1. Ca+ Ions Solvated in Helium Clusters
- Author
-
Massimiliano Bartolomei, Paul Martini, Ricardo Pérez de Tudela, Tomás González-Lezana, Marta I. Hernández, José Campos-Martínez, Javier Hernández-Rojas, José Bretón, and Paul Scheier
- Subjects
molecular clusters ,solvation ,helium-alkaline earth ion interactions ,helium nanodroplets ,mass spectrometry ,classical/quantum monte carlo calculations ,Organic chemistry ,QD241-441 - Abstract
We present a combined experimental and theoretical investigation on Ca+ ions in helium droplets, HeNCa+. The clusters have been formed in the laboratory by means of electron-impact ionization of Ca-doped helium nanodroplets. Energies and structures of such complexes have been computed using various approaches such as path integral Monte Carlo, diffusion Monte Carlo and basin-hopping methods. The potential energy functions employed in these calculations consist of analytical expressions following an improved Lennard-Jones formula whose parameters are fine-tuned by exploiting ab initio estimations. Ion yields of HeNCa+ -obtained via high-resolution mass spectrometry- generally decrease with N with a more pronounced drop between N=17 and N=25, the computed quantum HeNCa+ evaporation energies resembling this behavior. The analysis of the energies and structures reveals that covering Ca+ with 17 He atoms leads to a cluster with one of the smallest energies per atom. As new atoms are added, they continue to fill the first shell at the expense of reducing its stability, until N=25, which corresponds to the maximum number of atoms in that shell. Behavior of the evaporation energies and radial densities suggests liquid-like cluster structures.
- Published
- 2021
- Full Text
- View/download PDF