16 results on '"Marvin Faix"'
Search Results
2. A Cognitive Stochastic Machine Based on Bayesian Inference: A Behavioral Analysis.
- Author
-
Raphael Frisch, Marvin Faix, Emmanuel Mazer, Laurent Fesquet, and Augustin Lux
- Published
- 2018
- Full Text
- View/download PDF
3. Design of Stochastic Machines Dedicated to Approximate Bayesian Inferences.
- Author
-
Marvin Faix, Raphaël Laurent, Pierre Bessière, Emmanuel Mazer, and Jacques Droulez
- Published
- 2019
- Full Text
- View/download PDF
4. A Bayesian Stochastic Machine for Sound Source Localization.
- Author
-
Raphael Frisch, Raphaël Laurent, Marvin Faix, Laurent Girin, Laurent Fesquet, Augustin Lux, Jacques Droulez, Pierre Bessière, and Emmanuel Mazer
- Published
- 2017
- Full Text
- View/download PDF
5. Autonomous robot controller using bitwise gibbs sampling.
- Author
-
Rémi Canillas, Raphaël Laurent, Marvin Faix, Dominique Vaufreydaz, and Emmanuel Mazer
- Published
- 2016
- Full Text
- View/download PDF
6. Cognitive Computation: An Exact Bayesian Inference Stochastic Machine.
- Author
-
Marvin Faix, Emmanuel Mazer, Raphaël Laurent, Mohamad Othman Abdallah, Ronan Le Hy, and Jorge Lobo 0002
- Published
- 2017
- Full Text
- View/download PDF
7. Cognitive computation: A Bayesian machine case study.
- Author
-
Marvin Faix, Emmanuel Mazer, Raphaël Laurent, Mohamad Othman Abdallah, Ronan Le Hy, and Jorge Lobo 0002
- Published
- 2015
- Full Text
- View/download PDF
8. Cognitive Computation
- Author
-
Raphaël Laurent, Mohamad Othman Abdallah, Jorge Lobo, Emmanuel Mazer, Marvin Faix, and Ronan Le Hy
- Subjects
Computer science ,business.industry ,Computation ,Cognition ,02 engineering and technology ,Machine learning ,computer.software_genre ,Bayesian inference ,020202 computer hardware & architecture ,Bayesian statistics ,Relevance vector machine ,Frequentist inference ,0202 electrical engineering, electronic engineering, information engineering ,Fiducial inference ,020201 artificial intelligence & image processing ,Artificial intelligence ,business ,computer - Abstract
Probabilistic programming allows artificial systems to better operate with uncertainty, and stochastic arithmetic provides a way to carry out approximate computations with few resources. As such, both are plausible models for natural cognition. The authors' work on the automatic design of probabilistic machines computing soft inferences, with an arithmetic based on stochastic bitstreams, allowed to develop the following compilation toolchain: given a high-level description of some general problem, formalized as a Bayesian Program, the toolchain automatically builds a low-level description of an electronic circuit computing the corresponding probabilistic inference. This circuit can then be implemented and tested on reconfigurable logic. This paper describes two circuits as validating examples. The first one implements a Bayesian filter solving the problem of Pseudo Noise sequence acquisition in telecommunications. The second one implements decision making in a sensorimotor system: it allows a simple robot to avoid obstacles using Bayesian sensor fusion.
- Published
- 2017
- Full Text
- View/download PDF
9. Cognitive Computation
- Author
-
Marvin Faix, Emmanuel Mazer, Raphaël Laurent, Mohamad Othman Abdallah, Ronan Le Hy, and Jorge Lobo
- Subjects
0202 electrical engineering, electronic engineering, information engineering ,020201 artificial intelligence & image processing ,02 engineering and technology ,020202 computer hardware & architecture - Abstract
Probabilistic programming allows artificial systems to better operate with uncertainty, and stochastic arithmetic provides a way to carry out approximate computations with few resources. As such, both are plausible models for natural cognition. The authors' work on the automatic design of probabilistic machines computing soft inferences, with an arithmetic based on stochastic bitstreams, allowed to develop the following compilation toolchain: given a high-level description of some general problem, formalized as a Bayesian Program, the toolchain automatically builds a low-level description of an electronic circuit computing the corresponding probabilistic inference. This circuit can then be implemented and tested on reconfigurable logic. This paper describes two circuits as validating examples. The first one implements a Bayesian filter solving the problem of Pseudo Noise sequence acquisition in telecommunications. The second one implements decision making in a sensorimotor system: it allows a simple robot to avoid obstacles using Bayesian sensor fusion.
- Published
- 2020
- Full Text
- View/download PDF
10. Bayesian time-domain multiple sound source localization for a stochastic machine
- Author
-
Emmanuel Mazer, Laurent Girin, Marvin Faix, Raphael Frisch, Jacques Droulez, Techniques of Informatics and Microelectronics for integrated systems Architecture (TIMA), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Interaction située avec les objets et environnements intelligents (PERVASIVE), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire d'Informatique de Grenoble (LIG), Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Institut des Systèmes Intelligents et de Robotique (ISIR), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), CRISSP (GIPSA-CRISSP), Département Parole et Cognition (GIPSA-DPC), Grenoble Images Parole Signal Automatique (GIPSA-lab), Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Stendhal - Grenoble 3-Université Joseph Fourier - Grenoble 1 (UJF)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Stendhal - Grenoble 3-Université Joseph Fourier - Grenoble 1 (UJF)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Grenoble Images Parole Signal Automatique (GIPSA-lab), Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Stendhal - Grenoble 3-Université Joseph Fourier - Grenoble 1 (UJF)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Stendhal - Grenoble 3-Université Joseph Fourier - Grenoble 1 (UJF)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-GIPSA Pôle Parole et Cognition (GIPSA-PPC), Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Stendhal - Grenoble 3-Université Joseph Fourier - Grenoble 1 (UJF)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Stendhal - Grenoble 3-Université Joseph Fourier - Grenoble 1 (UJF)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Techniques de l'Informatique et de la Microélectronique pour l'Architecture des systèmes intégrés (TIMA), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire d'Informatique de Grenoble (LIG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), GIPSA - Cognitive Robotics, Interactive Systems, & Speech Processing (GIPSA-CRISSP), Grenoble Images Parole Signal Automatique (GIPSA-lab ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Grenoble Images Parole Signal Automatique (GIPSA-lab ), and Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
- Subjects
[INFO.INFO-AR]Computer Science [cs]/Hardware Architecture [cs.AR] ,Signal processing ,Computer science ,Bayesian probability ,020206 networking & telecommunications ,Statistical model ,specific hardware ,02 engineering and technology ,Acoustic source localization ,Bayesian stochastic machine ,time-domain processing ,Bayesian inference ,Robustness (computer science) ,[INFO.INFO-SD]Computer Science [cs]/Sound [cs.SD] ,0202 electrical engineering, electronic engineering, information engineering ,020201 artificial intelligence & image processing ,Multiple sound source localization ,Time domain ,Algorithm ,ComputingMilieux_MISCELLANEOUS - Abstract
We propose a time-domain multiple sound source localization (SSL) method based on Bayesian inference. This method is specifically designed to run on the stochastic machines (SM) that we are currently developing to perform efficient low-level sensor signal processing with ultra-low power consumption. The proposed SSL method is divided into two main parts. First, a probabilistic model is run on 50 very short time frames (3. 75ms each) of multichannel recorded signals. Second, the results obtained on the different frames are fused to obtain a final localization map. Using the system in a supervised way allows to extract estimated source locations by selecting as many maxima as there are sources in the room. We explain how this method is implemented on a SM. Experiments are presented to illustrate the performance and robustness of the resulting system.
- Published
- 2019
- Full Text
- View/download PDF
11. A cognitive stochastic machine based on Bayesian inference: a behavioral analysis
- Author
-
Marvin Faix, Laurent Fesquet, Augustin Lux, Raphael Frisch, Emmanuel Mazer, Techniques de l'Informatique et de la Microélectronique pour l'Architecture des systèmes intégrés (TIMA), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Interaction située avec les objets et environnements intelligents (PERVASIVE), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire d'Informatique de Grenoble (LIG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), ANR-11-LABX-0025,PERSYVAL-lab,Systemes et Algorithmes Pervasifs au confluent des mondes physique et numérique(2011), Techniques of Informatics and Microelectronics for integrated systems Architecture (TIMA), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire d'Informatique de Grenoble (LIG), Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), and ANR-11-LABX-0025-01,PERSYVAL-lab,Systèmes et Algorithmes Pervasifs au confluent des mondes physique et numérique(2011)
- Subjects
Optimal design ,[INFO.INFO-AR]Computer Science [cs]/Hardware Architecture [cs.AR] ,Stochastic computing ,Computer science ,Stochastic process ,Computation ,Bayesian probability ,Probabilistic logic ,02 engineering and technology ,Sensor fusion ,Bayesian inference ,030507 speech-language pathology & audiology ,03 medical and health sciences ,[INFO.INFO-SD]Computer Science [cs]/Sound [cs.SD] ,0202 electrical engineering, electronic engineering, information engineering ,020201 artificial intelligence & image processing ,0305 other medical science ,Algorithm - Abstract
International audience; Bayesian models and stochastic computing form a promising paradigm for non-conventional, bio-inspired computation architectures. In particular, they are able to handle uncertainty and promise low power consumption. In this paper we study the application of such an architecture, the Sliced Bayesian Machine (SlicedBM) to a real-world problem, Sound Source Localization (SSL) for robots. We present an analysis of the quality of results and of computing time according to several parameters: sensor precision, result threshold, internal word length. Furthermore, we show that sensor data precision does not heavily influence the computation. On the opposite, the precision of the probability values plays an important role on result quality. This parameter also determines the circuit size. We also show that the higher the re-sampling threshold (RT), the better the distribution computed by the machine. Our results make it possible to choose optimal design parameters for a circuit along several trade-offs, and according to a given sensor fusion application.
- Published
- 2018
12. A Bayesian stochastic machine for sound source localization
- Author
-
Laurent Girin, Raphaël Laurent, Pierre Bessière, Laurent Fesquet, Raphael Frisch, Emmanuel Mazer, Augustin Lux, Jacques Droulez, Marvin Faix, Techniques de l'Informatique et de la Microélectronique pour l'Architecture des systèmes intégrés (TIMA), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Interaction située avec les objets et environnements intelligents (PERVASIVE), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire d'Informatique de Grenoble (LIG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Probayes [Montbonnot], GIPSA - Cognitive Robotics, Interactive Systems, & Speech Processing (GIPSA-CRISSP), Département Parole et Cognition (GIPSA-DPC), Grenoble Images Parole Signal Automatique (GIPSA-lab ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Grenoble Images Parole Signal Automatique (GIPSA-lab ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Interpretation and Modelling of Images and Videos (PERCEPTION ), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Laboratoire Jean Kuntzmann (LJK ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut des Systèmes Intelligents et de Robotique (ISIR), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), ANR-11-LABX-0025,PERSYVAL-lab,Systemes et Algorithmes Pervasifs au confluent des mondes physique et numérique(2011), Techniques of Informatics and Microelectronics for integrated systems Architecture (TIMA), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire d'Informatique de Grenoble (LIG), Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), CRISSP (GIPSA-CRISSP), Grenoble Images Parole Signal Automatique (GIPSA-lab), Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Stendhal - Grenoble 3-Université Joseph Fourier - Grenoble 1 (UJF)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Stendhal - Grenoble 3-Université Joseph Fourier - Grenoble 1 (UJF)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Grenoble Images Parole Signal Automatique (GIPSA-lab), Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Stendhal - Grenoble 3-Université Joseph Fourier - Grenoble 1 (UJF)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Stendhal - Grenoble 3-Université Joseph Fourier - Grenoble 1 (UJF)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-GIPSA Pôle Parole et Cognition (GIPSA-PPC), Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Stendhal - Grenoble 3-Université Joseph Fourier - Grenoble 1 (UJF)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Stendhal - Grenoble 3-Université Joseph Fourier - Grenoble 1 (UJF)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Interpretation and Modelling of Images and Videos (PERCEPTION), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Kuntzmann (LJK), Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut National Polytechnique de Grenoble (INPG), and ANR-11-LABX-0025-01,PERSYVAL-lab,Systèmes et Algorithmes Pervasifs au confluent des mondes physique et numérique(2011)
- Subjects
[INFO.INFO-AR]Computer Science [cs]/Hardware Architecture [cs.AR] ,Stochastic computing ,Computer science ,Stochastic process ,Posterior probability ,Bayesian probability ,02 engineering and technology ,Acoustic source localization ,Bayesian inference ,030507 speech-language pathology & audiology ,03 medical and health sciences ,[INFO.INFO-SD]Computer Science [cs]/Sound [cs.SD] ,0202 electrical engineering, electronic engineering, information engineering ,Probability distribution ,020201 artificial intelligence & image processing ,0305 other medical science ,Likelihood function ,Algorithm - Abstract
International audience; Compared to conventional processors, stochastic computing architectures have strong potential to speed up computation time and to reduce power consumption. We present such an architecture, called Bayesian Machine (BM), dedicated to solving Bayesian inference problems. Given a set of noisy signals provided by low-level sensors, a BM estimates the posterior probability distribution of an unknown target information. In the present study, a BM is used to solve a sound source localization (SSL) problem: the BM computes the probability distribution of the position of a sound source given acoustic signals captured by a set of microphones. Assuming free field wave propagation (no reverberations), we express the SSL problem as the maximization of a likelihood function fed with audio features provided by the time-frequency (TF) analysis of the captured audio waves. The proposed BM uses bitwise parallel sampling to fuse the resulting multi-channel information. As the number of channels to fuse is large, the standard BM architecture encounters the so-called " time dilution problem " (long delays are necessary to obtain valid samples). We tackle this problem by using max-normalization of the distributions combined with a periodic re-sampling of the bit streams after processing a reasonably small subset of evidences. Finally, we compare the localization performance of the proposed machine with the results obtained using a standard version of the machine. The re-sampling leads to an impressive acceleration factor of 10³ in the computation.
- Published
- 2017
13. Autonomous Robot Controller Using Bitwise GIBBS Sampling
- Author
-
Raphaël Laurent, Emmanuel Mazer, Marvin Faix, Dominique Vaufreydaz, Rémi Canillas, PERVASIVE INTERACTION (PERVASIVE INTERACTION), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire d'Informatique de Grenoble (LIG), Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Informatique de Grenoble (LIG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Probayes [Montbonnot], Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut d'Informatique et de Mathématiques Appliquées de Grenoble (IMAG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS), and Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)
- Subjects
Computer science ,Bayesian programming ,01 natural sciences ,Computer Science::Robotics ,symbols.namesake ,Gibbs sampling ,Control theory ,0103 physical sciences ,Obstacle avoidance ,[INFO.INFO-RB]Computer Science [cs]/Robotics [cs.RO] ,Bitwise operation ,Stochastic computing ,010308 nuclear & particles physics ,business.industry ,Control engineering ,Autonomous robot ,[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,autonomous robots ,symbols ,stochastic computing ,[INFO.INFO-ES]Computer Science [cs]/Embedded Systems ,Artificial intelligence ,business ,Von Neumann architecture - Abstract
International audience; In the present paper we describe a bio-inspired non von Neumann controller for a simple sensorimotor robotic system. This controller uses a bitwise version of the Gibbs sampling algorithm to select commands so the robot can adapt its course of action and avoid perceived obstacles in the environment. The VHDL specification of the circuit implementation of this controller is based on stochastic computation to perform Bayesian inference at a low energy cost. We show that the proposed unconventional architecture allows to successfully carry out the obstacle avoidance task and to address scalability issues observed in previous works.
- Published
- 2016
14. Design of Stochastic Machines Dedicated to Approximate Bayesian inferences
- Author
-
Jacques Droulez, Pierre Bessière, Raphaël Laurent, Marvin Faix, Emmanuel Mazer, PERVASIVE INTERACTION (PERVASIVE INTERACTION), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire d'Informatique de Grenoble (LIG), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF), Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Laboratoire d'Informatique de Grenoble (LIG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Probayes [Montbonnot], Centre National de la Recherche Scientifique (CNRS), Institut des Systèmes Intelligents et de Robotique (ISIR), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), AMAC, Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), European Project: 618024,EC:FP7:ICT,FP7-ICT-2013-C,BAMBI(2014), and Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[INFO.INFO-AR]Computer Science [cs]/Hardware Architecture [cs.AR] ,Theoretical computer science ,Computer science ,Bayesian probability ,Inference ,[SCCO.COMP]Cognitive science/Computer science ,02 engineering and technology ,01 natural sciences ,Bayesian Programming ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] ,symbols.namesake ,Joint probability distribution ,0103 physical sciences ,0202 electrical engineering, electronic engineering, information engineering ,Computer Science (miscellaneous) ,Stochastic computing ,010308 nuclear & particles physics ,020206 networking & telecommunications ,Computer Science Applications ,Human-Computer Interaction ,Bayesian statistics ,symbols ,stochastic computing ,Stochastic optimization ,Information Systems ,Gibbs sampling ,Von Neumann architecture - Abstract
International audience; We present an architecture and a compilation toolchain for stochastic machines dedicated to Bayesian inferences. These machines are not Von Neumann and code information with stochastic bitstreams instead of using floating point representations. They only rely on stochastic arithmetic and on Gibbs sampling to perform approximate inferences. They use banks of binary random generators which capture the prior knowledge on which the inference is built. The output of the machine is devised to continuously sample the joint probability distribution of interest. While the method is explained on a simple example, we show that our machine computes a good approximation of the solution to a problem intractable in exact inference.
- Published
- 2016
- Full Text
- View/download PDF
15. Cognitive computation: A Bayesian machine case study
- Author
-
Jorge Lobo, Raphaël Laurent, Mohamad Othman Abdallah, Ronan Le Hy, Emmanuel Mazer, and Marvin Faix
- Subjects
Sequence ,Theoretical computer science ,business.industry ,Computer science ,Computation ,Carry (arithmetic) ,Bayesian probability ,Probabilistic logic ,Toolchain ,symbols.namesake ,symbols ,Noise (video) ,Artificial intelligence ,business ,Von Neumann architecture - Abstract
The work presented in this paper is part of the BAMBI project, which aims at better understanding natural cognition by designing non Von Neumann machines with biologicaly plausible hardware. Probabilistic programming allows artificial systems to better operate with uncertainty, and stochastic arithmetic provides a way to carry out approximate computations with few resources. As such, both are plausible models for natural cognition. Our work on the automatic design of probabilistic machines computing soft inferences with an arithmetic based on stochastic bitstreams allowed us to develop the following compilation toolchain: given a high level description of some general problem (typically to infer some knowledge from a model given some observations), formalized as a Bayesian Program, our toolchain automatically builds a low level description of an electronic circuit computing the corresponding probabilistic inference. This circuit can then be implemented and tested on reconfigurable logic.We designed as a validating example a circuit description of a Bayesian filter solving the problem of Pseudo Noise sequence acquisition in telecommunications.
- Published
- 2015
- Full Text
- View/download PDF
16. Machine stochastique modulaire et procédé associé
- Author
-
Pierre Bessière, Jacques Droulez, Emmanuel Mazer, Raphael Laurent, Damien Querlioz, Julie Grollier, Marvin Faix, Alexandre Coninx, David Colliaux, Institut des Systèmes Intelligents et de Robotique (ISIR), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), AMAC, Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), PERVASIVE INTERACTION (PERVASIVE INTERACTION), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire d'Informatique de Grenoble (LIG), Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS), Probayes [Montbonnot], Institut d'électronique fondamentale (IEF), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Unité mixte de physique CNRS/Thales (UMPhy CNRS/THALES), THALES [France]-Centre National de la Recherche Scientifique (CNRS), Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Laboratoire d'Informatique de Grenoble (LIG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF), Centre National de la Recherche Scientifique (CNRS)-THALES, and Bessiere, Pierre
- Subjects
[SCCO.COMP] Cognitive science/Computer science ,[SCCO.COMP]Cognitive science/Computer science
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.