47 results on '"Martin Fertl"'
Search Results
2. The muon g-2 experiment at Fermilab
- Author
-
Martin Fertl
- Published
- 2022
3. Measurement of the anomalous precession frequency of the muon in the Fermilab Muon <math><mi>g</mi><mo>−</mo><mn>2</mn></math> Experiment
- Author
-
P. Bloom, P. Kammel, Timothy Chupp, C. Schlesier, P. Girotti, M. J. Lee, A. Nath, Frederick Gray, C. Gabbanini, D. Shemyakin, C. C. Polly, L. Cotrozzi, V. N. Duginov, G. Venanzoni, T. Stuttard, G. Lukicov, M. Iacovacci, H. E. Swanson, T. P. Gorringe, B. C.K. Casey, J. Grange, N. H. Tran, K. W. Hong, K. T. Pitts, R. T. Chislett, Fabrizio Marignetti, A. Lucà, Martin Fertl, E. Barlas-Yucel, J. George, A. Kuchibhotla, Dariush Hampai, T. Walton, D. Cauz, G. Sweetmore, J. Bono, I. R. Bailey, Dinko Pocanic, J. L. Holzbauer, Gavin Grant Hesketh, J. L. Ritchie, Alexander Keshavarzi, H. P. Binney, A. García, Manolis Kargiantoulakis, A. Basti, Barry King, B. MacCoy, M. Kiburg, David Rubin, Alexey Anisenkov, V. Tishchenko, Marin Karuza, H. Nguyen, P. Di Meo, Claudio Ferrari, N. Kinnaird, Liang Li, L. K. Gibbons, N. Raha, R. Chakraborty, D. Flay, R. N. Pilato, M. Incagli, M. Lancaster, Michael Syphers, S. Baeßler, T. J. V. Bowcock, J. LaBounty, G. M. Piacentino, D. Vasilkova, S. Park, A. Lusiani, T. Albahri, R. Madrak, Z. Hodge, Dominik Stöckinger, A. Chapelain, Brad Plaster, R. M. Carey, Dongdong Li, J. D. Crnkovic, D. W. Hertzog, Selcuk Haciomeroglu, J. P. Miller, Andrzej Wolski, Tabitha Halewood-leagas, Franco Bedeschi, B. L. Roberts, S. Grant, J. Fry, Kyoko Makino, J.B. Hempstead, S. Di Falco, K. S. Khaw, W. Turner, Z. Chu, A. T. Herrod, J. D. Price, T. Barrett, N. V. Khomutov, M. Farooq, P. Winter, J. Stapleton, R. Fatemi, D. Kawall, S. Charity, L. Santi, A. Schreckenberger, E. Valetov, B. Quinn, Yannis K. Semertzidis, B. Li, K. L. Giovanetti, A. E. Tewsley-Booth, S. Lee, Ran Hong, S. Leo, M. D. Galati, A.T. Fienberg, Sultan B. Dabagov, S. P. Chang, L. Kelton, G. Pauletta, Rachel Osofsky, G. Di Sciascio, S. Ganguly, D.A. Sweigart, Meghna Bhattacharya, Thomas Teubner, A. Gioiosa, S. Miozzi, B. Kiburg, J. Esquivel, A. Lorente Campos, David Kessler, E. Bottalico, M. Sorbara, Christopher Stoughton, J. Mott, Kayleigh Anne Thomson, Giovanni Cantatore, A. Fioretti, A. Anastasi, Wanwei Wu, Karie Badgley, S. Mastroianni, O. Kim, William Morse, L. Welty-Rieger, A. L. Lyon, A. Hibbert, A. Weisskopf, P. T. Debevec, W. Gohn, E. J. Ramberg, R. Di Stefano, E. Kraegeloh, Martin Berz, Z. Khechadoorian, S. Ramachandran, D. Stratakis, S. Corrodi, D. A. Tarazona, V. A. Baranov, J. Choi, F. Han, Nicholas A. Pohlman, M. Eads, I. Logashenko, N. A. Kuchinskiy, M. W. Smith, Y. I. Kim, A. Driutti, J. Kaspar, K. R. Labe, N. S. Froemming, E. Frlež, Albahri, T., Anastasi, A., Anisenkov, A., Badgley, K., Baeßler, S., Bailey, I., Baranov, V. A., Barlas-Yucel, E., Barrett, T., Basti, A., Bedeschi, F., Berz, M., Bhattacharya, M., Binney, H. P., Bloom, P., Bono, J., Bottalico, E., Bowcock, T., Cantatore, G., Carey, R. M., Casey, B. C. K., Cauz, D., Chakraborty, R., Chang, S. P., Chapelain, A., Charity, S., Chislett, R., Choi, J., Chu, Z., Chupp, T. E., Corrodi, S., Cotrozzi, L., Crnkovic, J. D., Dabagov, S., Debevec, P. T., Di Falco, S., Di Meo, P., Di Sciascio, G., Di Stefano, R., Driutti, A., Duginov, V. N., Eads, M., Esquivel, J., Farooq, M., Fatemi, R., Ferrari, C., Fertl, M., Fienberg, A. T., Fioretti, A., Flay, D., Frlež, E., Froemming, N. S., Fry, J., Gabbanini, C., Galati, M. D., Ganguly, S., Garcia, A., George, J., Gibbons, L. K., Gioiosa, A., Giovanetti, K. L., Girotti, P., Gohn, W., Gorringe, T., Grange, J., Grant, S., Gray, F., Haciomeroglu, S., Halewood-Leagas, T., Hampai, D., Han, F., Hempstead, J., Herrod, A. T., Hertzog, D. W., Hesketh, G., Hibbert, A., Hodge, Z., Holzbauer, J. L., Hong, K. W., Hong, R., Iacovacci, M., Incagli, M., Kammel, P., Kargiantoulakis, M., Karuza, M., Kaspar, J., Kawall, D., Kelton, L., Keshavarzi, A., Kessler, D., Khaw, K. S., Khechadoorian, Z., Khomutov, N. V., Kiburg, B., Kiburg, M., Kim, O., Kim, Y. I., King, B., Kinnaird, N., Kraegeloh, E., Kuchibhotla, A., Kuchinskiy, N. A., Labe, K. R., Labounty, J., Lancaster, M., Lee, M. J., Lee, S., Leo, S., Li, B., Li, D., Li, L., Logashenko, I., Lorente Campos, A., Lucà, A., Lukicov, G., Lusiani, A., Lyon, A. L., Maccoy, B., Madrak, R., Makino, K., Marignetti, F., Mastroianni, S., Miller, J. P., Miozzi, S., Morse, W. M., Mott, J., Nath, A., Nguyen, H., Osofsky, R., Park, S., Pauletta, G., Piacentino, G. M., Pilato, R. N., Pitts, K. T., Plaster, B., Počanić, D., Pohlman, N., Polly, C. C., Price, J., Quinn, B., Raha, N., Ramachandran, S., Ramberg, E., Ritchie, J. L., Roberts, B. L., Rubin, D. L., Santi, L., Schlesier, C., Schreckenberger, A., Semertzidis, Y. K., Shemyakin, D., Smith, M. W., Sorbara, M., Stöckinger, D., Stapleton, J., Stoughton, C., Stratakis, D., Stuttard, T., Swanson, H. E., Sweetmore, G., Sweigart, D. A., Syphers, M. J., Tarazona, D. A., Teubner, T., Tewsley-Booth, A. E., Thomson, K., Tishchenko, V., Tran, N. H., Turner, W., Valetov, E., Vasilkova, D., Venanzoni, G., Walton, T., Weisskopf, A., Welty-Rieger, L., Winter, P., Wolski, A., and Wu, W.
- Subjects
Physics::Instrumentation and Detectors ,Measure (physics) ,FOS: Physical sciences ,7. Clean energy ,01 natural sciences ,Omega ,High Energy Physics - Experiment ,Nuclear physics ,Nuclear Experiment ,High Energy Physics - Experiment (hep-ex) ,muon ,0103 physical sciences ,Fermilab ,Nuclear Experiment (nucl-ex) ,010306 general physics ,Larmor precession ,Physics ,Muon ,010308 nuclear & particles physics ,Settore FIS/01 - Fisica Sperimentale ,anomalous magnetic moment ,3. Good health ,Magnetic field ,Physics::Accelerator Physics ,High Energy Physics::Experiment ,Storage ring ,Fermi Gamma-ray Space Telescope - Abstract
The Muon g-2 Experiment at Fermi National Accelerator Laboratory (FNAL) has measured the muon anomalous precession frequency $\omega_a$ to an uncertainty of 434 parts per billion (ppb), statistical, and 56 ppb, systematic, with data collected in four storage ring configurations during its first physics run in 2018. When combined with a precision measurement of the magnetic field of the experiment's muon storage ring, the precession frequency measurement determines a muon magnetic anomaly of $a_{\mu}({\rm FNAL}) = 116\,592\,040(54) \times 10^{-11}$ (0.46 ppm). This article describes the multiple techniques employed in the reconstruction, analysis and fitting of the data to measure the precession frequency. It also presents the averaging of the results from the eleven separate determinations of \omega_a, and the systematic uncertainties on the result., Comment: 29 pages, 19 figures. Published in Physical Review D
- Published
- 2021
4. Systematic and statistical uncertainties of the hilbert-transform based high-precision FID frequency extraction method
- Author
-
Ran Hong, B. Kiburg, H. E. Swanson, D. Kawall, Martin Fertl, Suvarna Ramachandran, Jimin George, J. Grange, Alejandro Garcia, Kyun Woo Hong, Simon Corrodi, A. E. Tewsley-Booth, D. Flay, Kevin Giovanetti, Timothy Gorringe, Bingzhi Li, Kai Zheng, J. Bono, Tianyu Yang, Liang Li, M. W. Smith, Rachel Osofsky, P. Winter, Timothy Chupp, Dinko Pocanic, Saskia Charity, and S. Baeßler
- Subjects
010302 applied physics ,Larmor precession ,Physics ,Nuclear and High Energy Physics ,Physics - Instrumentation and Detectors ,010308 nuclear & particles physics ,Noise (signal processing) ,Covariance matrix ,Mathematical analysis ,Biophysics ,FOS: Physical sciences ,Absolute value ,Instrumentation and Detectors (physics.ins-det) ,Condensed Matter Physics ,01 natural sciences ,Biochemistry ,Signal ,Free induction decay ,symbols.namesake ,0103 physical sciences ,symbols ,Hilbert transform ,Uncertainty analysis - Abstract
Pulsed nuclear magnetic resonance (NMR) is widely used in high-precision magnetic field measurements. The absolute value of the magnetic field is determined from the precession frequency of nuclear magnetic moments. The Hilbert transform is one of the methods that have been used to extract the phase function from the observed free induction decay (FID) signal and then its frequency. In this paper, a detailed implementation of a Hilbert-transform based FID frequency extraction method is described, and it is briefly compared with other commonly used frequency extraction methods. How artifacts and noise level in the FID signal affect the extracted phase function are derived analytically. A method of mitigating the artifacts in the extracted phase function of an FID is discussed. Correlations between noises of the phase function samples are studied for different noise spectra. We discovered that the error covariance matrix for the extracted phase function is nearly singular and improper for constructing the χ 2 used in the fitting routine. A down-sampling method for fixing the singular covariance matrix has been developed, so that the minimum χ 2 -fit yields properly the statistical uncertainty of the extracted frequency. Other practical methods of obtaining the statistical uncertainty are also discussed.
- Published
- 2021
5. The design of the n2EDM experiment: nEDM Collaboration
- Author
-
N. Yazdandoost, T. Stapf, Jens-Uwe Voigt, S. Roccia, C. B. Doorenbos, K. U. Ross, G. Quéméner, K. Svirina, B. Dechenaux, Y. Lemière, Philipp Schmidt-Wellenburg, T. Bouillaud, Kazimierz Bodek, Allard Schnabel, Guillaume Pignol, N. J. Ayres, Nathal Severijns, S. Emmenegger, Jacek Zejma, M. Rawlik, Luc Bienstman, Philip Harris, D. Pais, W. C. Griffith, P.-J. Chiu, W. Saenz, P. A. Koss, Klaus Kirch, B. Shen, Oscar Naviliat-Cuncic, R. Virot, A. Leredde, L. Ferraris-Bouchez, J. Chen, A. Fratangelo, Georg Bison, E. Chanel, G. Ban, S. Touati, Geza Zsigmond, D. Ries, Florian M. Piegsa, T. Lefort, J. Thorne, Zoran D. Grujić, B. Clement, D. A. Mullins, J. Menu, I. Rienäcker, M. Daum, V. Bondar, J. Krempel, R. Tavakoli Dinani, D. Rozpedzik, P. Flaux, D. Goupillière, Martin Fertl, M. Meier, Christopher Crawford, Bernhard Lauss, D. Rebreyend, E. Wursten, Laboratoire de physique corpusculaire de Caen (LPCC), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), n2EDM, and Publica
- Subjects
experimental methods ,Physics and Astronomy (miscellaneous) ,Nuclear engineering ,Special Article - Tools for Experiment and Theory ,RELAXATION ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,01 natural sciences ,Technical design ,ARBITRARY ,Physics, Particles & Fields ,SEARCHES ,ELECTRIC-DIPOLE-MOMENT ,0103 physical sciences ,Neutron ,Sensitivity (control systems) ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,010306 general physics ,Engineering (miscellaneous) ,MAGNETOMETER ,detector: design ,activity report ,Physics ,Science & Technology ,n: electric moment ,DIAMOND-LIKE CARBON ,010308 nuclear & particles physics ,MAGNETIC-FIELD ,PERFORMANCE ,sensitivity ,ULTRACOLD-NEUTRON SOURCE ,Electric dipole moment ,Physical Sciences ,Neutron source ,Order of magnitude - Abstract
We present the design of a next-generation experiment, n2EDM, currently under construction at the ultracold neutron source at the Paul Scherrer Institute (PSI) with the aim of carrying out a high-precision search for an electric dipole moment of the neutron. The project builds on experience gained with the previous apparatus operated at PSI until 2017, and is expected to deliver an order of magnitude better sensitivity with provision for further substantial improvements. An overview is of the experimental method and setup is given, the sensitivity requirements for the apparatus are derived, and its technical design is described., The European Physical Journal C, 81 (6), ISSN:1434-6044, ISSN:1434-6052
- Published
- 2021
6. Magnetic Field Measurement and Analysis for the Muon g-2 Experiment at Fermilab
- Author
-
Z. Chu, M. Eads, M. Lancaster, T. Halewood-Leagas, D. Flay, I. Logashenko, N. A. Kuchinskiy, M. W. Smith, Y. I. Kim, S.B. Dabagov, B. MacCoy, N. H. Tran, K. W. Hong, Liang Li, L. Santi, A. Chapelain, K. S. Khaw, K. T. Pitts, R. Fatemi, I. R. Bailey, E. Bottalico, Andrzej Wolski, R. N. Pilato, P. Bloom, M. Iacovacci, G. Pauletta, M. Incagli, R. Di Stefano, Timothy Chupp, E. Barlas-Yucel, G. Di Sciascio, G. Sweetmore, D. Cauz, P. Girotti, H. Nguyen, Thomas Teubner, D.A. Sweigart, A. E. Tewsley-Booth, G. Piacentino, D. Stöckinger, Karie Badgley, L. Kelton, P. Winter, Brad Plaster, J. L. Holzbauer, R. Chislett, B. Quinn, R. M. Carey, A. Conway, Kyoko Makino, A. Hibbert, B. C. K. Casey, A. Driutti, J. George, A. Lorente Campos, W. Turner, A. Lucà, S. Ramachandran, W. Wu, G. Hesketh, E. Valetov, E. Kraegeloh, Franco Bedeschi, A. Gioiosa, P. T. Debevec, L. Cotrozzi, V. N. Duginov, S. Corrodi, S. Miozzi, Yannis K. Semertzidis, M. J. Lee, S. Mastroianni, P. Di Meo, Martin Berz, K. L. Giovanetti, D. Stratakis, G. Lukicov, C. Gabbanini, J.B. Hempstead, A. Weisskopf, V. Tishchenko, B. Kiburg, H. E. Swanson, O. Kim, Michael Syphers, R. Osofsky, T. Stuttard, J. Esquivel, Dariush Hampai, T. J. V. Bowcock, Adam L. Lyon, Z. Khechadoorian, Meghna Bhattacharya, T. Barrett, Martin Fertl, D. Shemyakin, V. A. Baranov, Manolis Kargiantoulakis, R. Madrak, Marin Karuza, D. Vasilkova, S. Park, N. Kinnaird, A. Lusiani, T. Albahri, E. Ramberg, Nicholas A. Pohlman, D. Kawall, A. Schreckenberger, J. L. Ritchie, A. T. Herrod, Selcuk Haciomeroglu, L. K. Gibbons, J. Stapleton, Fabrizio Marignetti, K. Thomson, J. LaBounty, W. Gohn, G. Venanzoni, B. Li, Claudio Ferrari, Dinko Pocanic, S. P. Chang, S. Charity, T. Walton, T. P. Gorringe, Benjamin T. King, A. Fioretti, A. Anastasi, Sudeshna Ganguly, S. Lee, Ran Hong, M. D. Galati, A.T. Fienberg, William Morse, L. Welty-Rieger, Alejandro Garcia, J. Grange, J. Choi, Dongdong Li, D. W. Hertzog, A. Keshavarzi, M. Sorbara, F. Han, J. Bono, J. Mott, P. Kammel, C. Schlesier, Giovanni Cantatore, S. Di Falco, R. Chakraborty, C. C. Polly, J. P. Miller, M. Kiburg, J. Kaspar, David Rubin, S. Baeßler, K. R. Labe, N. S. Froemming, H. P. Binney, B. L. Roberts, S. Grant, J. Price, N. Raha, Z. Hodge, N. V. Khomutov, M. Farooq, Jason Crnkovic, D. A. Tarazona, C. Stoughton, A. Nath, Frederick Gray, David Kessler, Albahri, T., Anastasi, A., Badgley, K., Baessler, S., Bailey, I., Baranov, V. A., Barlas-Yucel, E., Barrett, T., Bedeschi, F., Berz, M., Bhattacharya, M., Binney, H. P., Bloom, P., Bono, J., Bottalico, E., Bowcock, T., Cantatore, G., Carey, R. M., Casey, B. C. K., Cauz, D., Chakraborty, R., Chang, S. P., Chapelain, A., Charity, S., Chislett, R., Choi, J., Chu, Z., Chupp, T. E., Conway, A., Corrodi, S., Cotrozzi, L., Crnkovic, J. D., Dabagov, S., Debevec, P. T., Di Falco, S., Di Meo, P., Di Sciascio, G., Di Stefano, R., Driutti, A., Duginov, V. N., Eads, M., Esquivel, J., Farooq, M., Fatemi, R., Ferrari, C., Fertl, M., Fienberg, A. T., Fioretti, A., Flay, D., Froemming, N. S., Gabbanini, C., Galati, M. D., Ganguly, S., Garcia, A., George, J., Gibbons, L. K., Gioiosa, A., Giovanetti, K. L., Girotti, P., Gohn, W., Gorringe, T., Grange, J., Grant, S., Gray, F., Haciomeroglu, S., Halewood-Leagas, T., Hampai, D., Han, F., Hempstead, J., Herrod, A. T., Hertzog, D. W., Hesketh, G., Hibbert, A., Hodge, Z., Holzbauer, J. L., Hong, K. W., Hong, R., Iacovacci, M., Incagli, M., Kammel, P., Kargiantoulakis, M., Karuza, M., Kaspar, J., Kawall, D., Kelton, L., Keshavarzi, A., Kessler, D., Khaw, K. S., Khechadoorian, Z., Khomutov, N. V., Kiburg, B., Kiburg, M., Kim, O., Kim, Y. I., King, B., Kinnaird, N., Kraegeloh, E., Kuchinskiy, N. A., Labe, K. R., Labounty, J., Lancaster, M., Lee, M. J., Lee, S., Li, B., Li, D., Li, L., Logashenko, I., Lorente Campos, A., Luca, A., Lukicov, G., Lusiani, A., Lyon, A. L., Maccoy, B., Madrak, R., Makino, K., Marignetti, F., Mastroianni, S., Miller, J. P., Miozzi, S., Morse, W. M., Mott, J., Nath, A., Nguyen, H., Osofsky, R., Park, S., Pauletta, G., Piacentino, G. M., Pilato, R. N., Pitts, K. T., Plaster, B., Pocanic, D., Pohlman, N., Polly, C. C., Price, J., Quinn, B., Raha, N., Ramachandran, S., Ramberg, E., Ritchie, J. L., Roberts, B. L., Rubin, D. L., Santi, L., Schlesier, C., Schreckenberger, A., Semertzidis, Y. K., Shemyakin, D., Smith, M. W., Sorbara, M., Stockinger, D., Stapleton, J., Stoughton, C., Stratakis, D., Stuttard, T., Swanson, H. E., Sweetmore, G., Sweigart, D. A., Syphers, M. J., Tarazona, D. A., Teubner, T., Tewsley-Booth, A. E., Thomson, K., Tishchenko, V., Tran, N. H., Turner, W., Valetov, E., Vasilkova, D., Venanzoni, G., Walton, T., Weisskopf, A., Welty-Rieger, L., Winter, P., Wolski, A., Wu, W., Baeßler, S., Lucà, A., Počanić, D., and Stöckinger, D.
- Subjects
Field (physics) ,Physics::Instrumentation and Detectors ,FOS: Physical sciences ,7. Clean energy ,01 natural sciences ,Omega ,High Energy Physics - Experiment ,010305 fluids & plasmas ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,muon ,0103 physical sciences ,Proton spin crisis ,Fermilab ,Nuclear Experiment (nucl-ex) ,010306 general physics ,Nuclear Experiment ,Larmor precession ,Physics ,Muon ,Settore FIS/01 - Fisica Sperimentale ,VACUUM POLARIZATION CONTRIBUTIONSTEMPERATURE-DEPENDENCEPROTON NMRMOMENTSUSCEPTIBILITYTERMS ,anomalous magnetic moment ,Muon g-2 Experiment, anomalous precession frequency ,Magnetic field ,anomalous precession frequency ,Muon g-2 Experiment ,Fermi Gamma-ray Space Telescope - Abstract
The Fermi National Accelerator Laboratory has measured the anomalous precession frequency $a^{}_\mu = (g^{}_\mu-2)/2$ of the muon to a combined precision of 0.46 parts per million with data collected during its first physics run in 2018. This paper documents the measurement of the magnetic field in the muon storage ring. The magnetic field is monitored by nuclear magnetic resonance systems and calibrated in terms of the equivalent proton spin precession frequency in a spherical water sample at 34.7$^\circ$C. The measured field is weighted by the muon distribution resulting in $\tilde{\omega}'^{}_p$, the denominator in the ratio $\omega^{}_a$/$\tilde{\omega}'^{}_p$ that together with known fundamental constants yields $a^{}_\mu$. The reported uncertainty on $\tilde{\omega}'^{}_p$ for the Run-1 data set is 114 ppb consisting of uncertainty contributions from frequency extraction, calibration, mapping, tracking, and averaging of 56 ppb, and contributions from fast transient fields of 99 ppb., Comment: Added one citation and corrected missing normalization in Eqs (35) and (36)
- Published
- 2021
- Full Text
- View/download PDF
7. Johnson-Nyquist Noise Effects in Neutron Electric-Dipole-Moment Experiments
- Author
-
T. Lefort, B. Clement, Jacek Zejma, D. Ries, Guillaume Pignol, R. Tavakoli Dinani, W. C. Griffith, Geza Zsigmond, Christopher Crawford, Klaus Kirch, V. Bondar, Philipp Schmidt-Wellenburg, B. Shen, I. Rienäcker, P. A. Koss, Bernhard Lauss, Kazimierz Bodek, G. Ban, M. Daum, N. Yazdandoost, Prajwal Mohanmurthy, S. Roccia, Allard Schnabel, Nathal Severijns, J. Thorne, D. Rebreyend, Zoran D. Grujić, N. J. Ayres, D. Rozpedzik, Oscar Naviliat-Cuncic, Florian M. Piegsa, Georg Bison, K. U. Ross, R. Virot, P.-J. Chiu, A. Fratangelo, Martin Fertl, Philip Harris, S. Emmenegger, D. Pais, Université de Caen Normandie (UNICAEN), Normandie Université (NU), Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Laboratoire de physique corpusculaire de Caen (LPCC), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Institut Laue-Langevin (ILL), ILL, and Publica
- Subjects
noise ,Neutron electric dipole moment ,Magnetometer ,Atomic Physics (physics.atom-ph) ,FOS: Physical sciences ,Neutron Physics ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,01 natural sciences ,Noise (electronics) ,010305 fluids & plasmas ,law.invention ,Physics - Atomic Physics ,law ,Electric field ,0103 physical sciences ,Neutron ,Nuclear Experiment (nucl-ex) ,010306 general physics ,Nuclear Experiment ,Physics ,high-precision experiments ,precision measurement ,Johnson–Nyquist noise ,Atomic and molecular structure and dynamics ,[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph] ,Computational physics ,Dipole ,Nuclear Spin Resonance ,Amplitude ,Electromagnetic Field Calculations - Abstract
Magnetic Johnson-Nyquist noise (JNN) originating from metal electrodes, used to create a static electric field in neutron electric-dipole-moment (nEDM) experiments, may limit the sensitivity of measurements. We present here the first dedicated study on JNN applied to a large-scale long-measurement-time experiment with the implementation of a co-magnetometry. In this study, we derive surface- and volume-averaged root-mean-square normal noise amplitudes at a certain frequency bandwidth for a cylindrical geometry. In addition, we model the source of noise as a finite number of current dipoles and demonstrate a method to simulate temporal and three-dimensional spatial dependencies of JNN. The calculations are applied to estimate the impact of JNN on measurements with the new apparatus, n2EDM, at the Paul Scherrer Institute. We demonstrate that the performances of the optically pumped $^{133}$Cs magnetometers and $^{199}$Hg co-magnetometers, which will be used in the apparatus, are not limited by JNN. Further, we find that in measurements deploying a co-magnetometer system, the impact of JNN is negligible for nEDM searches down to a sensitivity of $4\,\times\,10^{-28}\,e\cdot{\rm cm}$ in a single measurement; therefore, the use of economically and mechanically favored solid aluminum electrodes is possible.
- Published
- 2021
- Full Text
- View/download PDF
8. Beam dynamics corrections to the Run-1 measurement of the muon anomalous magnetic moment at Fermilab
- Author
-
K. S. Khaw, C. Schlesier, Diktys Stratakis, R. Fatemi, S. Corrodi, D. Newton, K. T. Pitts, R. T. Chislett, L. K. Gibbons, Kyoko Makino, E. Bottalico, A. Gioiosa, J. LaBounty, J. Bono, I. R. Bailey, P. Kammel, D. Kawall, T. J. V. Bowcock, H. P. Binney, W. Turner, A. T. Herrod, S. Miozzi, A. Schreckenberger, E. Valetov, N. H. Tran, K. W. Hong, J. Esquivel, M. Sorbara, Christopher Stoughton, Fabrizio Marignetti, A. Lucà, L. Kelton, M. Eads, D. Stöckinger, T. Barrett, G. Piacentino, J. Mott, S. Baeßler, Bck Casey, Kayleigh Anne Thomson, Giovanni Cantatore, Rachel Osofsky, M. Kiburg, E. Barlas-Yucel, Michael Syphers, C. C. Polly, J. Choi, R. Chakraborty, D. Flay, David Rubin, J. Grange, N. A. Kuchinskiy, M. W. Smith, G. Lukicov, M. Iacovacci, G. Pauletta, J. L. Ritchie, B. MacCoy, L. Cotrozzi, V. N. Duginov, A. Lorente Campos, S. Lee, Ran Hong, G. Sweetmore, D.A. Sweigart, M. Korostelev, Dongdong Li, D. W. Hertzog, Alexander Keshavarzi, G. Di Sciascio, Alejandro L. Garcia, Liang Li, F. Han, D. Sathyan, A.T. Fienberg, Sultan B. Dabagov, M. J. Lee, S. P. Chang, Benjamin T. King, Marin Karuza, R. N. Pilato, M. Incagli, J.B. Hempstead, B. Quinn, L. Santi, N. Kinnaird, F. Gray, P. Winter, L. Welty-Rieger, Meghna Bhattacharya, H. Nguyen, P. Di Meo, T. Stuttard, A. L. Lyon, David Kessler, A. Chapelain, J. Kaspar, B. Li, Galati, Sudeshna Ganguly, Andrzej Wolski, A. Driutti, D. A. Tarazona, Brad Plaster, R. M. Carey, D. Cauz, G. Venanzoni, J. Fry, B. Kiburg, J. P. Miller, W. Gohn, B. L. Roberts, S. Grant, V. A. Baranov, Nicholas A. Pohlman, N. V. Khomutov, M. Farooq, Jason Crnkovic, A. Hibbert, K. R. Labe, P. T. Debevec, Thomas Teubner, S. Di Falco, J. D. Price, Yi Kim, I.B. Logashenko, Yannis K. Semertzidis, K. L. Giovanetti, A. E. Tewsley-Booth, E. Frlež, Martin Berz, S. Charity, T. Walton, Z. Khechadoorian, S. Ramachandran, A. Fiedler, T. P. Gorringe, William Morse, A. Fioretti, A. Anastasi, O. Kim, A. Weisskopf, Wanwei Wu, Karie Badgley, S. Mastroianni, J. L. Holzbauer, Manolis Kargiantoulakis, S. Park, A. Lusiani, T. Albahri, R. Madrak, Selcuk Haciomeroglu, Z. Chu, Dariush Hampai, Gavin Grant Hesketh, J. George, Tishchenko, D. Vasilkova, Franco Bedeschi, P. Bloom, Timothy Chupp, P. Girotti, Nathan Froemming, J. Stapleton, Dinko Pocanic, M. Lancaster, C. Gabbanini, N. Raha, H. E. Swanson, Martin Fertl, Z. Hodge, Tabitha Halewood-leagas, E. J. Ramberg, A. Nath, R. Di Stefano, E. Kraegeloh, Claudio Ferrari, Albahri, T., Anastasi, A., Badgley, K., Baessler, S., Bailey, I., Baranov, V. A., Barlas-Yucel, E., Barrett, T., Bedeschi, F., Berz, M., Bhattacharya, M., Binney, H. P., Bloom, P., Bono, J., Bottalico, E., Bowcock, T., Cantatore, G., Carey, R. M., Casey, B. C. K., Cauz, D., Chakraborty, R., Chang, S. P., Chapelain, A., Charity, S., Chislett, R., Choi, J., Chu, Z., Chupp, T. E., Corrodi, S., Cotrozzi, L., Crnkovic, J. D., Dabagov, S., Debevec, P. T., Di Falco, S., Di Meo, P., Di Sciascio, G., Di Stefano, R., Driutti, A., Duginov, V. N., Eads, M., Esquivel, J., Farooq, M., Fatemi, R., Ferrari, C., Fertl, M., Fiedler, A., Fienberg, A. T., Fioretti, A., Flay, D., Frlez, E., Froemming, N. S., Fry, J., Gabbanini, C., Galati, M. D., Ganguly, S., Garcia, A., George, J., Gibbons, L. K., Gioiosa, A., Giovanetti, K. L., Girotti, P., Gohn, W., Gorringe, T., Grange, J., Grant, S., Gray, F., Haciomeroglu, S., Halewood-Leagas, T., Hampai, D., Han, F., Hempstead, J., Herrod, A. T., Hertzog, D. W., Hesketh, G., Hibbert, A., Hodge, Z., Holzbauer, J. L., Hong, K. W., Hong, R., Iacovacci, M., Incagli, M., Kammel, P., Kargiantoulakis, M., Karuza, M., Kaspar, J., Kawall, D., Kelton, L., Keshavarzi, A., Kessler, D., Khaw, K. S., Khechadoorian, Z., Khomutov, N. V., Kiburg, B., Kiburg, M., Kim, O., Kim, Y. I., King, B., Kinnaird, N., Korostelev, M., Kraegeloh, E., Kuchinskiy, N. A., Labe, K. R., Labounty, J., Lancaster, M., Lee, M. J., Lee, S., Li, B., Li, D., Li, L., Logashenko, I., Lorente Campos, A., Luca, A., Lukicov, G., Lusiani, A., Lyon, A. L., Maccoy, B., Madrak, R., Makino, K., Marignetti, F., Mastroianni, S., Miller, J. P., Miozzi, S., Morse, W. M., Mott, J., Nath, A., Newton, D., Nguyen, H., Osofsky, R., Park, S., Pauletta, G., Piacentino, G. M., Pilato, R. N., Pitts, K. T., Plaster, B., Pocanic, D., Pohlman, N., Polly, C. C., Price, J., Quinn, B., Raha, N., Ramachandran, S., Ramberg, E., Ritchie, J. L., Roberts, B. L., Rubin, D. L., Santi, L., Sathyan, D., Schlesier, C., Schreckenberger, A., Semertzidis, Y. K., Smith, M. W., Sorbara, M., Stockinger, D., Stapleton, J., Stoughton, C., Stratakis, D., Stuttard, T., Swanson, H. E., Sweetmore, G., Sweigart, D. A., Syphers, M. J., Tarazona, D. A., Teubner, T., Tewsley-Booth, A. E., Thomson, K., Tishchenko, V., Tran, N. H., Turner, W., Valetov, E., Vasilkova, D., Venanzoni, G., Walton, T., Weisskopf, A., Welty-Rieger, L., Winter, P., Wolski, A., and Wu, W.
- Subjects
Larmor precession ,Physics ,Accelerator Physics (physics.acc-ph) ,Nuclear and High Energy Physics ,Muon ,Physics and Astronomy (miscellaneous) ,Anomalous magnetic dipole moment ,010308 nuclear & particles physics ,FOS: Physical sciences ,Surfaces and Interfaces ,01 natural sciences ,High Energy Physics - Experiment ,Magnetic field ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,muon magnetic anomaly ,0103 physical sciences ,Physics - Accelerator Physics ,Fermilab ,Pitch angle ,010306 general physics ,G-2 EXPERIMENTFREQUENCY ,Storage ring ,Beam (structure) - Abstract
This paper presents the beam dynamics systematic corrections and their uncertainties for the Run-1 data set of the Fermilab Muon g-2 Experiment. Two corrections to the measured muon precession frequency $\omega_a^m$ are associated with well-known effects owing to the use of electrostatic quadrupole (ESQ) vertical focusing in the storage ring. An average vertically oriented motional magnetic field is felt by relativistic muons passing transversely through the radial electric field components created by the ESQ system. The correction depends on the stored momentum distribution and the tunes of the ring, which has relatively weak vertical focusing. Vertical betatron motions imply that the muons do not orbit the ring in a plane exactly orthogonal to the vertical magnetic field direction. A correction is necessary to account for an average pitch angle associated with their trajectories. A third small correction is necessary because muons that escape the ring during the storage time are slightly biased in initial spin phase compared to the parent distribution. Finally, because two high-voltage resistors in the ESQ network had longer than designed RC time constants, the vertical and horizontal centroids and envelopes of the stored muon beam drifted slightly, but coherently, during each storage ring fill. This led to the discovery of an important phase-acceptance relationship that requires a correction. The sum of the corrections to $\omega_a^m$ is 0.50 $\pm$ 0.09 ppm; the uncertainty is small compared to the 0.43 ppm statistical precision of $\omega_a^m$., Comment: 35 pages, 29 figures. Accepted by Phys. Rev. Accel. Beams
- Published
- 2021
- Full Text
- View/download PDF
9. Bayesian Analysis of a Future Beta Decay Experiment's Sensitivity to Neutrino Mass Scale and Ordering
- Author
-
Sebastian Böser, Gray Rybka, M. Guigue, Walter C. Pettus, R. Cervantes, Malachi Schram, M. Grando, T. Wendler, Mathew Thomas, Kareem Kazkaz, B. H. LaRoque, James Nikkel, M. Ottiger, B.A. VanDevender, Benjamin Monreal, J. Johnston, M. Betancourt, L. Saldaña, R. G. H. Robertson, X. Huyan, Joseph A. Formaggio, Z. Bogorad, A. Ashtari Esfahani, R. Mohiuddin, V. Sibille, L. de Viveiros, E. Zayas, A. Lindman, Martin Fertl, N. Buzinsky, L. Tvrznikova, L. Gladstone, J. Hartse, A. Ziegler, Thomas Thümmler, P. T. Surukuchi, N. S. Oblath, A. B. Telles, C. Claessens, K. M. Heeger, T. E. Weiss, Y. H. Sun, P. L. Slocum, E. Novitski, Jonathan R. Tedeschi, A. M. Jones, Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE (UMR_7585)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), and Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Semileptonic decay ,data analysis method ,Particle physics ,Bayesian probability ,FOS: Physical sciences ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,Bayesian inference ,Bayesian ,01 natural sciences ,Measure (mathematics) ,statistics: Bayesian ,mass: scale ,High Energy Physics - Phenomenology (hep-ph) ,0103 physical sciences ,Calibration ,neutrino: mass ,Sensitivity (control systems) ,Nuclear Experiment (nucl-ex) ,010306 general physics ,Nuclear Experiment ,Physics ,010308 nuclear & particles physics ,Electroweak Interaction ,Probability and statistics ,semileptonic decay ,calibration ,sensitivity ,neutrino: nuclear reactor ,High Energy Physics - Phenomenology ,mass: calibration ,[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph] ,Physics - Data Analysis, Statistics and Probability ,spectral ,High Energy Physics::Experiment ,Neutrino ,Data Analysis, Statistics and Probability (physics.data-an) ,[PHYS.PHYS.PHYS-DATA-AN]Physics [physics]/Physics [physics]/Data Analysis, Statistics and Probability [physics.data-an] ,Symmetries - Abstract
Bayesian modeling techniques enable sensitivity analyses that incorporate detailed expectations regarding future experiments. A model-based approach also allows one to evaluate inferences and predicted outcomes, by calibrating (or measuring) the consequences incurred when certain results are reported. We present procedures for calibrating predictions of an experiment's sensitivity to both continuous and discrete parameters. Using these procedures and a new Bayesian model of the $\beta$-decay spectrum, we assess a high-precision $\beta$-decay experiment's sensitivity to the neutrino mass scale and ordering, for one assumed design scenario. We find that such an experiment could measure the electron-weighted neutrino mass within $\sim40\,$meV after 1 year (90$\%$ credibility). Neutrino masses $>500\,$meV could be measured within $\approx5\,$meV. Using only $\beta$-decay and external reactor neutrino data, we find that next-generation $\beta$-decay experiments could potentially constrain the mass ordering using a two-neutrino spectral model analysis. By calibrating mass ordering results, we identify reporting criteria that can be tuned to suppress false ordering claims. In some cases, a two-neutrino analysis can reveal that the mass ordering is inverted, an unobtainable result for the traditional one-neutrino analysis approach., Comment: 17 pages, 10 figures
- Published
- 2020
10. Cyclotron radiation emission spectroscopy signal classification with machine learning in project 8
- Author
-
M. Guigue, Sebastian Böser, Joseph A. Formaggio, A. M. Jones, Kareem Kazkaz, B. H. LaRoque, James Nikkel, N. S. Oblath, Benjamin Monreal, E. Machado, T. E. Weiss, E. C. Morrison, P. L. Slocum, Thomas Thümmler, K. M. Heeger, T. Wendler, E. Zayas, E. Novitski, C. Claessens, Martin Fertl, Walter C. Pettus, A. Lindman, B.A. VanDevender, N. Buzinsky, L. Gladstone, R. G. H. Robertson, V. Sibille, Gray Rybka, L. Saldaña, J. Johnston, R. Cervantes, Malachi Schram, Y. H. Sun, L. de Viveiros, and A. Ashtari Esfahani
- Subjects
Cyclotron ,General Physics and Astronomy ,FOS: Physical sciences ,Electron ,Machine learning ,computer.software_genre ,01 natural sciences ,Signal ,Electromagnetic radiation ,010305 fluids & plasmas ,law.invention ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,law ,Magnetic trap ,0103 physical sciences ,ddc:530 ,Emission spectrum ,Cyclotron radiation ,Nuclear Experiment (nucl-ex) ,010306 general physics ,Nuclear Experiment ,Physics ,business.industry ,Detector ,3. Good health ,Artificial intelligence ,business ,computer - Abstract
The Cyclotron Radiation Emission Spectroscopy (CRES) technique pioneered by Project 8 measures electromagnetic radiation from individual electrons gyrating in a background magnetic field to construct a highly precise energy spectrum for beta decay studies and other applications. The detector, magnetic trap geometry, and electron dynamics give rise to a multitude of complex electron signal structures which carry information about distinguishing physical traits. With machine learning models, we develop a scheme based on these traits to analyze and classify CRES signals. Understanding and proper use of these traits will be instrumental to improve cyclotron frequency reconstruction and help Project 8 achieve world-leading sensitivity on the tritium endpoint measurement in the future., 30 pages, 16 figures
- Published
- 2020
11. Measurement of the permanent electric dipole moment of the neutron
- Author
-
I. Rienäcker, V. Hélaine, M. Daum, Prajwal Mohanmurthy, J. A. Thorne, J. Krempel, J. Zenner, S. Roccia, Jacek Zejma, Martin Burghoff, E. Wursten, N. J. Ayres, G. Wyszynski, W. C. Griffith, G. Ban, M. G. D. van der Grinten, R. Virot, C. Abel, Bernhard Lauss, Florian M. Piegsa, P. N. Prashanth, P. J. Chiu, Christopher Crawford, Nathal Severijns, Oscar Naviliat-Cuncic, Antoine Weis, S. Afach, Guillaume Pignol, M. Kuźniak, Jens-Uwe Voigt, R. Tavakoli Dinani, A. Knecht, C. Plonka-Spehr, Geza Zsigmond, D. Rozpedzik, Z. Hodge, A. Kraft, Martin Fertl, P. Flaux, Reinhold Henneck, P. A. Koss, M. Horras, G. Rogel, Y. Kermaidic, E. Pierre, Paul E. Knowles, S. Komposch, A. Kozela, Georg Bison, M. Rawlik, D. Rebreyend, E. Chanel, L. Ferraris-Bouchez, Z. Chowdhuri, D. Ries, P. Geltenbort, Klaus Kirch, L. Hayen, Zoran D. Grujić, K. Green, Y. Lemière, Werner Heil, G. Quéméner, P. Schmidt-Wellenburg, S. N. Ivanov, C.A. Baker, H. C. Koch, P. Iaydjiev, V. Bondar, T. Lefort, B. Clement, Malgorzata Kasprzak, A. Mtchedlishvili, Philip Harris, Allard Schnabel, M. Musgrave, S. Emmenegger, D. Shiers, D. Pais, N. Hild, A. Fratangelo, Kazimierz Bodek, B. Franke, A. Leredde, Laboratoire de physique corpusculaire de Caen (LPCC), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Institut Laue-Langevin (ILL), ILL, nEDM, Normandie Université (NU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), and Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)
- Subjects
Physics - Instrumentation and Detectors ,Magnetometer ,FOS: Physical sciences ,General Physics and Astronomy ,01 natural sciences ,Measure (mathematics) ,S017EDM ,law.invention ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,statistical analysis ,law ,cesium ,0103 physical sciences ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,time reversal: invariance ,Statistical analysis ,Neutron ,Nuclear Physics - Experiment ,Physics::Atomic Physics ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Nuclear Experiment (nucl-ex) ,Detectors and Experimental Techniques ,010306 general physics ,Nuclear Experiment ,Physics ,n: electric moment ,Instrumentation and Detectors (physics.ins-det) ,Cesium vapor ,Magnetic field ,Electric dipole moment ,Automatic Keywords ,Ultracold neutrons ,Elementary Particles and Fields ,history ,Atomic physics ,time reversal: violation ,magnetic field: oscillation ,Particle Physics - Experiment - Abstract
We present the result of an experiment to measure the electric dipole moment (EDM) of the neutron at the Paul Scherrer Institute using Ramsey’s method of separated oscillating magnetic fields with ultracold neutrons. Our measurement stands in the long history of EDM experiments probing physics violating time-reversal invariance. The salient features of this experiment were the use of a 199Hg comagnetometer and an array of optically pumped cesium vapor magnetometers to cancel and correct for magnetic-field changes. The statistical analysis was performed on blinded datasets by two separate groups, while the estimation of systematic effects profited from an unprecedented knowledge of the magnetic field. The measured value of the neutron EDM is dn=(0.0±1.1stat±0.2sys)×10−26 e.cm., Physical Review Letters, 124 (8), ISSN:0031-9007, ISSN:1079-7114
- Published
- 2020
12. Optically pumped Cs magnetometers enabling a high-sensitivity search for the neutron electric dipole moment
- Author
-
Malgorzata Kasprzak, C. Abel, P. N. Prashanth, P. A. Koss, S. Afach, A. Mtchedlishvili, J. Krempel, M. Daum, A. S. Pazgalev, A. Kozela, Nora Hild, Guillaume Pignol, G. Quéméner, N. J. Ayres, H.-C. Koch, M. Musgrave, Beatrice Franke, R. Tavakoli Dinani, L. Hayen, D. Pais, V. Hélaine, Klaus Kirch, Y. Lemière, L. Ferraris-Bouchez, G. Ban, Oscar Naviliat-Cuncic, A. Leredde, Jacek Zejma, B. Lauss, Paul E. Knowles, Zoran D. Grujić, D. Rozpedzik, E. Wursten, Kazimierz Bodek, Nathal Severijns, P. J. Chiu, G. Wyszynski, S. Emmenegger, W. C. Griffith, S. Komposch, Antoine Weis, Martin Fertl, Florian M. Piegsa, E. Pierre, Philipp Schmidt-Wellenburg, Allard Schnabel, Georg Bison, D. Rebreyend, Z. Chowdhuri, D. Ries, Y. Kermaidic, Geza Zsigmond, M. Rawlik, E. Chanel, T. Lefort, Christopher Crawford, Prajwal Mohanmurthy, J. A. Thorne, S. Roccia, V. Bondar, Laboratoire de physique corpusculaire de Caen (LPCC), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut Laue-Langevin (ILL), ILL, Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), and Université Grenoble Alpes (UGA)
- Subjects
experimental methods ,Atomic Physics (physics.atom-ph) ,EXPERIMENTAL LIMIT ,Physics, Atomic, Molecular & Chemical ,nucl-ex ,01 natural sciences ,Physics - Atomic Physics ,High Energy Physics - Experiment ,law.invention ,High Energy Physics - Experiment (hep-ex) ,law ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,Nuclear Experiment (nucl-ex) ,n: spin ,Nuclear Experiment ,Physics ,n: electric moment ,including interactions with strong fields and short pulses ,Magnetic field ,Atomic and molecular processes in external fields ,Physical Sciences ,Particle Physics - Experiment ,Neutron electric dipole moment ,Magnetometer ,Other Fields of Physics ,FOS: Physical sciences ,magnetic field: gradient ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,physics.atom-ph ,Optics ,0103 physical sciences ,Neutron ,Nuclear Physics - Experiment ,Sensitivity (control systems) ,010306 general physics ,Diode ,Science & Technology ,010308 nuclear & particles physics ,business.industry ,hep-ex ,Scalar (physics) ,sensitivity ,Laser ,[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph] ,laser ,field strength ,time dependence ,business ,experimental results - Abstract
An array of 16 laser-pumped scalar Cs magnetometers was part of the neutron electric dipole moment (nEDM) experiment taking data at the Paul Scherrer Institute in 2015 and 2016. It was deployed to measure the gradients of the experiment's magnetic field and to monitor their temporal evolution. The originality of the array lies in its compact design, in which a single near-infrared diode laser drives all magnetometers that are located in a high-vacuum chamber, with a selection of the sensors mounted on a high-voltage electrode. We describe details of the Cs sensors' construction and modes of operation, emphasizing the accuracy and sensitivity of the magnetic-field readout. We present two applications of the magnetometer array directly beneficial to the nEDM experiment: (i) the implementation of a strategy to correct for the drift of the vertical magnetic-field gradient and (ii) a procedure to homogenize the magnetic field. The first reduces the uncertainty of the nEDM result. The second enables transverse neutron spin relaxation times exceeding 1500 s, improving the statistical sensitivity of the nEDM experiment by about 35% and effectively increasing the rate of nEDM data taking by a factor of 1.8. An array of sixteen laser-pumped scalar Cs magnetometers was part of the neutron electric dipole moment (nEDM) experiment taking data at the Paul Scherrer Institute in 2015 and 2016. It was deployed to measure the gradients of the experiment's magnetic field and to monitor their temporal evolution. The originality of the array lies in its compact design, in which a single near-infrared diode laser drives all magnetometers that are located in a high-vacuum chamber, with a selection of the sensors mounted on a high-voltage electrode. We describe details of the Cs sensors' construction and modes of operation, emphasizing the accuracy and sensitivity of the magnetic field readout. We present two applications of the magnetometer array directly beneficial to the nEDM experiment: (i) the implementation of a strategy to correct for the drift of the vertical magnetic field gradient and (ii) a procedure to homogenize the magnetic field. The first reduces the uncertainty of the new nEDM result. The second enables transverse neutron spin relaxation times exceeding 1500 s, improving the statistical sensitivity of the nEDM experiment by about 35% and effectively increasing the rate of nEDM data taking by a factor of 1.8.
- Published
- 2019
13. Locust: C++ software for simulation of RF detection
- Author
-
R. Cervantes, Malachi Schram, P. L. Slocum, Thomas Thümmler, T. E. Weiss, Jonathan R. Tedeschi, J. Nikkel, E. C. Morrison, A. M. Jones, Mathieu Guigue, Kareem Kazkaz, E. Novitski, T. Wendler, A. Ashtari Esfahani, M. Wachtendonk, N. S. Oblath, E. Zayas, Joseph A. Formaggio, B. A. VanDevender, Martin Fertl, A. Lindman, B. H. LaRoque, C. Claessens, Sebastian Böser, R. G. H. Robertson, M. Walter, E. Machado, Walter C. Pettus, J. Johnston, Gray Rybka, L. Saldaña, V. Sibille, K. M. Heeger, Benjamin Monreal, N. Buzinsky, L. Gladstone, Y. H. Sun, and L. de Viveiros
- Subjects
Physics ,Flexibility (engineering) ,Modularity (networks) ,Physics - Instrumentation and Detectors ,biology ,010308 nuclear & particles physics ,business.industry ,Software tool ,FOS: Physical sciences ,General Physics and Astronomy ,Instrumentation and Detectors (physics.ins-det) ,Computational Physics (physics.comp-ph) ,Tracking (particle physics) ,biology.organism_classification ,01 natural sciences ,Particle detector ,Software ,0103 physical sciences ,Antenna (radio) ,010306 general physics ,business ,Physics - Computational Physics ,Computer hardware ,Locust - Abstract
The Locust simulation package is a new C++ software tool developed to simulate the measurement of time-varying electromagnetic fields using RF detection techniques. Modularity and flexibility allow for arbitrary input signals, while concurrently supporting tight integration with physics-based simulations as input. External signals driven by the Kassiopeia particle tracking package are discussed, demonstrating conditional feedback between Locust and Kassiopeia during software execution. An application of the simulation to the Project 8 experiment is described. Locust is publicly available at https://github.com/project8/locust_mc., 18 pages, 7 figures
- Published
- 2019
14. Electron Radiated Power in Cyclotron Radiation Emission Spectroscopy Experiments
- Author
-
R. Cervantes, Malachi Schram, T. E. Weiss, Y. H. Sun, Kareem Kazkaz, M. Wachtendonk, N. S. Oblath, P. J. Doe, L. Saldaña, J. Johnston, T. Wendler, C. Claessens, A. Ashtari Esfahani, R. G. H. Robertson, V. Sibille, A. Lindman, E. Zayas, N. Buzinsky, Gray Rybka, P. L. Slocum, L. Gladstone, Martin Fertl, M. Leber, Thomas Thümmler, K. M. Heeger, L. de Viveiros, Joseph A. Formaggio, Benjamin Monreal, Walter C. Pettus, B. A. VanDevender, Vikas Bansal, Mathieu Guigue, Jonathan R. Tedeschi, James Nikkel, A. M. Jones, E. C. Morrison, E. Novitski, E. Machado, M. Walter, B. H. LaRoque, and Sebastian Böser
- Subjects
Physics ,Physics - Instrumentation and Detectors ,010308 nuclear & particles physics ,Cyclotron ,FOS: Physical sciences ,Instrumentation and Detectors (physics.ins-det) ,Electron ,Effective radiated power ,Kinetic energy ,01 natural sciences ,Signal ,3. Good health ,Computational physics ,law.invention ,law ,0103 physical sciences ,Cyclotron radiation ,Emission spectrum ,Nuclear Experiment (nucl-ex) ,Neutrino ,010306 general physics ,Nuclear Experiment - Abstract
The recently developed technique of Cyclotron Radiation Emission Spectroscopy (CRES) uses frequency information from the cyclotron motion of an electron in a magnetic bottle to infer its kinetic energy. Here we derive the expected radio frequency signal from an electron in a waveguide CRES apparatus from first principles. We demonstrate that the frequency-domain signal is rich in information about the electron's kinematic parameters, and extract a set of measurables that in a suitably designed system are sufficient for disentangling the electron's kinetic energy from the rest of its kinematic features. This lays the groundwork for high-resolution energy measurements in future CRES experiments, such as the Project 8 neutrino mass measurement., 15 pages, 10 figures
- Published
- 2019
15. Review of absolute neutrino mass measurements
- Author
-
Martin Fertl
- Subjects
Physics ,Nuclear and High Energy Physics ,010308 nuclear & particles physics ,Electron capture ,Electron ,Condensed Matter Physics ,01 natural sciences ,Atomic and Molecular Physics, and Optics ,Nuclear physics ,Double beta decay ,0103 physical sciences ,High Energy Physics::Experiment ,Invariant mass ,Cyclotron radiation ,Emission spectrum ,Physical and Theoretical Chemistry ,Neutrino ,010306 general physics ,KATRIN - Abstract
The discovery of neutrino flavor oscillations has firmly established that at least two of the three known neutrino mass eigenstates possess a non-vanishing rest mass. Complementary to cosmology and the search for neutrino-less double beta decay laboratory-based measurements of low-energy beta decays provide a direct and model-independent approach to measure the effective electron (anti-)neutrino mass. I have reviewed the recent progress of the field starting from the first molecular tritium spectrum measured with the current state of the art KATRIN experiment before discussing the development of new approaches to achieve the sensitivity required to cover the full neutrino mass parameter range allowed in the inverted mass ordering scheme. The new avenues opened by micro-calorimeteric measurements of the electron capture decay spectrum of 163Ho (ECHo, Holmes and Numecs) and by the new technology of cyclotron radiation emission spectroscopy in combination with molecular and atomic tritium sources have been presented.
- Published
- 2018
16. Demonstration of sensitivity increase in mercury free-spin-precession magnetometers due to laser-based readout for neutron electric dipole moment searches
- Author
-
Geza Zsigmond, M. Daum, Jacek Zejma, Nathal Severijns, M. Rawlik, Y. Kermaidic, A. Kozela, P. Prashanth, A. Mtchedlishvili, Philipp Schmidt-Wellenburg, Bernhard Lauss, Georg Bison, Florian M. Piegsa, G. Quéméner, Grzegorz Wyszyński, D. Ries, Antoine Weis, H.-C. Koch, D. Rozpedzik, J. Krempel, S. Roccia, Martin Fertl, Malgorzata Kasprzak, B. Franke, Werner Heil, Zoran D. Grujić, M. Horras, G. Ban, D. Rebreyend, S. Komposch, Kazimierz Bodek, Klaus Kirch, Guillaume Pignol, T. Lefort, Laboratoire de physique corpusculaire de Caen (LPCC), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Laboratoire de physique corpusculaire de Caen ( LPCC ), Université de Caen Normandie ( UNICAEN ), Normandie Université ( NU ) -Normandie Université ( NU ) -Ecole Nationale Supérieure d'Ingénieurs de Caen ( ENSICAEN ), Normandie Université ( NU ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire de Physique Subatomique et de Cosmologie ( LPSC ), Université Joseph Fourier - Grenoble 1 ( UJF ) -Institut polytechnique de Grenoble - Grenoble Institute of Technology ( Grenoble INP ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique ( CNRS ) -Université Grenoble Alpes ( UGA ), Centre de Sciences Nucléaires et de Sciences de la Matière ( CSNSM ), and Université Paris-Sud - Paris 11 ( UP11 ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Centre National de la Recherche Scientifique ( CNRS )
- Subjects
Nuclear and High Energy Physics ,Physics - Instrumentation and Detectors ,Neutron electric dipole moment ,Atomic Physics (physics.atom-ph) ,Magnetometer ,atomic spectroscopy ,FOS: Physical sciences ,Atomic spectroscopy ,Neutron ,electric dipole moment ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,01 natural sciences ,law.invention ,High Energy Physics - Experiment ,Physics - Atomic Physics ,High Energy Physics - Experiment (hep-ex) ,symbols.namesake ,neutron ,law ,0103 physical sciences ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,[ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex] ,Nuclear Experiment (nucl-ex) ,010306 general physics ,Zeeman effect ,Mercury ,Electric dipole moment ,[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Instrumentation ,Nuclear Experiment ,Physics ,010308 nuclear & particles physics ,Instrumentation and Detectors (physics.ins-det) ,Laser ,Computational physics ,Magnetic field ,symbols - Abstract
International audience; We report on a laser based $^{199}$Hg co-magnetometer deployed in an experiment searching for a permanent electric dipole moment of the neutron. We demonstrate a more than five times increased signal to-noise-ratio in a direct comparison measurement with its $^{204}$Hg discharge bulb-based predecessor. An improved data model for the extraction of important system parameters such as the degrees of absorption and polarization is derived. Laser- and lamp-based data-sets can be consistently described by the improved model which permits to compare measurements using the two different light sources and to explain the increase in magnetometer performance. The laser-based magnetometer satisfies the magnetic field sensitivity requirements for the next generation nEDM experiments.
- Published
- 2018
17. Neutron production and thermal moderation at the PSI UCN source
- Author
-
Henrik Becker, Gregory Perret, B. Blau, Klaus Kirch, Vadim Talanov, D. Ries, Bernhard Lauss, Davide Reggiani, Michael Wohlmuther, Martin Fertl, Georg Bison, Jost Eikenberg, Geza Zsigmond, Philipp Schmidt-Wellenburg, and Zema Chowdhuri
- Subjects
Physics ,Nuclear and High Energy Physics ,Physics - Instrumentation and Detectors ,FOS: Physical sciences ,Instrumentation and Detectors (physics.ins-det) ,Neutron time-of-flight scattering ,Nuclear physics ,Neutron backscattering ,Neutron generator ,Neutron flux ,Neutron cross section ,Neutron source ,Neutron detection ,Neutron ,Nuclear Experiment (nucl-ex) ,Nuclear Experiment ,Instrumentation - Abstract
We report on gold foil activation measurements performed along a vertical channel along the tank of the ultracold neutron source at the Paul Scherrer Institute. The activities obtained at various distances from the spallation target are in very good agreement with MCNPX simulations which take into account the detailed description of the source as built.
- Published
- 2015
18. A measurement of the neutron to 199Hg magnetic moment ratio
- Author
-
M. G. D. van der Grinten, M. Perkowski, S. Afach, P. Schmidt-Wellenburg, T. Lefort, Guillaume Pignol, Antoine Weis, E. Pierre, Georg Bison, Kazimierz Bodek, Bernhard Lauss, A. Mtchedlishvili, P. N. Prashanth, J. Zenner, Oscar Naviliat-Cuncic, Florian M. Piegsa, Allard Schnabel, Klaus Kirch, Reinhold Henneck, M. Daum, Werner Heil, J. M. Pendlebury, D. Rebreyend, S. N. Ivanov, Y. Lemière, M. Horras, Geza Zsigmond, Malgorzata Kasprzak, Andreas Knecht, Philip Harris, Jens-Uwe Voigt, Y. Kermaidic, Nathal Severijns, K. F. Smith, G. Quéméner, K. Green, G. Ban, D. Shiers, D. Ries, P. Geltenbort, J. Krempel, S. Roccia, B. Franke, Zoran D. Grujić, H.-C. Koch, Jacek Zejma, G. Wyszynski, V. Hélaine, Martin Burghoff, Z. Chowdhuri, M. Kuźniak, Martin Fertl, C.A. Baker, P. Iaydjiev, Laboratoire de physique corpusculaire de Caen (LPCC), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Institut Laue-Langevin (ILL), ILL, Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), CSNSM SNO, Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse (CSNSM), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11)-Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), and Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
inorganic chemicals ,Nuclear and High Energy Physics ,Physics - Instrumentation and Detectors ,Neutron magnetic moment ,Atomic Physics (physics.atom-ph) ,Astrophysics::High Energy Astrophysical Phenomena ,Gyromagnetic ratio ,FOS: Physical sciences ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,01 natural sciences ,Physics - Atomic Physics ,Nuclear physics ,Magnetic moment ,0103 physical sciences ,Atom ,Neutron ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Physics::Atomic Physics ,Nuclear Experiment (nucl-ex) ,010306 general physics ,Nuclear Experiment ,Physics ,Condensed Matter::Quantum Gases ,[PHYS.PHYS.PHYS-ATOM-PH]Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph] ,010308 nuclear & particles physics ,Proton magnetic moment ,technology, industry, and agriculture ,QC0793 ,Instrumentation and Detectors (physics.ins-det) ,Ultracold neutrons ,Mercury atoms ,QC0770 ,lcsh:QC1-999 ,Electric dipole moment ,biological sciences ,lipids (amino acids, peptides, and proteins) ,Astrophysics::Earth and Planetary Astrophysics ,Atomic physics ,lcsh:Physics - Abstract
The neutron gyromagnetic ratio has been measured relative to that of the 199Hg atom with an uncertainty of 0.8 ppm. We employed an apparatus where ultracold neutrons and mercury atoms are stored in the same volume and report the result γn/γHg=3.8424574(30)., Physics Letters B, 739, ISSN:0370-2693, ISSN:0031-9163, ISSN:1873-2445
- Published
- 2014
19. Project 8 Phase III Design Concept
- Author
-
S. Doeleman, P. L. Slocum, Kareem Kazkaz, Thomas Thümmler, Jonathan R. Tedeschi, M. Guigue, A. Ashtari Esfahani, Andre Young, M. Wachtendonk, Jonathan Weintroub, C. Claessens, James Nikkel, E. Zayas, Martin Fertl, L J Rosenberg, Benjamin Monreal, A. M. Jones, Gray Rybka, Erin C. Finn, L. Saldaña, N. S. Oblath, L. de Viveiros, Joseph A. Formaggio, P. J. Doe, R. G. H. Robertson, K. M. Heeger, Sebastian Böser, E. Machado, B H LaRoque, and B.A. VanDevender
- Subjects
Physics ,History ,Physics - Instrumentation and Detectors ,Phase (waves) ,FOS: Physical sciences ,Instrumentation and Detectors (physics.ins-det) ,Computer Science Applications ,Education ,Computational physics ,High Energy Physics - Experiment ,Antenna array ,High Energy Physics - Experiment (hep-ex) ,Volume (thermodynamics) ,ddc:530 ,Sensitivity (control systems) ,Nuclear Experiment (nucl-ex) ,Neutrino ,Nuclear Experiment - Abstract
We present a working concept for Phase III of the Project 8 experiment, aiming to achieve a neutrino mass sensitivity of $2~\mathrm{eV}$ ($90~\%$ C.L.) using a large volume of molecular tritium and a phased antenna array. The detection system is discussed in detail., 3 pages, 3 figures, Proceedings of Neutrino 2016, XXVII International Conference on Neutrino Physics and Astrophysics, 4-9 July 2016, London, UK
- Published
- 2017
20. Results from the Project 8 phase-1 cyclotron radiation emission spectroscopy detector
- Author
-
B.A. VanDevender, Jonathan Weintroub, Gray Rybka, N. S. Oblath, Benjamin Monreal, C. Claessens, L. Saldaña, Joseph A. Formaggio, Kareem Kazkaz, S. Doeleman, P. L. Slocum, Thomas Thümmler, James Nikkel, R. G. H. Robertson, Sebastian Böser, L. de Viveiros, A. Ashtari Esfahani, Andre Young, Erin C. Finn, Jonathan R. Tedeschi, E. Machado, P. J. Doe, A. M. Jones, E. Zayas, M. Wachtendonk, Martin Fertl, B H LaRoque, L J Rosenberg, K. M. Heeger, and M. Guigue
- Subjects
History ,Physics - Instrumentation and Detectors ,Cyclotron ,FOS: Physical sciences ,Electron ,Radiation ,Education ,law.invention ,High Energy Physics - Experiment ,symbols.namesake ,High Energy Physics - Experiment (hep-ex) ,Internal conversion ,law ,ddc:530 ,Cyclotron radiation ,Emission spectrum ,Nuclear Experiment (nucl-ex) ,Nuclear Experiment ,Physics ,Instrumentation and Detectors (physics.ins-det) ,Computer Science Applications ,Computational physics ,Lorentz factor ,symbols ,Neutrino - Abstract
The Project 8 collaboration seeks to measure the absolute neutrino mass scale by means of precision spectroscopy of the beta decay of tritium. Our technique, cyclotron radiation emission spectroscopy, measures the frequency of the radiation emitted by electrons produced by decays in an ambient magnetic field. Because the cyclotron frequency is inversely proportional to the electron's Lorentz factor, this is also a measurement of the electron's energy. In order to demonstrate the viability of this technique, we have assembled and successfully operated a prototype system, which uses a rectangular waveguide to collect the cyclotron radiation from internal conversion electrons emitted from a gaseous $^{83m}$Kr source. Here we present the main design aspects of the first phase prototype, which was operated during parts of 2014 and 2015. We will also discuss the procedures used to analyze these data, along with the features which have been observed and the performance achieved to date., 3 pages; 2 figures; Proceedings of Neutrino 2016, XXVII International Conference on Neutrino Physics and Astrophysics, 4-9 July 2016, London, UK
- Published
- 2017
21. Active compensation of magnetic field distortions based on vector spherical harmonics field description
- Author
-
P. A. Koss, Kazimierz Bodek, Nathal Severijns, Jacek Zejma, B. Franke, G. Wyszynski, A. Kozela, Geza Zsigmond, Klaus Kirch, D. Ries, Z. Chowdhuri, M. Perkowski, G. Quéméner, D. Rozpedzik, Martin Fertl, Bernhard Lauss, S. Afach, S. Komposch, Georg Bison, M. Daum, E. Wursten, Allard Schnabel, Laboratoire de physique corpusculaire de Caen (LPCC), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), PSI-nEDM, and Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)
- Subjects
coil design ,General Physics and Astronomy ,Position sensitive detectors ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,01 natural sciences ,Current density ,0103 physical sciences ,Vector spherical harmonics ,Magnetic field sensors ,010306 general physics ,magnetic field compensation ,010302 applied physics ,Physics ,Magnetic energy ,Mathematical analysis ,Spherical harmonics ,Coils ,Magnetostatics ,lcsh:QC1-999 ,Stellar magnetic fields ,Dipole ,Classical mechanics ,Electromagnetic coil ,Electromagnetic shielding ,Excitation ,lcsh:Physics - Abstract
An analytic solution to the magnetostatic inverse problem in the framework of vector spherical harmonic basis functions is presented. This formalism is used for the design of a spherical magnetic field compensation system and its performance is compared with an already existing rectangular coil system. The proposed set of spherical coils with 15 degrees of freedom achieves a shielding factor of 1000 or better in a large part of the volume enclosed by the coils for a dipolar type external perturbation., AIP Advances, 7 (3), ISSN:2158-3226
- Published
- 2017
22. Determining the neutrino mass with cyclotron radiation emission spectroscopy—Project 8
- Author
-
Jared A. Kofron, Gray Rybka, Callum Lamb, R. Cervantes, P. J. Doe, Andre Young, L. Saldaña, Joseph A. Formaggio, Devyn Rysewyk, E. Zayas, M. L. Miller, B. A. VanDevender, Kareem Kazkaz, Luiz de Viveiros, Martin Fertl, Jonathan Weintroub, Walter C. Pettus, L J Rosenberg, A. Mark Jones, Eric Machado, S. Doeleman, C. Claessens, D. Furse, Sebastian Böser, James Nikkel, Prajwal Mohanmurthy, Benjamin H. LaRoque, Justin L. Fernandes, Mathieu Guigue, Natasha L. Woods, Benjamin Monreal, R. G. Hamish Robertson, Erin C. Finn, Ali Ashtari Esfahani, P. L. Slocum, Thomas Thümmler, Matthew Sternberg, David M. Asner, K. M. Heeger, Elizabeth L. McBride, Laura Vertatschitsch, M. Wachtendonk, N. S. Oblath, Jonathan R. Tedeschi, Massachusetts Institute of Technology. Department of Nuclear Science and Engineering, Massachusetts Institute of Technology. Laboratory for Nuclear Science, Formaggio, Joseph A, Furse, Daniel Lawrence, Mohanmurthy, Prajwal Thyagarthi, Solomon-Oblath, Noah, Rysewyk, Devyn M., and Zayas, Evan M.
- Subjects
Physics ,Nuclear and High Energy Physics ,Physics - Instrumentation and Detectors ,010308 nuclear & particles physics ,Physics::Instrumentation and Detectors ,FOS: Physical sciences ,Instrumentation and Detectors (physics.ins-det) ,7. Clean energy ,01 natural sciences ,Upper and lower bounds ,High Energy Physics - Experiment ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,0103 physical sciences ,High Energy Physics::Experiment ,Cyclotron radiation ,Emission spectrum ,Sensitivity (control systems) ,Nuclear Experiment (nucl-ex) ,Neutrino ,010306 general physics ,Neutrino oscillation ,Adiabatic process ,Nuclear Experiment ,KATRIN - Abstract
The most sensitive direct method to establish the absolute neutrino mass is observation of the endpoint of the tritium beta-decay spectrum. Cyclotron Radiation Emission Spectroscopy (CRES) is a precision spectrographic technique that can probe much of the unexplored neutrino mass range with $\mathcal{O}({\rm eV})$ resolution. A lower bound of $m(\nu_e) \gtrsim 9(0.1)\, {\rm meV}$ is set by observations of neutrino oscillations, while the KATRIN Experiment - the current-generation tritium beta-decay experiment that is based on Magnetic Adiabatic Collimation with an Electrostatic (MAC-E) filter - will achieve a sensitivity of $m(\nu_e) \lesssim 0.2\,{\rm eV}$. The CRES technique aims to avoid the difficulties in scaling up a MAC-E filter-based experiment to achieve a lower mass sensitivity. In this paper we review the current status of the CRES technique and describe Project 8, a phased absolute neutrino mass experiment that has the potential to reach sensitivities down to $m(\nu_e) \lesssim 40\,{\rm meV}$ using an atomic tritium source., Comment: 19 pages, 8 figures, to be published in Journal of Physics G
- Published
- 2016
23. Experimental study of 199Hg spin anti-relaxation coatings
- Author
-
S. Roccia, J. Krempel, Martin Fertl, P. Schmidt-Wellenburg, D. Rebreyend, M. Horras, Geza Zsigmond, Klaus Kirch, Z. Chowdhuri, A. Mtchedlishvili, Bernhard Lauss, Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS), CSNSM SNO, Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse (CSNSM), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), and Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics - Instrumentation and Detectors ,Materials science ,Physics and Astronomy (miscellaneous) ,Atomic Physics (physics.atom-ph) ,Magnetometer ,FOS: Physical sciences ,General Physics and Astronomy ,chemistry.chemical_element ,engineering.material ,Spin relaxation time ,Physics - Atomic Physics ,law.invention ,Coating ,law ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Nuclear Experiment (nucl-ex) ,Composite material ,Spin (physics) ,Nuclear Experiment ,Spin relaxation ,Relaxation (NMR) ,General Engineering ,Instrumentation and Detectors (physics.ins-det) ,Mercury (element) ,chemistry ,engineering - Abstract
We report on a comparison of spin relaxation rates in a 199Hg magnetometer using different wall coatings. A compact mercury magnetometer was built for this purpose. Glass cells coated with fluorinated materials show longer spin coherence times than if coated with their hydrogenated homologues. The longest spin relaxation time of the mercury vapor was measured with a fluorinated paraffin wall coating., Applied Physics B, 115 (2), ISSN:0946-2171, ISSN:1432-0649, ISSN:0721-7269, ISSN:0340-3793
- Published
- 2013
24. Next Generation Muon g-2 Experiment at FNAL
- Author
-
Martin Fertl
- Subjects
Nuclear and High Energy Physics ,Physics - Instrumentation and Detectors ,Physics beyond the Standard Model ,FOS: Physical sciences ,01 natural sciences ,High Energy Physics - Experiment ,Standard Model ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,0103 physical sciences ,Physical and Theoretical Chemistry ,Nuclear Experiment (nucl-ex) ,010306 general physics ,Nuclear Experiment ,Superconductivity ,Physics ,Muon ,Anomalous magnetic dipole moment ,010308 nuclear & particles physics ,Instrumentation and Detectors (physics.ins-det) ,Condensed Matter Physics ,Atomic and Molecular Physics, and Optics ,Magnetic field ,Physics::Accelerator Physics ,High Energy Physics::Experiment ,Storage ring ,Fermi Gamma-ray Space Telescope - Abstract
The precise measurement of the muon anomalous magnetic moment $a_\mathrm{\mu}$ has stimulated much theoretical and experimental efforts over more than six decades. The last experiment at Brookhaven National Laboratory, Upton, NY, USA obtained a value more than three standard deviations larger than predicted by the Standard Model of particle physics, and is one of the strongest hints for physics beyond the Standard Model. A new experiment at Fermi National Accelerator Laboratory, Batavia, IL, USA to measure $a_\mathrm{\mu}$ with fourfold increased precision to $140\,\mathrm{ppb}$ is currently in its commissioning phase. While the new experiment will reuse the $1.45\,\mathrm{T}$ superconducting muon storage ring which was shipped from Brookhaven National Laboratory, most of the other instrumentation of the experiment will be new. This will allow the experiment to make efficient use of the significantly higher number of muons available at the new muon campus. We discuss the general status of the experiment and in particular focus on the improved tools available to homogenize and determine the magnetic field in the muon storage ring.
- Published
- 2016
- Full Text
- View/download PDF
25. Production and characterization of intercalated graphite crystals for cold neutron monochromators
- Author
-
Simon Mayer, Florian M. Piegsa, P. Schmidt-Wellenburg, R.R. Allen, Valery Nesvizhevsky, Martin Fertl, Ken Haste Andersen, O. Zimmer, P. R. Huffman, P. Geltenbort, R. Hehn, G. L. Greene, P. Courtois, and C. Menthonnex
- Subjects
Physics ,Neutron wavelength ,Nuclear and High Energy Physics ,Wavelength ,Range (particle radiation) ,Neutron diffraction ,Analytical chemistry ,Neutron ,Graphite ,Instrumentation ,Reflectivity ,Characterization (materials science) - Abstract
The preparation of intercalated graphite compounds is now well established at the Institut Laue Langevin (ILL). We are able to manufacture several types of intercalated crystals, such as KC 8, RbC 8 , KC 24 and RbC 24 compounds, in large quantities and in a reproducible manner. Even though the mosaic distribution is large, these compounds exhibit a high neutron peak reflectivity of about 70% at a neutron wavelength of 9.8 A. The production of such intercalated graphite crystals allows us to build efficient neutron monochromators for wavelengths in the range 6–15 A.
- Published
- 2011
26. The search for the neutron electric dipole moment at the Paul Scherrer Institute
- Author
-
C.A. Baker, K. F. Smith, Lutz Trahms, P. Iaydjiev, Guillaume Pignol, J. Zenner, N. V. Khomutov, D. Shiers, J. M. Pendlebury, P. Geltenbort, Z. Chowdhuri, G. Ban, M. G. D. van der Grinten, Florian M. Piegsa, S. Roccia, Reinhold Henneck, A. Knecht, A. Kozela, M. Daum, Jacek Zejma, Klaus Kirch, G. Qúeḿener, P. Schmidt-Wellenburg, Oscar Naviliat-Cuncic, Erwin Gutsmiedl, T. Lefort, Martin Burghoff, Stanisław Kistryn, S. Knappe-Grüneberg, Martin Fertl, Y. Lemi‘ere, Paul E. Knowles, Antoine Weis, Bernhard Lauss, S. N. Ivanov, Allard Schnabel, E. Pierre, Kazimierz Bodek, Malgorzata Kasprzak, Philip Harris, B. Franke, Geza Zsigmond, K. Green, Laboratoire de physique corpusculaire de Caen (LPCC), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Paul Scherrer Institute (PSI), Institut Laue-Langevin (ILL), ILL, Laboratoire de Physique Subatomique et de Cosmologie (LPSC), and Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,Neutron electric dipole moment ,010308 nuclear & particles physics ,Magnetometer ,Magnetometry ,Physics and Astronomy(all) ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,01 natural sciences ,Magnetic field ,Standard Model ,law.invention ,Nuclear physics ,Upgrade ,law ,0103 physical sciences ,Ultracold neutrons ,010306 general physics ,Sensitivity (electronics) ,Order of magnitude - Abstract
International audience; The measurement of the neutron electric dipole moment (nEDM) constrains the contribution of CP-violating terms within both the Standard Model and its extensions. The experiment uses ultracold neutrons (UCN) stored in vacuum at room temperature. This technique provided the last (and best) limit by the RAL/Sussex/ILL collaboration in 2006: dn < 2:9 × 10-26 e cm (90% C.L.). We aim to improve the experimental sensitivity by a factor of 5 within 2-3 years, using an upgrade of the same apparatus. We will take advantage of the increased ultracold neutron density at the Paul Scherrer Institute (PSI) and of a new concept including both, external magnetometers and a cohabiting magnetometer. In parallel, a next generation apparatus with two UCN storage chambers and an elaborate magnetic field control is being designed aiming to achieve another order of magnitude increase in sensitivity, allowing us to put a limit as tight as dn < 5 × 10-28 e cm (95% C.L.), if not establishing a finite value.
- Published
- 2011
27. An improved measurement of the electric dipole moment of the neutron
- Author
-
C. Plonka-Spehr, Guillaume Pignol, Georg Bison, J. Zenner, Klaus Kirch, G. Hampel, M. Horras, Andreas Knecht, Oscar Naviliat-Cuncic, C. Grab, Martin Fertl, G. Quéméner, T. Lefort, G. Ban, Werner Heil, Y. Lemière, N. V. Khomutov, C. Düsing, R. Stoepler, Peter Fierlinger, Soumen Paul, Reinhold Henneck, Natalis Severijns, Bernhard Lauss, J. V. Kratz, Martin Burghoff, Kazimierz Bodek, I. Altarev, A. Kozela, Yu. Sobolev, Norbert Wiehl, Jacek Zejma, Antoine Weis, Beatrice Franke, Erwin Gutsmiedl, S. Roccia, Paul E. Knowles, E. Pierre, D. Rebreyend, Z. Chowdhuri, Geza Zsigmond, Philipp Schmidt-Wellenburg, S. Knappe-Grüneberg, G. Petzoldt, A. S. Pazgalev, F. Kuchler, Allard Schnabel, A. Mtchedlishvili, St. Kistryn, G. Rogel, T. Lauer, M. Daum, A. Kraft, Laboratoire de physique corpusculaire de Caen (LPCC), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), and Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)
- Subjects
Physics ,Nuclear and High Energy Physics ,Neutron magnetic moment ,Neutron electric dipole moment ,Physics::Instrumentation and Detectors ,010308 nuclear & particles physics ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,01 natural sciences ,7. Clean energy ,Nuclear physics ,Dipole ,Electric dipole moment ,Magnetization ,Polarization density ,0103 physical sciences ,Ultracold neutrons ,Atomic physics ,Nuclear Experiment ,010306 general physics ,Magnetic dipole - Abstract
International audience; We describe the status of the new measurement of the neutron electric dipole moment (nEDM) to be performed at the strong source of ultra-cold neutrons at the Paul Scherrer Institut. The experimental technique is based on Ramsey's method of separated oscillatory fields, applied to UCN stored in vacuum in a chamber at room temperature. Our approach is performed in three phases: in phase one, new components have been developed and tested at the Institut Laue-Langevin. Phase two is being performed at PSI, where the apparatus was moved in 2009. Here, together with the optimization of the magnetic environment, the prospective UCN density of not, vert, similar 100 cm-3 should enable an improvement of the currently best limit by a factor of five within two years of data taking. In the third phase, a new spectrometer will then gain another order of magnitude in sensitivity. The improvements will be mainly due to (1) much higher UCN intensity, (2) improved magnetometry and magnetic field control, and (3) a double chamber configuration with opposite electric field directions.
- Published
- 2010
28. The Measurement of the Anomalous Magnetic Moment of the Muon at Fermilab
- Author
-
R. Chislett, J. Carroll, D. Cauz, Andrew Smith, M. Lee, A. Anastasi, E. Hazen, M. Eads, G. Pauletta, R. Osofsky, B. Quinn, R. Fatemi, I. Logashenko, S. Baessler, D.A. Sweigart, N. A. Kuchinskiy, M. W. Smith, D. Still, Yannis K. Semertzidis, W. Gohn, K. L. Giovanetti, V. Tishchenko, L. Welty-Rieger, R. Di Stefano, C. Fu, M. Iacovacci, E. Barzi, V. Volnykh, J. F. Ostiguy, D. W. Hertzog, T. Stuttard, V. A. Baranov, C. J. G. Onderwater, Michael Syphers, G. Luo, V. P. Druzhinin, E. Won, P. T. Debevec, C. Yoshikawa, J. Grange, Martin Fertl, Stephen Maxfield, F. Azfar, A. Epps, L Li, P. Winter, C. Johnstone, A. Fioretti, B. Drendel, K. T. Pitts, M R M Warren, L. K. Gibbons, D. Stöckinger, M. Whitley, Donald B. Rubin, M. Rominsky, J. Crnkovic, T. P. Gorringe, T. Walton, C. Ferrari, Z. Meadows, G. Venanzoni, Thomas Teubner, Nicholas A. Pohlman, S. Haciomeroglu, M. Gaisser, M. Wormald, B. Casey, Frederick Gray, H. Freidsam, Marin Karuza, K. R. Lynch, P. Kammel, S. Henry, S.B. Dabagov, A. L. Lyon, C. Schlesier, E. Motuk, Yuri F. Orlov, D. Allspach, N. Rider, T. J. V. Bowcock, B. Abi, N. Kinnaird, D. Babusci, A. Para, R. M. Carey, A. de Gouvea, J. Johnstone, J. P. Miller, S. Lee, A.T. Fienberg, G. Di Sciascio, Y. Kim, H. Schellman, L.P. Alonzi, H Yang, H. Kamal Sayed, B. L. Roberts, Edward J. Swanson, V. N. Duginov, E. Ramberg, E. Frlez, N. S. Froemming, I. Kourbanis, J. Mott, L. Santi, D. Kawall, Giovanni Cantatore, N. V. Khomutov, G. Corradi, D. Flay, C. C. Polly, Nicholas Eggert, S. Marignetti, R. Bjorkquist, S. Kim, Benjamin T. King, D. Moricciani, C. Gabbanini, A. Tewlsey-Booth, V. Krylov, Yu. M. Shatunov, Andre Frankenthal, S. Leo, M. E. Convery, S. Mastroianni, A. Chapelain, A. Palladino, Andrzej Wolski, H. Nguyen, B. Kiburg, Alexander Mikhailichenko, K. W. Merritt, J. Kaspar, Dinko Pocanic, M. Popovic, M. Lancaster, W. M. Morse, Timothy Chupp, M. McEvoy, Dariush Hampai, X. Ji, M. Shenk, S. Al-Kilani, A. K. Soha, D. A. Tarazona, Klaus-Peter Jungmann, Alejandro Garcia, Logashenko, I., Grange, J., Winter, P., Carey, R. M., Hazen, E., Kinnaird, N., Miller, J. P., Mott, J., Roberts, B. L., Crnkovic, J., Morse, W. M., Sayed, H. Kamal, Tishchenko, V., Druzhinin, V. P., Shatunov, Y. M., Bjorkquist, R., Chapelain, A., Eggert, N., Frankenthal, A., Gibbons, L., Kim, S., Mikhailichenko, A., Orlov, Y., Rider, N., Rubin, D., Sweigart, D., Allspach, D., Barzi, E., Casey, B., Convery, M. E., Drendel, B., Freidsam, H., Johnstone, C., Johnstone, J., Kiburg, B., Kourbanis, I., Lyon, A. L., Merritt, K. W., Morgan, J. P., Nguyen, H., Ostiguy, J. F., Para, A., Polly, C. C., Popovic, M., Ramberg, E., Rominsky, M., Soha, A. K., Still, D., Walton, T., Yoshikawa, C., Jungmann, K., Onderwater, C. J. G., Debevec, P., Leo, S., Pitts, K., Schlesier, C., Anastasi, A., Babusci, D., Corradi, G., Hampai, D., Palladino, A., Venanzoni, G., Dabagov, S., Ferrari, C., Fioretti, A., Gabbanini, C., Di Stefano, R., Marignetti, S., Iacovacci, M., Mastroianni, S., Di Sciascio, G., Moricciani, D., Cantatore, Giovanni, Karuza, M., Giovanetti, K., Baranov, V., Duginov, V., Khomutov, N., Krylov, V., Kuchinskiy, N., Volnykh, V., Gaisser, M., Haciomeroglu, S., Kim, Y., Lee, S., Lee, M., Semertzidis, Y. K., Won, E., Fatemi, R., Gohn, W., Gorringe, T., Bowcock, T., Carroll, J., King, B., Maxfield, S., Smith, A., Teubner, T., Whitley, M., Wormald, M., Wolski, A., Al Kilani, S., Chislett, R., Lancaster, M., Motuk, E., Stuttard, T., Warren, M., Flay, D., Kawall, D., Meadows, Z., Syphers, M., Tarazona, D., Chupp, T., Tewlsey Booth, A., Quinn, B., Eads, M., Epps, A., Luo, G., Mcevoy, M., Pohlman, N., Shenk, M., de Gouvea, A., Welty Rieger, L., Schellman, H., Abi, B., Azfar, F., Henry, S., Gray, F., Fu, C., Ji, X., Li, L., Yang, H., Stockinger, D., Cauz, D., Pauletta, G., Santi, L., Baessler, S., Frlez, E., Pocanic, D., Alonzi, L. P., Fertl, M., Fienberg, A., Froemming, N., Garcia, A., Hertzog, D. W., Kammel, P., Kaspar, J., Osofsky, R., Smith, M., Swanson, E., Lynch, K., Precision Frontier, Ostiguy, J. -F., Cantatore, G., Al-Kilani, S., Tewlsey-Booth, A., Welty-Rieger, L., and Abys, Salvatore
- Subjects
Particle physics ,magnetic moment ,standard model ,General Physics and Astronomy ,Standard deviation ,Standard Model ,Muon magnetic moment ,Nuclear physics ,Physics and Astronomy (all) ,anomalous magnetic moment ,Positron ,muon anomaly ,muon ,Fermilab ,Physical and Theoretical Chemistry ,instrumentation ,Physics ,Muon ,Anomalous magnetic moment ,Standard model ,Chemistry (all) ,Anomalous magnetic dipole moment ,Magnetic moment ,General Chemistry ,Magnetic field ,High Energy Physics::Experiment ,measurement ,muon, magnetic moment, instrumentation, measurement - Abstract
The anomalous magnetic moment of the muon is one of the most precisely measured quantities in experimental particle physics. Its latest measurement at Brookhaven National Laboratory deviates from the Standard Model expectation by approximately 3.5 standard deviations. The goal of the new experiment, E989, now under construction at Fermilab, is a fourfold improvement in precision. Here, we discuss the details of the future measurement and its current status. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4917553]
- Published
- 2015
29. Observation of Gravitationally Induced Vertical Striation of Polarized Ultracold Neutrons by Spin-Echo Spectroscopy
- Author
-
D. Rebreyend, Z. Chowdhuri, A. Kozela, Malgorzata Kasprzak, G. Ban, Philip Harris, Y. Lemière, J. A. Thorne, J. Krempel, S. Roccia, C. Plonka-Spehr, M. Rawlik, Werner Heil, Philipp Schmidt-Wellenburg, B. Franke, J. M. Pendlebury, H.-C. Koch, Guillaume Pignol, V. Hélaine, D. Rozpedzik, M. Daum, Martin Fertl, Oscar Naviliat-Cuncic, Jacek Zejma, E. Wursten, Y. Kermaidic, S. Afach, T. Lefort, Zoran D. Grujić, W. C. Griffith, Antoine Weis, N. J. Ayres, A. Mtchedlishvili, M. Musgrave, Nathal Severijns, Florian M. Piegsa, Paul E. Knowles, G. Quéméner, Bernhard Lauss, P. N. Prashanth, Geza Zsigmond, S. Komposch, Georg Bison, Kazimierz Bodek, J. Zenner, D. Ries, G. Wyszynski, Klaus Kirch, Laboratoire de physique corpusculaire de Caen (LPCC), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM SNO), and Université Paris-Saclay-Univ. Paris-Sud-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)
- Subjects
Physics - Instrumentation and Detectors ,Dephasing ,General Physics and Astronomy ,FOS: Physical sciences ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,7. Clean energy ,01 natural sciences ,Resonance (particle physics) ,Nuclear physics ,0103 physical sciences ,Neutron ,Nuclear Experiment (nucl-ex) ,010306 general physics ,Nuclear Experiment ,QC ,Physics ,Neutrons ,010308 nuclear & particles physics ,Instrumentation and Detectors (physics.ins-det) ,Models, Theoretical ,Neutron spectroscopy ,Magnetic field ,Cold Temperature ,Electric dipole moment ,Kinetics ,Spin echo ,Ultracold neutrons ,Atomic physics ,Gravitation - Abstract
We describe a spin-echo method for ultracold neutrons (UCNs) confined in a precession chamber and exposed to a $|B_0|=1~\text{\mu T}$ magnetic field. We have demonstrated that the analysis of UCN spin-echo resonance signals in combination with knowledge of the ambient magnetic field provides an excellent method by which to reconstruct the energy spectrum of a confined ensemble of neutrons. The method takes advantage of the relative dephasing of spins arising from a gravitationally induced striation of stored UCN of different energies, and also permits an improved determination of the vertical magnetic-field gradient with an exceptional accuracy of $1.1~\text{pT/cm}$. This novel combination of a well-known nuclear resonance method and gravitationally induced vertical striation is unique in the realm of nuclear and particle physics and should prove to be invaluable for the assessment of systematic effects in precision experiments such as searches for an electric dipole moment of the neutron or the measurement of the neutron lifetime., Comment: 7 pages 5 figures, accepted by PRL, September, 08 2015
- Published
- 2015
30. Single-Electron Detection and Spectroscopy via Relativistic Cyclotron Radiation
- Author
-
Thomas Thümmler, N. S. Oblath, D. M. Asner, Justin L. Fernandes, L. J. Rosenberg, Matthew Sternberg, B H LaRoque, Elizabeth L. McBride, D. Furse, P. J. Doe, Natasha L. Woods, Richard F. Bradley, Devyn Rysewyk, Gray Rybka, Erin C. Finn, Martin Fertl, Benjamin Monreal, L. de Viveiros, J. N. Kofron, M. Leber, Joseph A. Formaggio, Prajwal Mohanmurthy, B. A. VanDevender, M. L. Miller, R. G. H. Robertson, Jonathan R. Tedeschi, and A. M. Jones
- Subjects
Physics ,Physics - Instrumentation and Detectors ,010308 nuclear & particles physics ,Astrophysics::High Energy Astrophysical Phenomena ,Cyclotron ,Cyclotron resonance ,FOS: Physical sciences ,General Physics and Astronomy ,Synchrotron radiation ,Instrumentation and Detectors (physics.ins-det) ,01 natural sciences ,Electron cyclotron resonance ,Fourier transform ion cyclotron resonance ,High Energy Physics - Experiment ,law.invention ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,law ,0103 physical sciences ,Cyclotron radiation ,Nuclear Experiment (nucl-ex) ,Particle radiation ,010306 general physics ,Nuclear Experiment ,Ion cyclotron resonance - Abstract
It has been understood since 1897 that accelerating charges must emit electromagnetic radiation. Cyclotron radiation, the particular form of radiation emitted by an electron orbiting in a magnetic field, was first derived in 1904. Despite the simplicity of this concept, and the enormous utility of electron spectroscopy in nuclear and particle physics, single-electron cyclotron radiation has never been observed directly. Here we demonstrate single-electron detection in a novel radiofrequency spec- trometer. We observe the cyclotron radiation emitted by individual magnetically-trapped electrons that are produced with mildly-relativistic energies by a gaseous radioactive source. The relativistic shift in the cyclotron frequency permits a precise electron energy measurement. Precise beta elec- tron spectroscopy from gaseous radiation sources is a key technique in modern efforts to measure the neutrino mass via the tritium decay endpoint, and this work demonstrates a fundamentally new approach to precision beta spectroscopy for future neutrino mass experiments., 6 pages, 3 figures
- Published
- 2015
31. Experimental study of ultracold neutron production in pressurized superfluid helium
- Author
-
Martin Fertl, A. Rahli, O. Zimmer, T. Soldner, E. Farhi, K. K. H. Leung, J. Bossy, P. Schmidt-Wellenburg, Institut Laue-Langevin (ILL), ILL, Hélium : du fondamental aux applications (HELFA), Institut Néel (NEEL), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), Paul Scherrer Institute (PSI), and Université Mouloud Mammeri [Tizi Ouzou] (UMMTO)
- Subjects
Physics ,[PHYS]Physics [physics] ,Nuclear and High Energy Physics ,Physics - Instrumentation and Detectors ,Vapor pressure ,Nuclear Theory ,FOS: Physical sciences ,source of ultracold neutrons ,Instrumentation and Detectors (physics.ins-det) ,Inelastic neutron scattering ,Ultracold neutron production ,Neutron capture ,pressurized superfluid helium ,Ultracold neutrons ,Neutron source ,Neutron ,Atomic physics ,Nuclear Experiment (nucl-ex) ,Nuclear Experiment ,Superfluid helium-4 ,Bar (unit) - Abstract
We have investigated experimentally the pressure dependence of the production of ultracold neutrons (UCN) in superfluid helium in the range from saturated vapor pressure to 20bar. A neutron velocity selector allowed the separation of underlying single-phonon and multiphonon pro- cesses by varying the incident cold neutron (CN) wavelength in the range from 3.5 to 10{\AA}. The predicted pressure dependence of UCN production derived from inelastic neutron scattering data was confirmed for the single-phonon excitation. For multiphonon based UCN production we found no significant dependence on pressure whereas calculations from inelastic neutron scattering data predict an increase of 43(6)% at 20bar relative to saturated vapor pressure. From our data we conclude that applying pressure to superfluid helium does not increase the overall UCN production rate at a typical CN guide., Comment: 18 pages, 8 figures Version accepted for publication in PRC
- Published
- 2015
- Full Text
- View/download PDF
32. A device for simultaneous spin analysis of ultracold neutrons
- Author
-
A. Kozela, Reinhold Henneck, Y. Lemière, S. Roccia, M. Daum, G. Ban, P. Schmidt-Wellenburg, E. Wursten, Y. Kermaidic, G. Quéméner, Klaus Kirch, A. Mtchedlishvili, T. Lefort, Antoine Weis, D. Rebreyend, Malgorzata Kasprzak, Guillaume Pignol, Zoran D. Grujić, L. Hayen, Florian M. Piegsa, Geza Zsigmond, D. Rozpedzik, Oscar Naviliat-Cuncic, Martin Fertl, D. Ries, Jacek Zejma, J. Krempel, M. Rawlik, G. Wyszynski, Natalis Severijns, Bernhard Lauss, P. N. Prashanth, Z. Chowdhuri, S. Komposch, V. Hélaine, B. Franke, P. Geltenbort, Kazimierz Bodek, Georg Bison, S. Afach, Laboratoire de physique corpusculaire de Caen (LPCC), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Institut Laue-Langevin (ILL), ILL, Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), CSNSM SNO, Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse (CSNSM), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11)-Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), and Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11)
- Subjects
Nuclear and High Energy Physics ,Physics - Instrumentation and Detectors ,Neutron electric dipole moment ,Analyser ,Hadron ,Statistical sensitivity ,FOS: Physical sciences ,01 natural sciences ,Nuclear physics ,0103 physical sciences ,Nuclear fusion ,electric-dipole moment ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Physics::Atomic Physics ,Nuclear Experiment (nucl-ex) ,010306 general physics ,Spin (physics) ,Nuclear Experiment ,Physics ,polarization ,010308 nuclear & particles physics ,Detector ,Electric Dipole Moments ,Neutron detection ,Neutron spin analysis ,Instrumentation and Detectors (physics.ins-det) ,2990+r Ultracold neutrons ,Ultracold neutrons ,physics - Abstract
We report on the design and first tests of a device allowing for measurement of ultracold neutrons polarisation by means of the simultaneous analysis of the two spin components. The device was developed in the framework of the neutron electric dipole moment experiment at the Paul Scherrer Institute. Individual parts and the entire newly built system have been characterised with ultracold neutrons. The gain in statistical sensitivity obtained with the simultaneous spin analyser is $(18.2\pm 6.1)$ % relative to the former sequential analyser under nominal running conditions.
- Published
- 2015
- Full Text
- View/download PDF
33. Gravitational depolarization of ultracold neutrons : comparison with data
- Author
-
G. Ban, M. G. D. van der Grinten, D. Shiers, Jacek Zejma, D. Ries, P. Geltenbort, Werner Heil, Georg Bison, W. C. Griffith, Oscar Naviliat-Cuncic, M. Musgrave, S. N. Ivanov, Bernhard Lauss, Nathal Severijns, B. Franke, Guillaume Pignol, P. N. Prashanth, Zoran D. Grujić, K. Green, A. Kozela, Malgorzata Kasprzak, J. A. Thorne, J. Krempel, V. Hélaine, S. Roccia, H.-C. Koch, Philipp Schmidt-Wellenburg, Klaus Kirch, Kazimierz Bodek, J. M. Pendlebury, Philip Harris, C. Plonka-Spehr, Geza Zsigmond, T. Lefort, G. Quéméner, D. Rozpedzik, S. Komposch, S. Afach, Martin Fertl, C.A. Baker, Y. Kermaidic, J. Zenner, Y. Lemière, P. Iaydjiev, N. J. Ayres, M. Rawlik, Florian M. Piegsa, E. Wursten, Antoine Weis, D. Rebreyend, Paul Scherrer Institute (PSI), Laboratoire de physique corpusculaire de Caen (LPCC), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Institut Laue-Langevin (ILL), ILL, Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), and Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Nuclear and High Energy Physics ,Physics - Instrumentation and Detectors ,Field (physics) ,FOS: Physical sciences ,01 natural sciences ,High Energy Physics - Experiment ,Nuclear physics ,Gravitation ,High Energy Physics - Experiment (hep-ex) ,0103 physical sciences ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,Neutron ,Detectors and Experimental Techniques ,010306 general physics ,QC ,Larmor precession ,Physics ,010308 nuclear & particles physics ,1420Dh ,Depolarization ,Instrumentation and Detectors (physics.ins-det) ,Magnetic field gradient ,1130Er ,numbers: 1340Em ,0755Ge ,Electric dipole moment ,Physics::Space Physics ,Ultracold neutrons ,Atomic physics - Abstract
We compare the expected effects of so-called gravitationally enhanced depolarization of ultracold neutrons to measurements carried out in a spin-precession chamber exposed to a variety of vertical magnetic-field gradients. In particular, we have investigated the dependence upon these field gradients of spin depolarization rates and also of shifts in the measured neutron Larmor precession frequency. We find excellent qualitative agreement, with gravitationally enhanced depolarization accounting for several previously unexplained features in the data., Comment: 10 pages, 6 figures. Updated: section added about implications for current nEDM limit
- Published
- 2015
34. New source for ultracold neutrons at the Institut Laue-Langevin
- Author
-
P. Schmidt-Wellenburg, T. Soldner, M. Kreuz, O. Zimmer, Florian M. Piegsa, S. N. Ivanov, Martin Fertl, and K. K. H. Leung
- Subjects
Physics ,Nuclear and High Energy Physics ,Physics - Instrumentation and Detectors ,Physics::Instrumentation and Detectors ,FOS: Physical sciences ,Cryogenics ,Instrumentation and Detectors (physics.ins-det) ,Neutron radiation ,Superfluidity ,Nuclear physics ,Wavelength ,Beamline ,Ultracold neutrons ,Neutron source ,Neutron ,Atomic physics ,Nuclear Experiment (nucl-ex) ,Nuclear Experiment - Abstract
A new intense superthermal source for ultracold neutrons (UCN) has been installed at a dedicated beam line at the Institut Laue-Langevin. Incident neutrons with a wavelength of 0.89 nm are converted to UCN in a five liter volume filled with superfluid $^4$He at a temperature of about 0.7 K. The UCN can be extracted to room temperature experiments. We present the cryogenic setup of the source, a characterization of the cold neutron beam, and UCN production measurements, where a UCN density in the production volume of at least 55 per cm$^3$ was determined.
- Published
- 2014
- Full Text
- View/download PDF
35. Copper coated carbon fiber reinforced plastics for high and ultra high vacuum applications
- Author
-
Reinhold Henneck, Klaus Kirch, Martin Fertl, Geza Zsigmond, Jens-Uwe Voigt, Bernhard Lauss, F. Burri, P. Feusi, J. Zenner, Philipp Schmidt-Wellenburg, P. Rüttimann, and Allard Schnabel
- Subjects
Materials science ,Physics - Instrumentation and Detectors ,Ultra-high vacuum ,FOS: Physical sciences ,chemistry.chemical_element ,Instrumentation and Detectors (physics.ins-det) ,Fibre-reinforced plastic ,Condensed Matter Physics ,7. Clean energy ,Copper ,Surfaces, Coatings and Films ,chemistry ,Desorption ,Copper coating ,Vacuum chamber ,Composite material ,Instrumentation ,Curing (chemistry) - Abstract
We have used copper-coated carbon fiber reinforced plastic (CuCFRP) for the construction of high and ultra-high vacuum recipients. The vacuum performance is found to be comparable to typical stainless steel used for this purpose. In test recipients we have reached pressures of 2E-8 mbar and measured a desorption rate of 1E-11 mbar*liter/s/cm^2; no degradation over time (2 years) has been found. Suitability for baking has been found to depend on the CFRP production process, presumably on the temperature of the autoclave curing. Together with other unique properties of CuCFRP such as low weight and being nearly non-magnetic, this makes it an ideal material for many high-end vacuum applications., 17 pages, 10 figures, to be published in NIMA
- Published
- 2013
36. Transitions between levels of a quantum bouncer induced by a noise-like perturbation
- Author
-
Martin Fertl, C. Codau, Valery Nesvizhevsky, K. V. Protasov, Guillaume Pignol, Institut Laue-Langevin (ILL), ILL, Laboratoire de Physique Subatomique et de Cosmologie (LPSC), and Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,Nuclear and High Energy Physics ,Waviness ,010308 nuclear & particles physics ,FOS: Physical sciences ,Perturbation (astronomy) ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,01 natural sciences ,Vibration ,Quantum mechanics ,0103 physical sciences ,Ultracold neutrons ,Neutron ,Nuclear Experiment (nucl-ex) ,010306 general physics ,Nuclear Experiment ,Instrumentation ,Quantum - Abstract
The probability of transition between levels of a quantum bouncer, induced by a noise-like perturbation, is calculated. The results are applied to two sources of noise (vibrations and mirror surface waviness) which might play an important role in future GRANIT experiment, aiming at precision studies of/with the neutron quantum bouncer.
- Published
- 2012
37. Testing isotropy of the universe using the Ramsey resonance technique on ultracold neutron spins
- Author
-
M. Horras, G. Ban, Klaus Kirch, A. Kozela, Philipp Schmidt-Wellenburg, T. Lefort, Jacek Zejma, D. Rebreyend, Martin Rebetez, S. Roccia, Paul E. Knowles, Guillaume Pignol, N. V. Khomutov, E. Pierre, Werner Heil, Erwin Gutsmiedl, J. Zenner, Yu. Sobolev, M. Daum, Y. Lemière, Florian M. Piegsa, Natalis Severijns, Bernhard Lauss, Oscar Naviliat-Cuncic, G. Quéméner, Martin Fertl, T. Lauer, Peter Fierlinger, A. Kraft, G. Petzoldt, A. S. Pazgalev, I. Altarev, Kazimierz Bodek, Andreas Knecht, A. Mtchedlishvili, B. Franke, Antoine Weis, Reinhold Henneck, Geza Zsigmond, St. Kistryn, Georg Bison, Laboratoire de physique corpusculaire de Caen (LPCC), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Laboratoire de Physique Subatomique et de Cosmologie (LPSC), and Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Neutron electric dipole moment ,Atomic Physics (physics.atom-ph) ,FOS: Physical sciences ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,Lorentz covariance ,01 natural sciences ,Resonance (particle physics) ,Physics - Atomic Physics ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,Quantum mechanics ,0103 physical sciences ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,Neutron ,Nuclear Experiment (nucl-ex) ,Electrical and Electronic Engineering ,010306 general physics ,Nuclear Experiment ,Larmor precession ,Physics ,[PHYS.PHYS.PHYS-ATOM-PH]Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph] ,Spins ,010308 nuclear & particles physics ,Condensed Matter Physics ,Electronic, Optical and Magnetic Materials ,Neutron spectroscopy ,Ultracold neutrons - Abstract
Physics at the Planck scale could be revealed by looking for tiny violations of fundamental symmetries in low energy experiments. In 2008, a sensitive test of the isotropy of the Universe using has been performed with stored ultracold neutrons (UCN), this is the first clock-comparison experiment performed with free neutrons. During several days we monitored the Larmor frequency of neutron spins in a weak magnetic field using the Ramsey resonance technique. An non-zero cosmic axial field, violating rotational symmetry, would induce a daily variation of the precession frequency. Our null result constitutes one of the most stringent tests of Lorentz invariance to date., proceedings of the PNCMI2010 conference
- Published
- 2011
38. MC calculations for the nEDM experiment systematics
- Author
-
Kazimierz Bodek, Florian M. Piegsa, Z. Chowdhuri, Jacek Zejma, Philipp Schmidt-Wellenburg, Guillaume Pignol, Malgorzata Kasprzak, A. Kozela, Geza Zsigmond, A. Mtchedlishvili, S. Roccia, Klaus Kirch, J. Krempel, Martin Fertl, Reinhold Henneck, B. Franke, M. Daum, Bernhard Lauss, Stanisław Kistryn, D. Rebreyend, J. Zenner, Erwin Gutsmiedl, M. Horras, Laboratoire de Physique Subatomique et de Cosmologie (LPSC), and Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,MC simulations ,Neutron electric dipole moment ,Field (physics) ,010308 nuclear & particles physics ,Monte Carlo method ,Physics and Astronomy(all) ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,01 natural sciences ,Nuclear physics ,Consistency (statistics) ,Benchmark (surveying) ,0103 physical sciences ,Precession ,Ultracold neutrons ,Neutron ,010306 general physics - Abstract
International audience; The nEDM experiment hosted at the Paul Scherrer Institute is the flagship project at the new ultracold neutron facility. Estimations of systematic effects for the determination of the neutron electric dipole moment play an important role in this project. Experimental studies are supported by Monte Carlo simulations using the MCUCN code. Here we briefly present first results on the experimental benchmark of the model, and on the evaluation of the storage time dependence of the centre of mass of UCN in the nEDM precession chamber. Such time dependence calculations will serve as consistency tests for future measurements involving field gradient corrections of the Ramsey resonance frequency. An analytic benchmark of the spinhandling routines will also be shown.
- Published
- 2010
39. New constraints on Lorentz invariance violation from the neutron electric dipole moment
- Author
-
G. Quéméner, Guillaume Pignol, G. Petzoldt, Jacek Zejma, Yu. Sobolev, E. Pierre, Reinhold Henneck, A. Kozela, A. Mtchedlishvili, Oscar Naviliat-Cuncic, G. Ban, Philip Harris, Klaus Kirch, K. F. Smith, P. Schmidt-Wellenburg, M. G. D. van der Grinten, N. V. Khomutov, S. Roccia, Geza Zsigmond, K. Green, Peter Fierlinger, Kazimierz Bodek, Martin Fertl, St. Kistryn, Y. Lemière, M. Daum, D. Shiers, M. Horras, Andreas Knecht, I. Altarev, C.A. Baker, T. Lefort, Florian M. Piegsa, Natalis Severijns, Bernhard Lauss, Plamen Iaydjiev, Beatrice Franke, P. Geltenbort, J. M. Pendlebury, F. Kuchler, S. N. Ivanov, J. Zenner, D. Rebreyend, Laboratoire de physique corpusculaire de Caen (LPCC), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Institut Laue-Langevin (ILL), ILL, Laboratoire de Physique Subatomique et de Cosmologie (LPSC), and Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Electromagnetic field ,Physics ,Spectrometer ,Neutron electric dipole moment ,010308 nuclear & particles physics ,FOS: Physical sciences ,General Physics and Astronomy ,Lorentz covariance ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,01 natural sciences ,Signal ,Modulation ,Quantum electrodynamics ,0103 physical sciences ,Ultracold neutrons ,Sensitivity (control systems) ,Nuclear Experiment (nucl-ex) ,Nuclear Experiment ,010306 general physics - Abstract
We propose an original test of Lorentz invariance in the interaction between a particle spin and an electromagnetic field and report on a first measurement using ultracold neutrons. We used a high sensitivity neutron electric dipole moment (nEDM) spectrometer and searched for a direction dependence of a nEDM signal leading to a modulation of its magnitude at periods of 12 and 24 hours. We constrain such a modulation to $d_{12} < 15 \times 10^{-25} \ e\,{\rm cm}$ and $d_{24} < 10 \times 10^{-25} \ e\,{\rm cm}$ at 95~\% C.L. The result translates into a limit on the energy scale for this type of Lorentz violation effect at the level of ${\cal E}_{LV} > 10^{10}$~GeV., Submitted to Phys. Rev. Lett
- Published
- 2010
40. Superfluid-helium converter for accumulation and extraction of ultracold neutrons
- Author
-
H.-F. Wirth, S. Mironov, C. Plonka, Martin Fertl, B. van den Brandt, Kristian Baumann, P. Schmidt-Wellenburg, Beatrice Franke, O. Zimmer, and D. Rich
- Subjects
Cryostat ,Physics ,Physics::Instrumentation and Detectors ,General Physics and Astronomy ,chemistry.chemical_element ,Nuclear physics ,Neutron capture ,chemistry ,Ultracold neutrons ,Neutron source ,Neutron ,Research reactor ,Nuclear Experiment ,Superfluid helium-4 ,Helium - Abstract
We report the first successful extraction of accumulated ultracold neutrons (UCN) from a converter of superfluid helium, in which they were produced by downscattering neutrons of a cold beam from the Munich research reactor. Windowless UCN extraction is performed in vertical direction through a mechanical cold valve. This prototype of a versatile UCN source is comprised of a novel cryostat designed to keep the source portable and to allow for rapid cooldown. We measured time constants for UCN storage and extraction into a detector at room temperature, with the converter held at various temperatures between 0.7 and 1.3 K. The UCN production rate inferred from the count rate of extracted UCN is close to the theoretical expectation.
- Published
- 2007
41. Measurement of a false electric dipole moment signal from Hg-199 atoms exposed to an inhomogeneous magnetic field
- Author
-
G. Ban, J. Krempel, M. G. D. van der Grinten, Y. Kermaidic, S. Komposch, M. Horras, Paul E. Knowles, Geza Zsigmond, J. M. Pendlebury, D. Ries, P. Geltenbort, P. Schmidt-Wellenburg, Guillaume Pignol, T. Lefort, S. Roccia, Oscar Naviliat-Cuncic, Y. Lemière, Jacek Zejma, Werner Heil, Nathal Severijns, Beatrice Franke, Martin Fertl, A. Mtchedlishvili, Plamen Iaydjiev, G. Wyszynski, S. N. Ivanov, S. Afach, Georg Bison, Bernhard Lauss, Zoran D. Grujić, A. Kozela, K. Green, J. Zenner, Kazimierz Bodek, G. Quéméner, H.-C. Koch, D. Rebreyend, Z. Chowdhuri, Malgorzata Kasprzak, V. Hélaine, Philip Harris, Klaus Kirch, P. N. Prashant, Antoine Weis, Reinhold Henneck, C.A. Baker, E. Wursten, Florian M. Piegsa, M. Daum, Laboratoire de physique corpusculaire de Caen (LPCC), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Institut Laue-Langevin (ILL), ILL, Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Michigan State University [East Lansing], Michigan State University System, CSNSM SNO, Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse (CSNSM), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11)-Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), and Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Larmor precession ,Physics ,Spectrometer ,010308 nuclear & particles physics ,Magnetometer ,Atomic Physics (physics.atom-ph) ,FOS: Physical sciences ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,01 natural sciences ,Signal ,Atomic and Molecular Physics, and Optics ,Physics - Atomic Physics ,Magnetic field ,law.invention ,Electric dipole moment ,law ,Electric field ,atomic physics ,0103 physical sciences ,Neutron ,Physics::Atomic Physics ,Atomic physics ,Nuclear Experiment (nucl-ex) ,010306 general physics ,Nuclear Experiment - Abstract
International audience; We report on the measurement of a Larmor frequency shift proportional to the electric-field strength for $^{199}{\rm Hg}$ atoms contained in a volume permeated with aligned magnetic and electric fields. This shift arises from the interplay between the inevitable magnetic field gradients and the motional magnetic field. The proportionality to electric-field strength makes it apparently similar to an electric dipole moment (EDM) signal, although unlike an EDM this effect is P- and T-conserving. We have used a neutron magnetic resonance EDM spectrometer, featuring a mercury co-magnetometer and an array of external cesium magnetometers, to measure the shift as a function of the applied magnetic field gradient. Our results are in good agreement with theoretical expectations.
- Published
- 2015
- Full Text
- View/download PDF
42. Dynamic stabilization of the magnetic field surrounding the neutron electric dipole moment spectrometer at the Paul Scherrer Institute
- Author
-
Natalis Severijns, Zoran D. Grujić, Bernhard Lauss, P. N. Prashanth, Geza Zsigmond, Reinhold Henneck, B. Franke, Z. Chowdhuri, J. Zenner, P. Schmidt-Wellenburg, D. Rebreyend, H.-C. Koch, S. Afach, T. Lefort, J. Krempel, Florian M. Piegsa, Kazimierz Bodek, Klaus Kirch, Martin Fertl, M. Meier, A. Kozela, Jens Voigt, V. Hélaine, S. Roccia, G. Quéméner, M. Daum, Malgorzata Kasprzak, Oscar Naviliat-Cuncic, Guillaume Pignol, Jacek Zejma, F. Burri, C. Plonka-Spehr, G. Wyszynski, Georg Bison, Antoine Weis, Y. Lemière, Allard Schnabel, Laboratoire de physique corpusculaire de Caen (LPCC), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), CSNSM SNO, Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse (CSNSM), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11)-Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), and Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics - Instrumentation and Detectors ,Neutron electric dipole moment ,Atomic Physics (physics.atom-ph) ,FOS: Physical sciences ,General Physics and Astronomy ,Shields ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,01 natural sciences ,Physics - Atomic Physics ,0103 physical sciences ,Neutron ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Nuclear Experiment (nucl-ex) ,010306 general physics ,Nuclear Experiment ,Moore–Penrose pseudoinverse ,010302 applied physics ,Physics ,[PHYS.PHYS.PHYS-ATOM-PH]Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph] ,Spectrometer ,magnetic field compensation system ,Instrumentation and Detectors (physics.ins-det) ,Magnetic field ,Computational physics ,Electromagnetic shielding ,DC bias - Abstract
The Surrounding Field Compensation (SFC) system described in this work is installed around the four-layer Mu-metal magnetic shield of the neutron electric dipole moment spectrometer located at the Paul Scherrer Institute. The SFC system reduces the DC component of the external magnetic field by a factor of about 20. Within a control volume of approximately 2.5m x 2.5m x 3m disturbances of the magnetic field are attenuated by factors of 5 to 50 at a bandwidth from $10^{-3}$ Hz up to 0.5 Hz, which corresponds to integration times longer than several hundreds of seconds and represent the important timescale for the nEDM measurement. These shielding factors apply to random environmental noise from arbitrary sources. This is achieved via a proportional-integral feedback stabilization system that includes a regularized pseudoinverse matrix of proportionality factors which correlates magnetic field changes at all sensor positions to current changes in the SFC coils., 33 pages, 18 figures
- Published
- 2014
43. An endoscopic detector for ultracold neutrons
- Author
-
L. Göltl, F. Gray, Martin Fertl, Philipp Schmidt-Wellenburg, Z. Chowdhuri, A. Mtchedlishvili, Geza Zsigmond, Bernhard Lauss, Klaus Kirch, Reinhold Henneck, T. Lefort, Laboratoire de physique corpusculaire de Caen (LPCC), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), and Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)
- Subjects
Physics ,Nuclear and High Energy Physics ,Photon ,010308 nuclear & particles physics ,business.industry ,Physics::Instrumentation and Detectors ,Detector ,Light guide ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,Radiation ,Scintillator ,01 natural sciences ,Optics ,Hot zone ,0103 physical sciences ,Ultracold neutrons ,Nuclear fusion ,010306 general physics ,business ,Nuclear Experiment - Abstract
The European Physical Journal A, 49 (1), ISSN:1434-6001, ISSN:1434-601X
- Published
- 2013
44. Ultracold neutrons extracted from a superfluid-helium converter coated with fluorinated grease
- Author
-
J. Klenke, O. Zimmer, B. van den Brandt, P. Schmidt-Wellenburg, M. Assmann, H.-F. Wirth, and Martin Fertl
- Subjects
Physics ,Physics and Astronomy (miscellaneous) ,Phonon ,Physics::Instrumentation and Detectors ,Time constant ,Superfluidity ,Ultracold neutrons ,Research reactor ,Neutron ,Atomic physics ,Nuclear Experiment ,Engineering (miscellaneous) ,Superfluid helium-4 ,Beam (structure) - Abstract
We report experiments on the production of ultracold neutrons (UCN) in a converter of superfluid helium coated with fluorinated grease (fomblin). We employed our special technique of window-free extraction of accumulated UCN from the superfluid helium, in which they were produced by downscattering neutrons of a cold beam from the Munich research reactor. The fomblin-coating reduced the time constant for UCN passage through the extraction hole by a factor three compared to our previous experiment employing an uncoated stainless steel vessel. A time-of-flight measurement of the cold neutron spectrum incident on the converter, combined with a gold foil activation, allowed us to determine both the single-phonon and multi-phonon contributions to the UCN production. The UCN production rate is in reasonable agreement with the theoretical expectation.
- Full Text
- View/download PDF
45. Measuring the tritium β-decay spectrum using cyclotron radiation emission spectroscopy
- Author
-
Ashtari Esfahani, A., Bansal, V., Böser, S., Buzinsky, N., Cervantes, R., Claessens, C., Viveiros, L., Doe, P. J., Doeleman, S., Martin Fertl, Finn, E. C., Formaggio, J. A., Gladstone, L., Guigue, M., Heeger, K. M., Johnston, J. P., Jones, A. M., Kazkaz, K., Laroque, B. H., Lindman, A., Machado, E., Monreal, B., Nikkel, J. A., Novitski, E., Oblath, N. S., Pettus, W., Robertson, R. G. H., Rosenberg, L. J., Rybka, G., Saldaña, L., Schram, M., Sibille, V., Slocum, P. L., Sun, Y. -H, Tedeschi, J. R., Thümmler, T., Vandevender, B. A., Walter, M., Wachtendonk, M., Weintroub, J., Wendler, T., Young, A., and Zayas, E.
46. Accumulation and extraction of ultracold neutrons from a superfluid helium converter coated with fluorinated grease
- Author
-
Zimmer, O., Schmidt-Wellenburg, P., Assmann, M., Martin Fertl, Klenke, J., Mironov, S., Wirth, H. -F, and Den Brandt, B.
- Subjects
Physics::Instrumentation and Detectors ,FOS: Physical sciences ,Nuclear Experiment (nucl-ex) ,Nuclear Experiment - Abstract
We report experiments on the production of ultracold neutrons (UCN) in a converter of superfluid helium coated with fluorinated grease. We employed our technique of window-free extraction of accumulated UCN from the helium, in which they were produced by downscattering neutrons of a cold beam from the Munich research reactor. The time constant for UCN passage through the same extraction aperture as in a previous experiment was a factor two shorter, despite a lower mean velocity of the accumulated UCN in the present experiments. A time-of-flight measurement of the cold neutron spectrum incident on the converter allowed us to estimate the multi-phonon contribution to the UCN production. The UCN production rate inferred from two methods agrees with the theoretical expectation., 11 pages, 6 figures
47. Determining the neutrino mass with cyclotron radiation emission spectroscopy—Project 8.
- Author
-
Ali Ashtari Esfahani, David M Asner, Sebastian Böser, Raphael Cervantes, Christine Claessens, Luiz de Viveiros, Peter J Doe, Shepard Doeleman, Justin L Fernandes, Martin Fertl, Erin C Finn, Joseph A Formaggio, Daniel Furse, Mathieu Guigue, Karsten M Heeger, A Mark Jones, Kareem Kazkaz, Jared A Kofron, Callum Lamb, and Benjamin H LaRoque
- Subjects
NEUTRINO mass ,CYCLOTRON radiation ,EMISSION spectroscopy ,BETA decay ,NEUTRINO oscillation - Abstract
The most sensitive direct method to establish the absolute neutrino mass is observation of the endpoint of the tritium beta-decay spectrum. Cyclotron radiation emission spectroscopy (CRES) is a precision spectrographic technique that can probe much of the unexplored neutrino mass range with resolution. A lower bound of is set by observations of neutrino oscillations, while the KATRIN experiment—the current-generation tritium beta-decay experiment that is based on magnetic adiabatic collimation with an electrostatic (MAC-E) filter—will achieve a sensitivity of . The CRES technique aims to avoid the difficulties in scaling up a MAC-E filter-based experiment to achieve a lower mass sensitivity. In this paper we review the current status of the CRES technique and describe Project 8, a phased absolute neutrino mass experiment that has the potential to reach sensitivities down to using an atomic tritium source. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.