Konstantinos N. Blazakis, François Tardieu, Addie Thompson, Hiroyoshi Iwata, Marcos Malosetti, Christian Kuppe, Scott Chapman, Fred A. van Eeuwijk, Martin P. Boer, Emilie J. Millet, Onno Muller, Kang Yu, Roberto Quiroz, Willem Kruijer, Daniela Bustos-Korts, Biometris, Wageningen University and Research [Wageningen] (WUR), Michigan State University [East Lansing], Michigan State University System, Graduate School of Agricultural and Life Sciences [UTokyo] (GSALS), The University of Tokyo (UTokyo), Consultative Group on International Agricultural Research (CGIAR), Forschungszentrum Jülich GmbH | Centre de recherche de Juliers, Helmholtz-Gemeinschaft = Helmholtz Association, Centre International de Hautes Etudes Agronomiques Méditerranéennes - Institut Agronomique Méditerranéen de Chania (CIHEAM-IAMC), Centre International de Hautes Études Agronomiques Méditerranéennes (CIHEAM), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), Université Catholique de Louvain = Catholic University of Louvain (UCL), Écophysiologie des Plantes sous Stress environnementaux (LEPSE), Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Commonwealth Scientific and Industrial Research Organisation [Canberra] (CSIRO), University of Queensland [Brisbane], European Union's Horizon 2020 research and innovation programme under grant agreement n° 731013, EPPN2020, European Project: 613556,EC:FP7:KBBE,FP7-KBBE-2013-7-single-stage,WHEALBI(2014), Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), and Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)
New types of phenotyping tools generate large amounts of data on many aspects of plant physiology and morphology with high spatial and temporal resolution. These new phenotyping data are potentially useful to improve understanding and prediction of complex traits, like yield, that are characterized by strong environmental context dependencies, i.e., genotype by environment interactions. For an evaluation of the utility of new phenotyping information, we will look at how this information can be incorporated in different classes of genotype-to-phenotype (G2P) models. G2P models predict phenotypic traits as functions of genotypic and environmental inputs. In the last decade, access to high-density single nucleotide polymorphism markers (SNPs) and sequence information has boosted the development of a class of G2P models called genomic prediction models that predict phenotypes from genome wide marker profiles. The challenge now is to build G2P models that incorporate simultaneously extensive genomic information alongside with new phenotypic information. Beyond the modification of existing G2P models, new G2P paradigms are required. We present candidate G2P models for the integration of genomic and new phenotyping information and illustrate their use in examples. Special attention will be given to the modelling of genotype by environment interactions. The G2P models provide a framework for model based phenotyping and the evaluation of the utility of phenotyping information in the context of breeding programs. ispartof: Plant Science vol:282 pages:23-39 ispartof: location:MEXICO, Int Maize & Wheat Improvement Ctr status: Published online