1. Prolonged IKKβ Inhibition Improves Ongoing CTL Antitumor Responses by Incapacitating Regulatory T Cells
- Author
-
Christoph Heuser, Janine Gotot, Eveline Christina Piotrowski, Marie-Sophie Philipp, Christina Johanna Felicia Courrèges, Martin Sylvester Otte, Linlin Guo, Jonathan Leo Schmid-Burgk, Veit Hornung, Annkristin Heine, Percy Alexander Knolle, Natalio Garbi, Edgar Serfling, César Evaristo, Friedrich Thaiss, and Christian Kurts
- Subjects
regulatory T cells ,NF-κB pathway ,tumor vaccination ,checkpoint inhibition ,cytotoxic T cells ,cross-priming ,apoptosis ,tumor immunology ,melanoma ,Biology (General) ,QH301-705.5 - Abstract
Regulatory T cells (Tregs) prevent autoimmunity but limit antitumor immunity. The canonical NF-κB signaling pathway both activates immunity and promotes thymic Treg development. Here, we report that mature Tregs continue to require NF-κB signaling through IκB-kinase β (IKKβ) after thymic egress. Mice lacking IKKβ in mature Tregs developed scurfy-like immunopathology due to death of peripheral FoxP3+ Tregs. Also, pharmacological IKKβ inhibition reduced Treg numbers in the circulation by ∼50% and downregulated FoxP3 and CD25 expression and STAT5 phosphorylation. In contrast, activated cytotoxic T lymphocytes (CTLs) were resistant to IKKβ inhibition because other pathways, in particular nuclear factor of activated T cells (NFATc1) signaling, sustained their survival and expansion. In a melanoma mouse model, IKKβ inhibition after CTL cross-priming improved the antitumor response and delayed tumor growth. In conclusion, prolonged IKKβ inhibition decimates circulating Tregs and improves CTL responses when commenced after tumor vaccination, indicating that IKKβ represents a druggable checkpoint.
- Published
- 2017
- Full Text
- View/download PDF