployed on the Simons Array telescope platform, for the measurement of Cosmic Microwave Background (CMB) polarization. The science goals with POLARBEAR-2 are to characterize the B-mode signal both at degree and sub-degree angular-scales. The degree-scale polarization data can be used for quantitative studies on inflation, such as the reconstruction of the energy scale of inflation. The sub-degree polarization data is an excellent tracer of large-scale structure in the universe, and will lead to precise constraints on the sum of the neutrino masses. In order to achieve these goals, POLARBEAR-2 employs 7588 polarization-sensitive antenna-coupled transition-edge sensor (TES) bolometers on the focal plane cooled to 0.27K with a three-stage Helium sorption refrigerator, which is ~6 times larger array over the current receiver system. The large TES bolometer array is read-out by an upgraded digital frequency-domain multiplexing system capable of multiplexing 40 bolometers through a single superconducting quantum interference device (SQUID). The first POLARBEAR-2 receiver, POLARBEAR-2A is constructed and the end-to-end testing to evaluate the integrated performance of detector, readout, and optics system is being conducted in the laboratory with various types of test equipments. The POLARBEAR-2A is scheduled to be deployed in 2018 at the Atacama desert in Chile. To further increase measurement sensitivity, two more POLARBEAR-2 type receivers will be deployed soon after the deployment (Simons Array project). The Simons Array will cover four frequency bands at 95GHz, 150GHz, 220GH and 270GHz for better control of the foreground signal. The projected constraints on a tensor-to-scalar ratio (amplitude of inflationary B-mode signal) is σ(r=0.1) = $6.0 \times 10^{-3}$ after foreground removal ($4.0 \times 10^{-3}$ (stat.)), and the sensitivity to the sum of the neutrino masses when combined with DESI spectroscopic galaxy survey data is 40 meV at 1-sigma after foreground removal (19 meV(stat.)). We will present an overview of the design, assembly and status of the laboratory testing of the POLARBEAR-2A receiver system as well as the Simons Array project overview.
- Published
- 2018
47. Finding the chiral gravitational wave background of an axion- SU(2) inflationary model using CMB observations and laser interferometers
- Author
-
Maresuke Shiraishi, Masashi Hazumi, Nobuhiko Katayama, B. Thorne, Eiichiro Komatsu, and Tomohiro Fujita
- Subjects
Physics ,010308 nuclear & particles physics ,Cosmic microwave background ,Spectral density ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Polarization (waves) ,01 natural sciences ,Gravitational wave background ,Gravitational lens ,Non-Gaussianity ,0103 physical sciences ,010303 astronomy & astrophysics ,Axion ,Quantum fluctuation - Abstract
A detection of B-mode polarization of the cosmic microwave background (CMB) anisotropies would confirm the presence of a primordial gravitational wave background (GWB). In the inflation paradigm, this would be an unprecedented probe of the energy scale of inflation as it is directly proportional to the power spectrum of the GWB. However, similar tensor perturbations can be produced by the matter fields present during inflation, breaking the simple relationship between energy scale and the tensor-to-scalar ratio $r$. It is therefore important to find ways of distinguishing between the generation mechanisms of the GWB. Without doing a full model selection, we analyze the detectability of a new axion-$SU(2)$ gauge field model by calculating the signal-to-noise ratio of future CMB and interferometer observations sensitive to the chirality of the tensor spectrum. We forecast the detectability of the resulting CMB temperature and B-mode (TB) or E-mode and B-mode (EB) cross-correlation by the LiteBIRD satellite, considering the effects of residual foregrounds, gravitational lensing, and assess the ability of such an experiment to jointly detect primordial TB and EB spectra and self-calibrate its polarimeter. We find that LiteBIRD will be able to detect the chiral signal for ${r}_{*}g0.03$, with ${r}_{*}$ denoting the tensor-to-scalar ratio at the peak scale, and that the maximum signal-to-noise ratio for ${r}_{*}l0.07$ is $\ensuremath{\sim}2$. We go on to consider an advanced stage of a LISA-like mission, which is designed to be sensitive to the intensity and polarization of the GWB. We find that such experiments would complement CMB observations as they would be able to detect the chirality of the GWB with high significance on scales inaccessible to the CMB. We conclude that CMB two-point statistics are limited in their ability to distinguish this model from a conventional vacuum fluctuation model of GWB generation, due to the fundamental limits on their sensitivity to parity violation. In order to test the predictions of such a model as compared to vacuum fluctuations, it will be necessary to test deviations from the self-consistency relation or use higher order statistics to leverage the non-Gaussianity of the model. On the other hand, in the case of a spectrum peaked at very small scales inaccessible to the CMB, a highly significant detection could be made using space-based laser interferometers.
- Published
- 2018
48. Development of Superconducting Tunnel Junction Detector Using Hafnium for COBAND Experiment
- Author
-
Mark Kozlovsky, Satoru Mima, Masashi Hazumi, Ikuo Kurachi, J. Yoo, Yuji Takeuchi, Kota Kasahara, Hirokazu Ikeda, Y. Kato, Yoshio Arai, Masataka Ohkubo, Shunsuke Yagi, Shoji Kawahito, Shunsuke Baba, Youiti Ootuka, P. Rubinov, Shuji Matsuura, Go Fujii, Koichi Nagase, Takehiko Wada, Soo-Bong Kim, Makoto Sakai, T. Yoshida, A. Kibayashi, Masahiro Ukibe, Domitri A. Sergatskov, Kenji Kiuchi, Takahiro Nakamura, C. Asano, Shigetomo Shiki, Kazuki Nagata, Shinhong Kim, Hirokazu Ishino, K. Takemasa, Erik Ramberg, and Rena Wakasa
- Subjects
Physics ,Photon ,Optics ,Far infrared ,business.industry ,Infrared ,Cosmic infrared background ,Detector ,Superconducting tunnel junction ,Photon energy ,Neutrino ,business - Abstract
We present the development of a Superconducting Tunnel Junction detector using hafnium (Hf-STJ) as a far infrared single photon detector for COsmic BAckground Neutrino Decay search (COBAND) experiment. The photon energy spectrum from the decay of cosmic background neutrino is expected to have a sharp edge at the high energy end in a far-infrared region ranging from 14–25 meV in the cosmic infrared background and the overwhelming infrared foreground from the zodiacal emission. We are developing a Hf-STJ which is expected to have 2% energy resolution for a single photon of 25 meV. We have successfully produced a superconductor-insulator-superconductor structure using Hf. However, it is found to suffer from a large leakage current and needs modification of the Hf-STJ to reduce it. We have developed two new types of Hf-STJ: Hf-STJ with an Al layer and Hf-STJ with a new sputtering condition. The leakage current density of two new types of Hf-STJ becomes 16 times smaller than the old Hf-STJ and obtained a response to the visible light. Because of its large leakage current, further optimization is underway.
- Published
- 2018
49. Concept design of the LiteBIRD satellite for CMB B-mode polarization
- Author
-
A. Cukierman, Makoto Hattori, Alessandro Gruppuso, Y. Kataoka, D. T. Hoang, Kam Arnold, Tucker Elleflot, Benjamin Westbrook, Eric V. Linder, Johannes Hubmayr, Toshiyuki Nishibori, Christopher Raum, T. Kikuchi, Luca Lamagna, S. Takakura, Shingo Kashima, Ryota Takaku, Ken Ganga, N. Katayama, Masahiro Tsujimoto, Yutaro Sekimoto, A. Kibayashi, Hajime Sugai, H. K. Eriksen, Noah Kurinsky, F. Columbro, Gianluca Morgante, Toshiya Namikawa, Yuki Sakurai, B. Mot, E. Martínez-González, H. Nishino, G. Jaehnig, Hiroyuki Ohsaki, Shogo Nakamura, Peter A. R. Ade, L. Montier, T. Kawasaki, Giuseppe Puglisi, Charles A. Hill, H. Takakura, Masaaki Nagai, Anna Murphy, D. W. Curtis, M. Tristram, Adrian T. Lee, J. Grain, S. Realini, H. Ochi, Peter Charles Hargrave, Theodore Kisner, Maresuke Shiraishi, F. Boulanger, Y. Kobayashi, M. Tomasi, G. Signorelli, Y. Hirota, M. Tsuji, Graeme Smecher, F. Piacentini, K. Ebisawa, S. Beckman, Carlo Baccigalupi, E. Hivon, K. Mistuda, Haruyuki Sakurai, Soumen Basak, C. L. Kuo, G. Patanchon, Ingunn Kathrine Wehus, Masashi Hazumi, J. Aumont, Berend Winter, I. S. Ohta, Reijo Keskitalo, Bruno Maffei, Ryo Yamamoto, Marco Bersanelli, Mario Zannoni, P. Natoli, Junji Yumoto, Andrea Zonca, Erminia Calabrese, A. Ducout, Blake D. Sherwin, N. Trappe, U. Fuskeland, Nicoletta Krachmalnicoff, K. L. Thompson, M. A. Dobbs, F. Noviello, Anna Mangilli, Jun-ichi Suzuki, A. Kushino, Tadayasu Dotani, S. Sugiyama, H. Kanai, T. Yoshida, Silvia Masi, G. Polenta, M. Yanagisawa, N. Watanabe, R. Nagata, J. Austermann, Keisuke Shinozaki, Yasunori Terao, Davide Poletti, Cristian Franceschet, Michael L. Brown, Anthony Challinor, M. De Petris, Masaya Hasegawa, Yuto Minami, Noriko Y. Yamasaki, L. Duband, Créidhe O'Sullivan, Yasuhiro Murata, J. R. Gao, B. Thorne, Eiichiro Komatsu, P. de Bernardis, Kazunori Kohri, Hirokazu Ishino, Kuniaki Konishi, A. J. Banday, N. W. Halverson, A. Mennella, Kiyotomo Ichiki, T. Hasebe, Giorgio Savini, Julian Borrill, Yuji Chinone, Mathieu Remazeilles, Giampaolo Pisano, D. Molinari, Radek Stompor, M. Maki, H. Tomida, N. Okada, H. Imada, S. Uozumi, Nozomu Kogiso, R. Banerji, Tomotake Matsumura, Raphael Flauger, T. Ghigna, Josquin Errard, Shin Utsunomiya, M. Bucher, K. Komatsu, Hideo Ogawa, E. Taylor, Kimihiro Kimura, Sophie Henrot-Versille, Nicola Vittorio, Aritoki Suzuki, Realini, S, Patanchon, G, Kataoka, Y, Zonca, A, Zannoni, M, Yumoto, J, Yoshida, T, Yanagisawa, M, Yamasaki, N, Yamamoto, R, Westbrook, B, Wehus, I, Watanabe, N, Vittorio, N, Utsunomiya, S, Uozumi, S, Tsujimoto, M, Tsuji, M, Tristram, M, Trappe, N, Tomida, H, Tomasi, M, Thorne, B, Thompson, K, Terao, Y, Taylor, E, Takakura, S, Takakura, H, Takaku, R, Suzuki, J, Suzuki, A, Sugiyama, S, Sugai, H, Stompor, R, Smecher, G, Signorelli, G, Shiraishi, M, Shinozaki, K, Sherwin, B, Savini, G, Sakurai, Y, Sakurai, H, Remazeilles, M, Raum, C, Puglisi, G, Poletti, D, Polenta, G, Pisano, G, Piacentini, F, Okada, N, Ohsaki, H, Ogawa, H, Ochi, H, O'Sullivan, C, Nishino, H, Nishibori, T, Natoli, P, Namikawa, T, Nakamura, S, Nagata, R, Nagai, M, Murphy, A, Murata, Y, Mot, B, Morgante, G, Montier, L, Molinari, D, Mitsuda, K, Minami, Y, Mennella, A, Matsumura, T, Masi, S, Martinez-Gonzalez, E, Maki, M, Maffei, B, Linder, E, Lee, A, Lamagna, L, Kushino, A, Kurinsky, N, Kuo, C, Krachmalnicoff, N, Konishi, K, Komatsu, K, Komatsu, E, Kohri, K, Kogiso, N, Kobayashi, Y, Kisner, T, Kimura, K, Kikuchi, T, Kibayashi, A, Keskitalo, R, Kawasaki, T, Katayama, N, Kashima, S, Kanai, H, Arnold, K, Jaehnig, G, Ishino, H, Imada, H, Ichiki, K, Hubmayr, J, Hoang, D, Hivon, E, Hirota, Y, Hill, C, Henrot-Versille, S, Hazumi, M, Hattori, M, Hasegawa, M, Hasebe, T, Hargrave, P, Halverson, N, Gruppuso, A, Grain, J, Ghigna, T, Gao, J, Ganga, K, Fuskeland, U, Franceschet, C, Flauger, R, Errand, J, Eriksen, H, Elleflot, T, Ebisawa, K, Ducout, A, Duband, L, Dotani, T, Dobbs, M, de Petris, M, de Bernardis, P, Curtis, D, Cukierman, A, Columbro, F, Chinone, Y, Challinor, A, Calabrese, E, Bucher, M, Brown, M, Boulanger, F, Borill, J, Bersanelli, M, Beckman, S, Basak, S, Banerji, R, Banday, A, Baccigalupi, C, Austermann, J, Aumont, J, Mangilli, A, Ade, P, Winter, B, Ota, I, Noviello, F, Sekimoto, Y, Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL), AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Service des Basses Températures (SBT ), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Laboratoire de l'Accélérateur Linéaire (LAL), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), and LiteBIRD
- Subjects
Cosmic microwave background ,Cryogenic telescope ,Millimeter-wave polarization ,Space program ,Electronic, Optical and Magnetic Materials ,Condensed Matter Physics ,Computer Science Applications1707 Computer Vision and Pattern Recognition ,Applied Mathematics ,Electrical and Electronic Engineering ,media_common.quotation_subject ,satellite ,Lagrangian point ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,frequency: high ,law.invention ,NO ,Telescope ,cosmic background radiation: B-mode ,FIS/05 - ASTRONOMIA E ASTROFISICA ,Settore FIS/05 - Astronomia e Astrofisica ,law ,0103 physical sciences ,Electronic ,Cosmology, Cosmic Microwave Background, CMB, Polarimetry, Inflation, Instrumentation ,structure ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Optical and Magnetic Materials ,010306 general physics ,Astrophysics::Galaxy Astrophysics ,media_common ,Physics ,polarization ,010308 nuclear & particles physics ,Gravitational wave ,Settore FIS/05 ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy ,Polarization (waves) ,sensitivity ,Superconducting detectors ,frequency: low ,angular resolution ,Sky ,cryogenics ,Launch vehicle ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
LiteBIRD is a candidate for JAXA’s strategic large mission to observe the cosmic microwave background (CMB) polarization over the full sky at large angular scales. It is planned to be launched in the 2020s with an H3 launch vehicle for three years of observations at a Sun-Earth Lagrangian point (L2). The concept design has been studied by researchers from Japan, U.S., Canada and Europe during the ISAS Phase-A1. Large scale measurements of the CMB B-mode polarization are known as the best probe to detect primordial gravitational waves. The goal of LiteBIRD is to measure the tensor-to-scalar ratio (r) with precision of δr < 0.001. A 3-year full sky survey will be carried out with a low frequency (34 - 161 GHz) telescope (LFT) and a high frequency (89 - 448 GHz) telescope (HFT), which achieve a sensitivity of 2.5 µK-arcmin with an angular resolution of ∼ 30 arcminutes around 100 GHz. The concept design of LiteBIRD system, payload module (PLM), cryo-structure, LFT and verification plan is described in this paper. © 2018 Society of Photo-Optical Instrumentation Engineers (SPIE)
- Published
- 2018
50. Development of Superconducting Tunnel Junction Photon Detectors with Cryogenic Preamplifier for COBAND Experiment
- Author
-
S. H. Kim, Koya Moriuchi, Dmitri Sergatskov, Kenji Kiuchi, Go Fujii, Erik Ramberg, C. Asano, Mark Kozlovsky, Kazuki Nagata, Ren Senzaki, Masahiro Ukibe, Shoji Kawahito, Koichi Nagase, P. Rubinov, Shunsuke Yagi, Soo-Bong Kim, M. Sakai, Satoru Mima, A. Kibayashi, Rena Wakasa, Masataka Ohkubo, Shuji Matsuura, Shunsuke Baba, Takahiro Nakamura, Shigetomo Shiki, Hirokazu Ishino, K. Takemasa, T. Wada, Masashi Hazumi, Kota Kasahara, Yoshio Arai, Y. Kato, T. Yoshida, Yuji Takeuchi, H. Ikeda, Ikuo Kurachi, and J. Yoo
- Subjects
Physics ,Photon ,Physics::Instrumentation and Detectors ,business.industry ,Preamplifier ,Detector ,Physics::Optics ,Grating ,Photon energy ,Optics ,Cosmic infrared background ,Superconducting tunnel junction ,Neutrino ,business - Abstract
We present the status of the development of Superconducting Tunnel Junction (STJ) detector with the cryogenic preamplifier as far-infrared single photon detector for the COsmic BAckground Neutrino Decay search (COBAND) experiment. The photon energy spectrum from the radiative decay of the cosmic background neutrino is expected to have a sharp cutoff at high energy end in a far-infrared region ranging from 15 meV to 30 meV. The detector is required to measure an individual photon energy with a sufficient energy resolution less than 2% for identifying the cutoff structure, and to be designed for a rocket or satellite experiment. We develop an array of Nb/Al-STJ pixels which can detect a single far-infrared photon delivered by a diffractive grating according to its wavelength. To achieve high signal-to-noise ratio of the STJ, we use a preamplifier made with the Silicon-on-Insulator (SOI) technique that can be operated around 0.3K. We have developed the Nb/Al-STJ with the SOI cryogenic preamplifier and have tested the detector performance around 0.3K.
- Published
- 2018
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.