Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES This Master Thesis presents the analysis, design and implementation of a grid-connected module integrated converter, or, simply, microinverter, for photovoltaic applications. The system is composed of two stages: a isolated DC-DC converter and a DC-AC converter (inverter). This proposed micro inverter has a DC bus (DC link), decoupling both stages, allowing to make the project, design and implementation of both individually. The first stage is a zero voltage switching DC-DC full bridge, with phase-shift modulation, and the second stage is a DC-AC full bridge with unipolar pulse-width modulation. Briefly, the first stage provides high voltage gain, besides isolation between the photovoltaic module and the electrical grid, in order that inverter bus has enough voltage to perform grid connection. This connection is made by inverter with output inductive filter. In order to extract the maximum power of photovoltaic module, the maximum power point tracking (MPPT) is made indirectly, controlling inverter bus voltage. Thus, the DC-DC converter operates in open loop, so that system control is design and implementated only on second stage. So, in this way, this Master Thesis contributes developing a microinverter employing classical converter topologies, with high efficiency and simplicity of design and implementation, using just two control loops, in a way that external voltage loop should be able to perform MPPT, ensuring maximum power harvesting of photovoltaic module, and the internal current loop should be able to control active power flow to electrical grid by controlling the current. In order to accomplish MPPT properly, the ripple of 120 Hz in voltage and current of photovoltaic module, generated by pulsed single phase grid power, should have low amplitude. Besides that, in order to be in compliance with standards of grid connection, as total demand distortion and power factor, among others, the current controller project should take into account the inffluence of main harmonic components of grid voltage. Experimental results are presented to prove the micro inverter performance. Esta Dissertação de Mestrado apresenta a análise, o projeto e a implementação de um conversor módulo integrado isolado, ou, simplesmente, microinversor, para realizar a conexão de geração fotovoltaica à rede elétrica. O sistema é composto por dois estágios: um conversor CC-CC isolado e um conversor CC-CA (inversor). O microinversor empregado utiliza um barramento (link CC), desacoplando os dois estágios, permitindo que os conversores possam ser projetados e implementados separadamente. O primeiro estágio é um conversor CC-CC, em ponte completa, modulado por deslocamento de fase, com comutação sob zero de tensão (ZVS – Zero Voltage Switching) e o segundo estágio é um conversor CC-CA, também em ponte completa, utilizando a modulação por largura de pulso (PWM – Pulse-Width Modulation) unipolar. Basicamente, o primeiro estágio proporciona um elevado ganho de tensão, além do isolamento entre o módulo fotovoltaico e a rede elétrica, de modo que o barramento de entrada do inversor tenha tensão suficiente para que a conexão com a rede seja realizada. Essa conexão é feita através do inversor com filtro L de saída. Para extrair a máxima potência do módulo fotovoltaico, o rastreamento do ponto de máxima potência (MPPT – Maximum Power Point Tracking) é realizado de maneira indireta, controlando o barramento de entrada do inversor. Dessa maneira, o conversor CC-CC opera em malha aberta, de modo que os controladores sejam projetados e implementados apenas no estágio CC-CA. Neste sentido, esta Dissertação de Mestrado contribui desenvolvendo um microinversor utilizando topologias clássicas de conversores, possuindo elevado rendimento, simplicidade de projeto e desenvolvimento, com apenas duas malhas de controle, de modo que a malha de tensão seja capaz de realizar o MPPT, garantindo a extração da máxima potência do módulo fotovoltaico, e a malha de corrente consiga regular o fluxo de potência injetada na rede elétrica, através do controle da corrente. Para que o MPPT seja realizado adequadamente, as ondulações de 120 Hz na tensão e corrente do módulo fotovoltaico, provenientes da potência pulsada da rede elétrica monofásica, devem ter amplitude bastante reduzida. Além disso, para que a corrente injetada na rede elétrica esteja adequada às normas vigentes, como limite de distorção harmônica e fator de potência, dentre outras, o projeto do controlador desta malha deve levar em conta a influência das principais componentes harmônicas presentes na tensão da rede elétrica. Resultados experimentais são apresentados para comprovar o desempenho do microinversor.