66 results on '"Marszalek JR"'
Search Results
2. A BLACK CADET AT WEST POINT.
- Author
-
Marszalek Jr., John F.
- Subjects
- *
MILITARY cadets , *PREJUDICES - Abstract
The article presents the case of Cadet Johnson Chestnut Whitaker, the only African American attending the United States Military Academy in West Point on 1880. He was found in lying inside his barracks with his underclothes on and with his ankles and wrists tied. The case became a national interest and there were much discussion as to the prejudice treatment of Whitaker because of his color.
- Published
- 1971
3. Co-targeting SOS1 enhances the antitumor effects of KRAS G12C inhibitors by addressing intrinsic and acquired resistance.
- Author
-
Thatikonda V, Lyu H, Jurado S, Kostyrko K, Bristow CA, Albrecht C, Alpar D, Arnhof H, Bergner O, Bosch K, Feng N, Gao S, Gerlach D, Gmachl M, Hinkel M, Lieb S, Jeschko A, Machado AA, Madensky T, Marszalek ED, Mahendra M, Melo-Zainzinger G, Molkentine JM, Jaeger PA, Peng DH, Schenk RL, Sorokin A, Strauss S, Trapani F, Kopetz S, Vellano CP, Petronczki M, Kraut N, Heffernan TP, Marszalek JR, Pearson M, Waizenegger IC, and Hofmann MH
- Subjects
- Humans, Animals, Mice, Cell Line, Tumor, Colorectal Neoplasms drug therapy, Colorectal Neoplasms genetics, Xenograft Model Antitumor Assays, Protein Tyrosine Phosphatase, Non-Receptor Type 11 antagonists & inhibitors, Protein Tyrosine Phosphatase, Non-Receptor Type 11 genetics, Lung Neoplasms drug therapy, Lung Neoplasms genetics, Mutation, Female, Antineoplastic Combined Chemotherapy Protocols pharmacology, Antineoplastic Combined Chemotherapy Protocols therapeutic use, Acetonitriles, Piperazines, Pyrimidines, SOS1 Protein genetics, Proto-Oncogene Proteins p21(ras) genetics, Drug Resistance, Neoplasm drug effects
- Abstract
Combination approaches are needed to strengthen and extend the clinical response to KRAS
G12C inhibitors (KRASG12C i). Here, we assessed the antitumor responses of KRASG12C mutant lung and colorectal cancer models to combination treatment with a SOS1 inhibitor (SOS1i), BI-3406, plus the KRASG12C inhibitor, adagrasib. We found that responses to BI-3406 plus adagrasib were stronger than to adagrasib alone, comparable to adagrasib with SHP2 (SHP2i) or EGFR inhibitors and correlated with stronger suppression of RAS-MAPK signaling. BI-3406 plus adagrasib treatment also delayed the emergence of acquired resistance and elicited antitumor responses from adagrasib-resistant models. Resistance to KRASG12C i seemed to be driven by upregulation of MRAS activity, which both SOS1i and SHP2i were found to potently inhibit. Knockdown of SHOC2, a MRAS complex partner, partially restored response to KRASG12C i treatment. These results suggest KRASG12C plus SOS1i to be a promising strategy for treating both KRASG12C i naive and relapsed KRASG12C -mutant tumors., (© 2024. The Author(s).)- Published
- 2024
- Full Text
- View/download PDF
4. Unraveling ETC complex I function in ferroptosis reveals a potential ferroptosis-inducing therapeutic strategy for LKB1-deficient cancers.
- Author
-
Mao C, Lei G, Horbath A, Wang M, Lu Z, Yan Y, Liu X, Kondiparthi L, Chen X, Cheng J, Li Q, Xu Z, Zhuang L, Fang B, Marszalek JR, Poyurovsky MV, Olszewski K, and Gan B
- Subjects
- Animals, Female, Humans, Mice, AMP-Activated Protein Kinase Kinases genetics, Cell Line, Tumor, Mitochondria metabolism, Mitochondria genetics, Mitochondria drug effects, Neoplasms genetics, Neoplasms pathology, Neoplasms metabolism, Neoplasms drug therapy, Phospholipid Hydroperoxide Glutathione Peroxidase metabolism, Phospholipid Hydroperoxide Glutathione Peroxidase genetics, Protein Serine-Threonine Kinases metabolism, Protein Serine-Threonine Kinases genetics, Signal Transduction, Xenograft Model Antitumor Assays, AMP-Activated Protein Kinases metabolism, AMP-Activated Protein Kinases genetics, Electron Transport Complex I metabolism, Electron Transport Complex I genetics, Ferroptosis genetics, Ferroptosis drug effects
- Abstract
The role of the mitochondrial electron transport chain (ETC) in regulating ferroptosis is not fully elucidated. Here, we reveal that pharmacological inhibition of the ETC complex I reduces ubiquinol levels while decreasing ATP levels and activating AMP-activated protein kinase (AMPK), the two effects known for their roles in promoting and suppressing ferroptosis, respectively. Consequently, the impact of complex I inhibitors on ferroptosis induced by glutathione peroxidase 4 (GPX4) inhibition is limited. The pharmacological inhibition of complex I in LKB1-AMPK-inactivated cells, or genetic ablation of complex I (which does not trigger apparent AMPK activation), abrogates the AMPK-mediated ferroptosis-suppressive effect and sensitizes cancer cells to GPX4-inactivation-induced ferroptosis. Furthermore, complex I inhibition synergizes with radiotherapy (RT) to selectively suppress the growth of LKB1-deficient tumors by inducing ferroptosis in mouse models. Our data demonstrate a multifaceted role of complex I in regulating ferroptosis and propose a ferroptosis-inducing therapeutic strategy for LKB1-deficient cancers., Competing Interests: Declaration of interests K.O. and L.K. are former full-time employees of Kadmon Corporation and are now full-time employees of the Carl Icahn Labs and Sanofi, US, respectively. M.V.P. is a former full-time employee of Kadmon Corporation and is now a full-time employee at PMV Pharmaceutics. B.G. is an inventor on patent applications involving targeting ferroptosis in cancer therapy and reports personal fees from Guidepoint Global, Cambridge Solutions, and NGM Bio., (Copyright © 2024 Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
5. Ataxia-Telangiectasia Mutated Loss-of-Function Displays Variant and Tissue-Specific Differences across Tumor Types.
- Author
-
Pilié PG, Giuliani V, Wang WL, McGrail DJ, Bristow CA, Ngoi NYL, Kyewalabye K, Wani KM, Le H, Campbell E, Sanchez NS, Yang D, Gheeya JS, Goswamy RV, Holla V, Shaw KR, Meric-Bernstam F, Liu CY, Ma X, Feng N, Machado AA, Bardenhagen JP, Vellano CP, Marszalek JR, Rajendra E, Piscitello D, Johnson TI, Likhatcheva M, Elinati E, Majithiya J, Neves J, Grinkevich V, Ranzani M, Luzarraga MR, Boursier M, Armstrong L, Geo L, Lillo G, Tse WY, Lazar AJ, Kopetz SE, Geck Do MK, Lively S, Johnson MG, Robinson HMR, Smith GCM, Carroll CL, Di Francesco ME, Jones P, Heffernan TP, and Yap TA
- Subjects
- Animals, Humans, Mice, Antineoplastic Agents therapeutic use, Antineoplastic Agents pharmacology, Biomarkers, Tumor genetics, Cell Line, Tumor, Loss of Function Mutation, Xenograft Model Antitumor Assays, Ataxia Telangiectasia Mutated Proteins genetics, Ataxia Telangiectasia Mutated Proteins antagonists & inhibitors, Neoplasms genetics, Neoplasms drug therapy, Neoplasms pathology
- Abstract
Purpose: Mutations in the ATM gene are common in multiple cancers, but clinical studies of therapies targeting ATM-aberrant cancers have yielded mixed results. Refinement of ATM loss of function (LOF) as a predictive biomarker of response is urgently needed., Experimental Design: We present the first disclosure and preclinical development of a novel, selective ATR inhibitor, ART0380, and test its antitumor activity in multiple preclinical cancer models. To refine ATM LOF as a predictive biomarker, we performed a comprehensive pan-cancer analysis of ATM variants in patient tumors and then assessed the ATM variant-to-protein relationship. Finally, we assessed a novel ATM LOF biomarker approach in retrospective clinical data sets of patients treated with platinum-based chemotherapy or ATR inhibition., Results: ART0380 had potent, selective antitumor activity in a range of preclinical cancer models with differing degrees of ATM LOF. Pan-cancer analysis identified 10,609 ATM variants in 8,587 patient tumors. Cancer lineage-specific differences were seen in the prevalence of deleterious (Tier 1) versus unknown/benign (Tier 2) variants, selective pressure for loss of heterozygosity, and concordance between a deleterious variant and ATM loss of protein (LOP). A novel ATM LOF biomarker approach that accounts for variant classification, relationship to ATM LOP, and tissue-specific penetrance significantly enriched for patients who benefited from platinum-based chemotherapy or ATR inhibition., Conclusions: These data help to better define ATM LOF across tumor types in order to optimize patient selection and improve molecularly targeted therapeutic approaches for patients with ATM LOF cancers., (©2024 The Authors; Published by the American Association for Cancer Research.)
- Published
- 2024
- Full Text
- View/download PDF
6. Ether phospholipids are required for mitochondrial reactive oxygen species homeostasis.
- Author
-
Chen Z, Ho IL, Soeung M, Yen EY, Liu J, Yan L, Rose JL, Srinivasan S, Jiang S, Edward Chang Q, Feng N, Gay JP, Wang Q, Wang J, Lorenzi PL, Veillon LJ, Wei B, Weinstein JN, Deem AK, Gao S, Genovese G, Viale A, Yao W, Lyssiotis CA, Marszalek JR, Draetta GF, and Ying H
- Subjects
- Humans, Reactive Oxygen Species metabolism, Phospholipid Ethers metabolism, Mitochondria metabolism, Phospholipids metabolism, Homeostasis, Pancreatic Neoplasms pathology, Carcinoma, Pancreatic Ductal metabolism
- Abstract
Mitochondria are hubs where bioenergetics, redox homeostasis, and anabolic metabolism pathways integrate through a tightly coordinated flux of metabolites. The contributions of mitochondrial metabolism to tumor growth and therapy resistance are evident, but drugs targeting mitochondrial metabolism have repeatedly failed in the clinic. Our study in pancreatic ductal adenocarcinoma (PDAC) finds that cellular and mitochondrial lipid composition influence cancer cell sensitivity to pharmacological inhibition of electron transport chain complex I. Profiling of patient-derived PDAC models revealed that monounsaturated fatty acids (MUFAs) and MUFA-linked ether phospholipids play a critical role in maintaining ROS homeostasis. We show that ether phospholipids support mitochondrial supercomplex assembly and ROS production; accordingly, blocking de novo ether phospholipid biosynthesis sensitized PDAC cells to complex I inhibition by inducing mitochondrial ROS and lipid peroxidation. These data identify ether phospholipids as a regulator of mitochondrial redox control that contributes to the sensitivity of PDAC cells to complex I inhibition., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
7. Combined KRAS G12C and SOS1 inhibition enhances and extends the anti-tumor response in KRAS G12C -driven cancers by addressing intrinsic and acquired resistance.
- Author
-
Thatikonda V, Lu H, Jurado S, Kostyrko K, Bristow CA, Bosch K, Feng N, Gao S, Gerlach D, Gmachl M, Lieb S, Jeschko A, Machado AA, Marszalek ED, Mahendra M, Jaeger PA, Sorokin A, Strauss S, Trapani F, Kopetz S, Vellano CP, Petronczki M, Kraut N, Heffernan TP, Marszalek JR, Pearson M, Waizenegger I, and Hofmann MH
- Abstract
Efforts to improve the anti-tumor response to KRAS
G12C targeted therapy have benefited from leveraging combination approaches. Here, we compare the anti-tumor response induced by the SOS1-KRAS interaction inhibitor, BI-3406, combined with a KRASG12C inhibitor (KRASG12C i) to those induced by KRASG12C i alone or combined with SHP2 or EGFR inhibitors. In lung cancer and colorectal cancer (CRC) models, BI-3406 plus KRASG12C i induces an anti-tumor response stronger than that observed with KRASG12C i alone and comparable to those by the other combinations. This enhanced anti-tumor response is associated with a stronger and extended suppression of RAS-MAPK signaling. Importantly, BI-3406 plus KRASG12C i treatment delays the emergence of acquired adagrasib resistance in both CRC and lung cancer models and is associated with re-establishment of anti-proliferative activity in KRASG12C i-resistant CRC models. Our findings position KRASG12C plus SOS1 inhibition therapy as a promising strategy for treating both KRASG12C -mutated tumors as well as for addressing acquired resistance to KRASG12C i., Competing Interests: Competing Interests V. Thatikonda, S. Jurado, K. Kostyrko, K. Bosch, D. Gerlach, M. Gmachl, S. Lieb, A. Jeschko, P. A. Jaeger, S. Strauss, F. Trapani, M. Pearson, I. Waizenegger, M. P. Petronczki, N. Kraut and M. H. Hofmann report grants from the Austrian Research Promotion Agency (FFG), receive personal fees from Boehringer Ingelheim (full-time employee) during the conduct of the study. M.H. Hofmann and M. Gmachl have been listed as inventor on patent applications for SOS1 inhibitors. A. Sorokin, S. Kopetz, H. Lu, A. A. Machado, M. Mahendra, E. D. Marszalek, S. Gao, N. Feng, C. A. Bristow, C. P. Vellano, T. P. Heffernan, and J. R. Marszalek report other from Boehringer Ingelheim (sponsored research) during the conduct of the study and this work was performed under a sponsored research collaboration between MD Anderson and Boehringer Ingelheim, for which the latter provided funding support. S. Kopetz has ownership interest in Lutris, Iylon, Frontier Medicines, Xilis, Navire and is a consultant for Genentech, EMD Serono, Merck, Holy Stone Healthcare, Novartis, Lilly, Boehringer Ingelheim, AstraZeneca/MedImmune, Bayer Health, Redx Pharma, Ipsen, HalioDx, Lutris, Jacobio, Pfizer, Repare Therapeutics, Inivata, GlaxoSmithKline, Jazz Pharmaceuticals, Iylon, Xilis, Abbvie, Amal Therapeutics, Gilead Sciences, Mirati Therapeutics, Flame Biosciences, Servier, Carina Biotech, Bicara Therapeutics, Endeavor BioMedicines, Numab, Johnson & Johnson/Janssen, Genomic Health, Frontier Medicines, Replimune, Taiho Pharmaceutical, Cardiff Oncology, Ono Pharmaceutical, Bristol-Myers Squibb-Medarex, Amgen, Tempus, Foundation Medicine, Harbinger Oncology, Inc, Takeda, CureTeq, Zentalis, Black Stone Therapeutics, NeoGenomics Laboratories, Accademia Nazionale Di Medicina, and receive research funding from Sanofi, Biocartis, Guardant Health, Array BioPharma, Genentech/Roche, EMD Serono, MedImmune, Novartis, Amgen, Lilly, Daiichi Sankyo. T. P. Heffernan receives advisory fees from Cullgen Inc. and Roivant Discovery.- Published
- 2023
- Full Text
- View/download PDF
8. Comparative Pharmacology of a Bis-Pivaloyloxymethyl Phosphonate Prodrug Inhibitor of Enolase after Oral and Parenteral Administration.
- Author
-
Yan VC, Barekatain Y, Lin YH, Satani N, Hammoudi N, Arthur K, Georgiou DK, Jiang Y, Sun Y, Marszalek JR, Millward SW, and Muller FL
- Abstract
Metabolically labile prodrugs can experience stark differences in catabolism incurred by the chosen route of administration. This is especially true for phosph(on)ate prodrugs, in which successive promoiety removal transforms a lipophilic molecule into increasingly polar compounds. We previously described a phosphonate inhibitor of enolase (HEX) and its bis-pivaloyloxymethyl ester prodrug (POMHEX) capable of eliciting strong tumor regression in a murine model of enolase 1 ( ENO1 )-deleted glioblastoma following parenteral administration. Here, we characterize the pharmacokinetics and pharmacodynamics of these enolase inhibitors in vitro and in vivo after oral and parenteral administration. In support of the historical function of lipophilic prodrugs, the bis-POM prodrug significantly improves cell permeability of and rapid hydrolysis to the parent phosphonate, resulting in rapid intracellular loading of peripheral blood mononuclear cells in vitro and in vivo . We observe the influence of intracellular trapping in vivo on divergent pharmacokinetic profiles of POMHEX and its metabolites after oral and parenteral administration. This is a clear demonstration of the tissue reservoir effect hypothesized to explain phosph(on)ate prodrug pharmacokinetics but has heretofore not been explicitly demonstrated., Competing Interests: The authors declare the following competing financial interest(s): F.L.M., V.C.Y., E.S.B., K.L.Y., and C.-D.P., are inventors on a patent describing compounds included in this work (WO/2020/154742). V.C.Y., C.-D.P., and F.L.M. are inventors on a patent describing methods of preparation for compounds included in this work (US 63/004,063). F.L.M., F.P., B.C., Y.-H.L., and N.S., are inventors on a patent describing the concept of targeting ENO1-deleted cancers with inhibitors of ENO2 (US 10,363,261). F.L.M. is an inventor on a separate patent describing the concept of targeting ENO1-deleted tumors with inhibitors of ENO2 (US 9,452,182 B2)., (© 2023 American Chemical Society.)
- Published
- 2023
- Full Text
- View/download PDF
9. Subtype and Site Specific-Induced Metabolic Vulnerabilities in Prostate Cancer.
- Author
-
Mossa F, Robesti D, Sumankalai R, Corey E, Titus M, Kang Y, Zhang J, Briganti A, Montorsi F, Vellano CP, Marszalek JR, Frigo DE, Logothetis CJ, Gujral TS, and Dondossola E
- Subjects
- Male, Humans, Proteomics, Prostate pathology, Glycolysis, Oxidative Phosphorylation, Cell Line, Tumor, Tumor Microenvironment, Prostatic Neoplasms metabolism, Prostatic Neoplasms, Castration-Resistant metabolism
- Abstract
Aberrant metabolic functions play a crucial role in prostate cancer progression and lethality. Currently, limited knowledge is available on subtype-specific metabolic features and their implications for treatment. We therefore investigated the metabolic determinants of the two major subtypes of castration-resistant prostate cancer [androgen receptor-expressing prostate cancer (ARPC) and aggressive variant prostate cancer (AVPC)]. Transcriptomic analyses revealed enrichment of gene sets involved in oxidative phosphorylation (OXPHOS) in ARPC tumor samples compared with AVPC. Unbiased screening of metabolic signaling pathways in patient-derived xenograft models by proteomic analyses further supported an enrichment of OXPHOS in ARPC compared with AVPC, and a skewing toward glycolysis by AVPC. In vitro, ARPC C4-2B cells depended on aerobic respiration, while AVPC PC3 cells relied more heavily on glycolysis, as further confirmed by pharmacologic interference using IACS-10759, a clinical-grade inhibitor of OXPHOS. In vivo studies confirmed IACS-10759's inhibitory effects in subcutaneous and bone-localized C4-2B tumors, and no effect in subcutaneous PC3 tumors. Unexpectedly, IACS-10759 inhibited PC3 tumor growth in bone, indicating microenvironment-induced metabolic reprogramming. These results suggest that castration-resistant ARPC and AVPC exhibit different metabolic dependencies, which can further undergo metabolic reprogramming in bone., Implications: These vulnerabilities may be exploited with mechanistically novel treatments, such as those targeting OXPHOS alone or possibly in combination with existing therapies. In addition, our findings underscore the impact of the tumor microenvironment in reprogramming prostate cancer metabolism., (©2022 American Association for Cancer Research.)
- Published
- 2023
- Full Text
- View/download PDF
10. Complex I inhibitor of oxidative phosphorylation in advanced solid tumors and acute myeloid leukemia: phase I trials.
- Author
-
Yap TA, Daver N, Mahendra M, Zhang J, Kamiya-Matsuoka C, Meric-Bernstam F, Kantarjian HM, Ravandi F, Collins ME, Francesco MED, Dumbrava EE, Fu S, Gao S, Gay JP, Gera S, Han J, Hong DS, Jabbour EJ, Ju Z, Karp DD, Lodi A, Molina JR, Baran N, Naing A, Ohanian M, Pant S, Pemmaraju N, Bose P, Piha-Paul SA, Rodon J, Salguero C, Sasaki K, Singh AK, Subbiah V, Tsimberidou AM, Xu QA, Yilmaz M, Zhang Q, Li Y, Bristow CA, Bhattacharjee MB, Tiziani S, Heffernan TP, Vellano CP, Jones P, Heijnen CJ, Kavelaars A, Marszalek JR, and Konopleva M
- Subjects
- Animals, Mice, Histone Deacetylase Inhibitors therapeutic use, Oxidative Phosphorylation, Humans, Antineoplastic Agents adverse effects, Leukemia, Myeloid, Acute drug therapy, Leukemia, Myeloid, Acute pathology, Neoplasms pathology
- Abstract
Although targeting oxidative phosphorylation (OXPHOS) is a rational anticancer strategy, clinical benefit with OXPHOS inhibitors has yet to be achieved. Here we advanced IACS-010759, a highly potent and selective small-molecule complex I inhibitor, into two dose-escalation phase I trials in patients with relapsed/refractory acute myeloid leukemia (NCT02882321, n = 17) and advanced solid tumors (NCT03291938, n = 23). The primary endpoints were safety, tolerability, maximum tolerated dose and recommended phase 2 dose (RP2D) of IACS-010759. The PK, PD, and preliminary antitumor activities of IACS-010759 in patients were also evaluated as secondary endpoints in both clinical trials. IACS-010759 had a narrow therapeutic index with emergent dose-limiting toxicities, including elevated blood lactate and neurotoxicity, which obstructed efforts to maintain target exposure. Consequently no RP2D was established, only modest target inhibition and limited antitumor activity were observed at tolerated doses, and both trials were discontinued. Reverse translational studies in mice demonstrated that IACS-010759 induced behavioral and physiological changes indicative of peripheral neuropathy, which were minimized with the coadministration of a histone deacetylase 6 inhibitor. Additional studies are needed to elucidate the association between OXPHOS inhibition and neurotoxicity, and caution is warranted in the continued development of complex I inhibitors as antitumor agents., (© 2022. The Author(s), under exclusive licence to Springer Nature America, Inc.)
- Published
- 2023
- Full Text
- View/download PDF
11. Author Correction: Androgen receptor blockade promotes response to BRAF/MEK-targeted therapy.
- Author
-
Vellano CP, White MG, Andrews MC, Chelvanambi M, Witt RG, Daniele JR, Titus M, McQuade JL, Conforti F, Burton EM, Lastrapes MJ, Ologun G, Cogdill AP, Morad G, Prieto P, Lazar AJ, Chu Y, Han G, Khan MAW, Helmink B, Davies MA, Amaria RN, Kovacs JJ, Woodman SE, Patel S, Hwu P, Peoples M, Lee JE, Cooper ZA, Zhu H, Gao G, Banerjee H, Lau M, Gershenwald JE, Lucci A, Keung EZ, Ross MI, Pala L, Pagan E, Segura RL, Liu Q, Borthwick MS, Lau E, Yates MS, Westin SN, Wani K, Tetzlaff MT, Haydu LE, Mahendra M, Ma X, Logothetis C, Kulstad Z, Johnson S, Hudgens CW, Feng N, Federico L, Long GV, Futreal PA, Arur S, Tawbi HA, Moran AE, Wang L, Heffernan TP, Marszalek JR, and Wargo JA
- Published
- 2023
- Full Text
- View/download PDF
12. Simultaneous targeting of glycolysis and oxidative phosphorylation as a therapeutic strategy to treat diffuse large B-cell lymphoma.
- Author
-
Noble RA, Thomas H, Zhao Y, Herendi L, Howarth R, Dragoni I, Keun HC, Vellano CP, Marszalek JR, and Wedge SR
- Subjects
- Animals, Apoptosis, Cell Line, Tumor, Glycolysis, Humans, Mice, Monocarboxylic Acid Transporters, Oxidative Phosphorylation, Lymphoma, Large B-Cell, Diffuse pathology, Symporters metabolism
- Abstract
Background: We evaluated the therapeutic potential of combining the monocarboxylate transporter 1 (MCT1) inhibitor AZD3965 with the mitochondrial respiratory Complex I inhibitor IACS-010759, for the treatment of diffuse large B-cell lymphoma (DLBCL), a potential clinically actionable strategy to target tumour metabolism., Methods: AZD3965 and IACS-010759 sensitivity were determined in DLBCL cell lines and tumour xenograft models. Lactate concentrations, oxygen consumption rate and metabolomics were examined as mechanistic endpoints. In vivo plasma concentrations of IACS-010759 in mice were determined by LC-MS to select a dose that reflected clinically attainable concentrations., Results: In vitro, the combination of AZD3965 and IACS-010759 is synergistic and induces DLBCL cell death, whereas monotherapy treatments induce a cytostatic response. Significant anti-tumour activity was evident in Toledo and Farage models when the two inhibitors were administered concurrently despite limited or no effect on the growth of DLBCL xenografts as monotherapies., Conclusions: This is the first study to examine a combination of two distinct approaches to targeting tumour metabolism in DLBCL xenografts. Whilst nanomolar concentrations of either AZD3965 or IACS-010759 monotherapy demonstrate anti-proliferative activity against DLBCL cell lines in vitro, appreciable clinical activity in DLBCL patients may only be realised through their combined use., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
13. Androgen receptor blockade promotes response to BRAF/MEK-targeted therapy.
- Author
-
Vellano CP, White MG, Andrews MC, Chelvanambi M, Witt RG, Daniele JR, Titus M, McQuade JL, Conforti F, Burton EM, Lastrapes MJ, Ologun G, Cogdill AP, Morad G, Prieto P, Lazar AJ, Chu Y, Han G, Khan MAW, Helmink B, Davies MA, Amaria RN, Kovacs JJ, Woodman SE, Patel S, Hwu P, Peoples M, Lee JE, Cooper ZA, Zhu H, Gao G, Banerjee H, Lau M, Gershenwald JE, Lucci A, Keung EZ, Ross MI, Pala L, Pagan E, Segura RL, Liu Q, Borthwick MS, Lau E, Yates MS, Westin SN, Wani K, Tetzlaff MT, Haydu LE, Mahendra M, Ma X, Logothetis C, Kulstad Z, Johnson S, Hudgens CW, Feng N, Federico L, Long GV, Futreal PA, Arur S, Tawbi HA, Moran AE, Wang L, Heffernan TP, Marszalek JR, and Wargo JA
- Subjects
- Animals, Antineoplastic Combined Chemotherapy Protocols adverse effects, Female, Humans, Male, Mice, Protein Kinase Inhibitors therapeutic use, Skin Neoplasms drug therapy, Skin Neoplasms pathology, Survival Analysis, Androgen Receptor Antagonists, Melanoma drug therapy, Melanoma pathology, Mitogen-Activated Protein Kinase Kinases antagonists & inhibitors, Molecular Targeted Therapy, Proto-Oncogene Proteins B-raf antagonists & inhibitors, Receptors, Androgen metabolism
- Abstract
Treatment with therapy targeting BRAF and MEK (BRAF/MEK) has revolutionized care in melanoma and other cancers; however, therapeutic resistance is common and innovative treatment strategies are needed
1,2 . Here we studied a group of patients with melanoma who were treated with neoadjuvant BRAF/MEK-targeted therapy ( NCT02231775 , n = 51) and observed significantly higher rates of major pathological response (MPR; ≤10% viable tumour at resection) and improved recurrence-free survival (RFS) in female versus male patients (MPR, 66% versus 14%, P = 0.001; RFS, 64% versus 32% at 2 years, P = 0.021). The findings were validated in several additional cohorts2-4 of patients with unresectable metastatic melanoma who were treated with BRAF- and/or MEK-targeted therapy (n = 664 patients in total), demonstrating improved progression-free survival and overall survival in female versus male patients in several of these studies. Studies in preclinical models demonstrated significantly impaired anti-tumour activity in male versus female mice after BRAF/MEK-targeted therapy (P = 0.006), with significantly higher expression of the androgen receptor in tumours of male and female BRAF/MEK-treated mice versus the control (P = 0.0006 and P = 0.0025). Pharmacological inhibition of androgen receptor signalling improved responses to BRAF/MEK-targeted therapy in male and female mice (P = 0.018 and P = 0.003), whereas induction of androgen receptor signalling (through testosterone administration) was associated with a significantly impaired response to BRAF/MEK-targeted therapy in male and female patients (P = 0.021 and P < 0.0001). Together, these results have important implications for therapy., (© 2022. The Author(s), under exclusive licence to Springer Nature Limited.)- Published
- 2022
- Full Text
- View/download PDF
14. Inhibition of mitochondrial complex I reverses NOTCH1-driven metabolic reprogramming in T-cell acute lymphoblastic leukemia.
- Author
-
Baran N, Lodi A, Dhungana Y, Herbrich S, Collins M, Sweeney S, Pandey R, Skwarska A, Patel S, Tremblay M, Kuruvilla VM, Cavazos A, Kaplan M, Warmoes MO, Veiga DT, Furudate K, Rojas-Sutterin S, Haman A, Gareau Y, Marinier A, Ma H, Harutyunyan K, Daher M, Garcia LM, Al-Atrash G, Piya S, Ruvolo V, Yang W, Shanmugavelandy SS, Feng N, Gay J, Du D, Yang JJ, Hoff FW, Kaminski M, Tomczak K, Eric Davis R, Herranz D, Ferrando A, Jabbour EJ, Emilia Di Francesco M, Teachey DT, Horton TM, Kornblau S, Rezvani K, Sauvageau G, Gagea M, Andreeff M, Takahashi K, Marszalek JR, Lorenzi PL, Yu J, Tiziani S, Hoang T, and Konopleva M
- Subjects
- Animals, Electron Transport Complex I genetics, Electron Transport Complex I metabolism, Glutamine metabolism, Mice, Receptor, Notch1 metabolism, T-Lymphocytes metabolism, Precursor T-Cell Lymphoblastic Leukemia-Lymphoma drug therapy, Precursor T-Cell Lymphoblastic Leukemia-Lymphoma genetics, Precursor T-Cell Lymphoblastic Leukemia-Lymphoma metabolism
- Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is commonly driven by activating mutations in NOTCH1 that facilitate glutamine oxidation. Here we identify oxidative phosphorylation (OxPhos) as a critical pathway for leukemia cell survival and demonstrate a direct relationship between NOTCH1, elevated OxPhos gene expression, and acquired chemoresistance in pre-leukemic and leukemic models. Disrupting OxPhos with IACS-010759, an inhibitor of mitochondrial complex I, causes potent growth inhibition through induction of metabolic shut-down and redox imbalance in NOTCH1-mutated and less so in NOTCH1-wt T-ALL cells. Mechanistically, inhibition of OxPhos induces a metabolic reprogramming into glutaminolysis. We show that pharmacological blockade of OxPhos combined with inducible knock-down of glutaminase, the key glutamine enzyme, confers synthetic lethality in mice harboring NOTCH1-mutated T-ALL. We leverage on this synthetic lethal interaction to demonstrate that IACS-010759 in combination with chemotherapy containing L-asparaginase, an enzyme that uncovers the glutamine dependency of leukemic cells, causes reduced glutaminolysis and profound tumor reduction in pre-clinical models of human T-ALL. In summary, this metabolic dependency of T-ALL on OxPhos provides a rational therapeutic target., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
15. PGC1α/β Expression Predicts Therapeutic Response to Oxidative Phosphorylation Inhibition in Ovarian Cancer.
- Author
-
Ghilardi C, Moreira-Barbosa C, Brunelli L, Ostano P, Panini N, Lupi M, Anastasia A, Fiordaliso F, Salio M, Formenti L, Russo M, Arrigoni E, Chiaradonna F, Chiorino G, Draetta G, Marszalek JR, Vellano CP, Pastorelli R, Bani M, Decio A, and Giavazzi R
- Subjects
- Animals, Female, Humans, Mice, Mitochondria metabolism, Oxidation-Reduction, Ovarian Neoplasms drug therapy, Ovarian Neoplasms genetics, Ovarian Neoplasms metabolism, Oxidative Phosphorylation, Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha metabolism, RNA-Binding Proteins metabolism
- Abstract
Ovarian cancer is the deadliest gynecologic cancer, and novel therapeutic options are crucial to improve overall survival. Here we provide evidence that impairment of oxidative phosphorylation (OXPHOS) can help control ovarian cancer progression, and this benefit correlates with expression of the two mitochondrial master regulators PGC1α and PGC1β. In orthotopic patient-derived ovarian cancer xenografts (OC-PDX), concomitant high expression of PGC1α and PGC1β (PGC1α/β) fostered a unique transcriptional signature, leading to increased mitochondrial abundance, enhanced tricarboxylic acid cycling, and elevated cellular respiration that ultimately conferred vulnerability to OXPHOS inhibition. Treatment with the respiratory chain complex I inhibitor IACS-010759 caused mitochondrial swelling and ATP depletion that consequently delayed malignant progression and prolonged the lifespan of high PGC1α/β-expressing OC-PDX-bearing mice. Conversely, low PGC1α/β OC-PDXs were not affected by IACS-010759, thus pinpointing a selective antitumor effect of OXPHOS inhibition. The clinical relevance of these findings was substantiated by analysis of ovarian cancer patient datasets, which showed that 25% of all cases displayed high PGC1α/β expression along with an activated mitochondrial gene program. This study endorses the use of OXPHOS inhibitors to manage ovarian cancer and identifies the high expression of both PGC1α and β as biomarkers to refine the selection of patients likely to benefit most from this therapy., Significance: OXPHOS inhibition in ovarian cancer can exploit the metabolic vulnerabilities conferred by high PGC1α/β expression and offers an effective approach to manage patients on the basis of PGC1α/β expression., (©2022 The Authors; Published by the American Association for Cancer Research.)
- Published
- 2022
- Full Text
- View/download PDF
16. Targeting mitochondrial respiration and the BCL2 family in high-grade MYC-associated B-cell lymphoma.
- Author
-
Donati G, Ravà M, Filipuzzi M, Nicoli P, Cassina L, Verrecchia A, Doni M, Rodighiero S, Parodi F, Boletta A, Vellano CP, Marszalek JR, Draetta GF, and Amati B
- Subjects
- Humans, Oncogenes, Proto-Oncogene Proteins c-bcl-2 metabolism, Respiration, Lymphoma, Large B-Cell, Diffuse drug therapy, Lymphoma, Large B-Cell, Diffuse genetics, Proto-Oncogene Proteins c-myc genetics, Proto-Oncogene Proteins c-myc metabolism
- Abstract
Multiple molecular features, such as activation of specific oncogenes (e.g., MYC, BCL2) or a variety of gene expression signatures, have been associated with disease course in diffuse large B-cell lymphoma (DLBCL), although their relationships and implications for targeted therapy remain to be fully unraveled. We report that MYC activity is closely correlated with-and most likely a driver of-gene signatures related to oxidative phosphorylation (OxPhos) in DLBCL, pointing to OxPhos enzymes, in particular mitochondrial electron transport chain (ETC) complexes, as possible therapeutic targets in high-grade MYC-associated lymphomas. In our experiments, indeed, MYC sensitized B cells to the ETC complex I inhibitor IACS-010759. Mechanistically, IACS-010759 triggered the integrated stress response (ISR) pathway, driven by the transcription factors ATF4 and CHOP, which engaged the intrinsic apoptosis pathway and lowered the apoptotic threshold in MYC-overexpressing cells. In line with these findings, the BCL2-inhibitory compound venetoclax synergized with IACS-010759 against double-hit lymphoma (DHL), a high-grade malignancy with concurrent activation of MYC and BCL2. In BCL2-negative lymphoma cells, instead, killing by IACS-010759 was potentiated by the Mcl-1 inhibitor S63845. Thus, combining an OxPhos inhibitor with select BH3-mimetic drugs provides a novel therapeutic principle against aggressive, MYC-associated DLBCL variants., (© 2021 The Authors. Molecular Oncology published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.)
- Published
- 2022
- Full Text
- View/download PDF
17. Phase Ib Dose Expansion and Translational Analyses of Olaparib in Combination with Capivasertib in Recurrent Endometrial, Triple-Negative Breast, and Ovarian Cancer.
- Author
-
Westin SN, Labrie M, Litton JK, Blucher A, Fang Y, Vellano CP, Marszalek JR, Feng N, Ma X, Creason A, Fellman B, Yuan Y, Lee S, Kim TB, Liu J, Chelariu-Raicu A, Chen TH, Kabil N, Soliman PT, Frumovitz M, Schmeler KM, Jazaeri A, Lu KH, Murthy R, Meyer LA, Sun CC, Sood AK, Coleman RL, and Mills GB
- Subjects
- Antineoplastic Combined Chemotherapy Protocols adverse effects, Female, Humans, Phthalazines, Piperazines, Pyrimidines, Pyrroles, Ovarian Neoplasms drug therapy, Ovarian Neoplasms genetics, Ovarian Neoplasms pathology, Triple Negative Breast Neoplasms drug therapy
- Abstract
Purpose: On the basis of strong preclinical rationale, we sought to confirm recommended phase II dose (RP2D) for olaparib, a PARP inhibitor, combined with the AKT inhibitor capivasertib and assess molecular markers of response and resistance., Patients and Methods: We performed a safety lead-in followed by expansion in endometrial, triple-negative breast, ovarian, fallopian tube, or peritoneal cancer. Olaparib 300 mg orally twice daily and capivasertib orally twice daily on a 4-day on 3-day off schedule was evaluated. Two dose levels (DL) of capivasertib were planned: 400 mg (DL1) and 320 mg (DL-1). Patients underwent biopsies at baseline and 28 days., Results: A total of 38 patients were enrolled. Seven (18%) had germline BRCA1/2 mutations. The first 2 patients on DL1 experienced dose-limiting toxicities (DLT) of diarrhea and vomiting. No DLTs were observed on DL-1 ( n = 6); therefore, DL1 was reexplored ( n = 6) with no DLTs, confirming DL1 as RP2D. Most common treatment-related grade 3/4 adverse events were anemia (23.7%) and leukopenia (10.5%). Of 32 evaluable subjects, 6 (19%) had partial response (PR); PR rate was 44.4% in endometrial cancer. Seven (22%) additional patients had stable disease greater than 4 months. Tumor analysis demonstrated strong correlations between response and immune activity, cell-cycle alterations, and DNA damage response. Therapy resistance was associated with receptor tyrosine kinase and RAS-MAPK pathway activity, metabolism, and epigenetics., Conclusions: The combination of olaparib and capivasertib is associated to no serious adverse events and demonstrates durable activity in ovarian, endometrial, and breast cancers, with promising responses in endometrial cancer. Importantly, tumor samples acquired pre- and on-therapy can help predict patient benefit., (©2021 American Association for Cancer Research.)
- Published
- 2021
- Full Text
- View/download PDF
18. Short-term treatment with multi-drug regimens combining BRAF/MEK-targeted therapy and immunotherapy results in durable responses in Braf -mutated melanoma.
- Author
-
White MG, Szczepaniak Sloane R, Witt RG, Reuben A, Gaudreau PO, Andrews MC, Feng N, Johnson S, Class CA, Bristow C, Wani K, Hudgens C, Nezi L, Manzo T, De Macedo MP, Hu J, Davis R, Jiang H, Prieto P, Burton E, Hwu P, Tawbi H, Gershenwald J, Lazar AJ, Tetzlaff MT, Overwijk W, Woodman SE, Cooper ZA, Marszalek JR, Davies MA, Heffernan TP, and Wargo JA
- Subjects
- Animals, Humans, Immunotherapy, Memory T Cells, Mice, Mitogen-Activated Protein Kinase Kinases, Proto-Oncogene Proteins B-raf genetics, Melanoma drug therapy, Melanoma genetics, Pharmaceutical Preparations
- Abstract
Targeted and immunotherapy regimens have revolutionized the treatment of advanced melanoma patients. Despite this, only a subset of patients respond durably. Recently, combination strategies of BRAF/MEK inhibitors with immune checkpoint inhibitor monotherapy (α-CTLA-4 or α-PD-1) have increased the rate of durable responses. Based on evidence from our group and others, these therapies appear synergistic, but at the cost of significant toxicity. We know from other treatment paradigms (e.g. hematologic malignancies) that combination strategies with multi-drug regimens (>4 drugs) are associated with more durable disease control. To better understand the mechanism of these improved outcomes, and to identify and prioritize new strategies for testing, we studied several multi-drug regimens combining BRAF/MEK targeted therapy and immunotherapy combinations in a Braf -mutant murine melanoma model ( Braf
V600E /Pten-/- ). Short-term treatment with α-PD-1 and α-CTLA-4 monotherapies were relatively ineffective, while treatment with α-OX40 demonstrated some efficacy [17% of mice with no evidence of disease, (NED), at 60-days]. Outcomes were improved in the combined α-OX40/α-PD-1 group (42% NED). Short-term treatment with quadruplet therapy of immunotherapy doublets in combination with targeted therapy [dabrafenib and trametinib (DT)] was associated with excellent tumor control, with 100% of mice having NED after combined DT/α-CTLA-4/α-PD-1 or DT/α-OX40/α-PD-1. Notably, tumors from mice in these groups demonstrated a high proportion of effector memory T cells, and immunologic memory was maintained with tumor re-challenge. Together, these data provide important evidence regarding the potential utility of multi-drug therapy in treating advanced melanoma and suggest these models can be used to guide and prioritize combinatorial treatment strategies., Competing Interests: MCA reports advisory board participation and honoraria from Merck Sharp and Dohme, outside the submitted work. MAD has been a consultant to Roche/Genentech, Array, Novartis, BMS, GlaxoSmithKline (GSK), Sanofi-Aventis, Vaccinex and Apexigen, and he has been the PI of research grants to UT MD Anderson by Roche/Genentech, GSK, Sanofi-Aventis, Merck, Myriad, and Oncothyreon. JEG reports advisory board participation with Merck, Regeneron, BMS, Novartis, and Syndax. AJL reports personal fees from BMS, Novartis, Genentech/Roche, and Merck; personal fees and non-financial support from ArcherDX and Beta-Cat; grants and non-financial support from Medimmune/AstraZeneca and Sanofi; grants, personal fees and non-financial support from Janssen, all outside the submitted work. MTT reports personal fees from Myriad Genetics, Seattle Genetics and Novartis, all outside the submitted work. ZAC is currently an employee of AstraZeneca outside the submitted work. JAW reports speaker fees from Imedex, Dava Oncology, Omniprex, Illumina, Gilead, MedImmune and BMS; consultant/advisor roles or advisory board membership for Roche-Genentech, Novartis, AstraZeneca, GSK, BMS, Merck/MSD, Biothera Pharma, and Microbiome DX; and receives clinical trial support from GSK, Roche-Genentech, BMS, and Novartis, all outside the current work. The remaining authors declare no competing interests., (© 2021 The Author(s). Published with license by Taylor & Francis Group, LLC.)- Published
- 2021
- Full Text
- View/download PDF
19. Oxidative Phosphorylation Is a Metabolic Vulnerability in Chemotherapy-Resistant Triple-Negative Breast Cancer.
- Author
-
Evans KW, Yuca E, Scott SS, Zhao M, Paez Arango N, Cruz Pico CX, Saridogan T, Shariati M, Class CA, Bristow CA, Vellano CP, Zheng X, Gonzalez-Angulo AM, Su X, Tapia C, Chen K, Akcakanat A, Lim B, Tripathy D, Yap TA, Francesco MED, Draetta GF, Jones P, Heffernan TP, Marszalek JR, and Meric-Bernstam F
- Subjects
- Animals, Apoptosis, Cell Proliferation, Drug Therapy, Combination, Female, Gene Expression Profiling, Genomics, Humans, Mice, Mice, Nude, Neoplasm Recurrence, Local metabolism, Neoplasm Recurrence, Local pathology, Prognosis, Triple Negative Breast Neoplasms metabolism, Triple Negative Breast Neoplasms pathology, Tumor Cells, Cultured, Xenograft Model Antitumor Assays, Anilides pharmacology, Drug Resistance, Neoplasm, Metabolome, Neoplasm Recurrence, Local drug therapy, Oxadiazoles pharmacology, Oxidative Phosphorylation drug effects, Piperidines pharmacology, Pyridines pharmacology, Triple Negative Breast Neoplasms drug therapy
- Abstract
Oxidative phosphorylation (OXPHOS) is an active metabolic pathway in many cancers. RNA from pretreatment biopsies from patients with triple-negative breast cancer (TNBC) who received neoadjuvant chemotherapy demonstrated that the top canonical pathway associated with worse outcome was higher expression of OXPHOS signature. IACS-10759, a novel inhibitor of OXPHOS, stabilized growth in multiple TNBC patient-derived xenografts (PDX). On gene expression profiling, all of the sensitive models displayed a basal-like 1 TNBC subtype. Expression of mitochondrial genes was significantly higher in sensitive PDXs. An in vivo functional genomics screen to identify synthetic lethal targets in tumors treated with IACS-10759 found several potential targets, including CDK4. We validated the antitumor efficacy of the combination of palbociclib, a CDK4/6 inhibitor, and IACS-10759 in vitro and in vivo . In addition, the combination of IACS-10759 and multikinase inhibitor cabozantinib had improved antitumor efficacy. Taken together, our data suggest that OXPHOS is a metabolic vulnerability in TNBC that may be leveraged with novel therapeutics in combination regimens. SIGNIFICANCE: These findings suggest that triple-negative breast cancer is highly reliant on OXPHOS and that inhibiting OXPHOS may be a novel approach to enhance efficacy of several targeted therapies., (©2021 The Authors; Published by the American Association for Cancer Research.)
- Published
- 2021
- Full Text
- View/download PDF
20. Discovery of 6-[(3 S ,4 S )-4-Amino-3-methyl-2-oxa-8-azaspiro[4.5]decan-8-yl]-3-(2,3-dichlorophenyl)-2-methyl-3,4-dihydropyrimidin-4-one (IACS-15414), a Potent and Orally Bioavailable SHP2 Inhibitor.
- Author
-
Czako B, Sun Y, McAfoos T, Cross JB, Leonard PG, Burke JP, Carroll CL, Feng N, Harris AL, Jiang Y, Kang Z, Kovacs JJ, Mandal P, Meyers BA, Mseeh F, Parker CA, Yu SS, Williams CC, Wu Q, Di Francesco ME, Draetta G, Heffernan T, Marszalek JR, Kohl NE, and Jones P
- Subjects
- Administration, Oral, Animals, Antineoplastic Agents administration & dosage, Antineoplastic Agents chemistry, Cell Line, Tumor, Cell Proliferation drug effects, Dose-Response Relationship, Drug, Drug Screening Assays, Antitumor, Enzyme Inhibitors administration & dosage, Enzyme Inhibitors chemistry, Humans, Mice, Molecular Structure, Neoplasms, Experimental drug therapy, Neoplasms, Experimental metabolism, Neoplasms, Experimental pathology, Protein Tyrosine Phosphatase, Non-Receptor Type 11 metabolism, Structure-Activity Relationship, Antineoplastic Agents pharmacology, Drug Discovery, Enzyme Inhibitors pharmacology, Protein Tyrosine Phosphatase, Non-Receptor Type 11 antagonists & inhibitors
- Abstract
Src homology 2 (SH2) domain-containing phosphatase 2 (SHP2) plays a role in receptor tyrosine kinase (RTK), neurofibromin-1 (NF-1), and Kirsten rat sarcoma virus (KRAS) mutant-driven cancers, as well as in RTK-mediated resistance, making the identification of small-molecule therapeutics that interfere with its function of high interest. Our quest to identify potent, orally bioavailable, and safe SHP2 inhibitors led to the discovery of a promising series of pyrazolopyrimidinones that displayed excellent potency but had a suboptimal in vivo pharmacokinetic (PK) profile. Hypothesis-driven scaffold optimization led us to a series of pyrazolopyrazines with excellent PK properties across species but a narrow human Ether-à-go-go-Related Gene (hERG) window. Subsequent optimization of properties led to the discovery of the pyrimidinone series, in which multiple members possessed excellent potency, optimal in vivo PK across species, and no off-target activities including no hERG liability up to 100 μM. Importantly, compound 30 (IACS-15414) potently suppressed the mitogen-activated protein kinase (MAPK) pathway signaling and tumor growth in RTK-activated and KRAS
mut xenograft models in vivo.- Published
- 2021
- Full Text
- View/download PDF
21. Exogenous mitochondrial transfer and endogenous mitochondrial fission facilitate AML resistance to OxPhos inhibition.
- Author
-
Saito K, Zhang Q, Yang H, Yamatani K, Ai T, Ruvolo V, Baran N, Cai T, Ma H, Jacamo R, Kuruvilla V, Imoto J, Kinjo S, Ikeo K, Moriya K, Suzuki K, Miida T, Kim YM, Vellano CP, Andreeff M, Marszalek JR, Tabe Y, and Konopleva M
- Subjects
- Humans, Mitochondria metabolism, Mitochondrial Dynamics, Oxadiazoles, Piperidines, Tumor Microenvironment, Leukemia, Myeloid, Acute drug therapy, Leukemia, Myeloid, Acute metabolism, Oxidative Phosphorylation
- Abstract
Acute myeloid leukemia (AML) cells are highly dependent on oxidative phosphorylation (OxPhos) for survival, and they continually adapt to fluctuations in nutrient and oxygen availability in the bone marrow (BM) microenvironment. We investigated how the BM microenvironment affects the response to OxPhos inhibition in AML by using a novel complex I OxPhos inhibitor, IACS-010759. Cellular adhesion, growth, and apoptosis assays, along with measurements of expression of mitochondrial DNA and generation of mitochondrial reactive oxygen species indicated that direct interactions with BM stromal cells triggered compensatory activation of mitochondrial respiration and resistance to OxPhos inhibition in AML cells. Mechanistically, inhibition of OxPhos induced transfer of mitochondria derived from mesenchymal stem cells (MSCs) to AML cells via tunneling nanotubes under direct-contact coculture conditions. Inhibition of OxPhos also induced mitochondrial fission and increased functional mitochondria and mitophagy in AML cells. Mitochondrial fission is known to enhance cell migration, so we used electron microscopy to observe mitochondrial transport to the leading edge of protrusions of AML cells migrating toward MSCs. We further demonstrated that cytarabine, a commonly used antileukemia agent, increased mitochondrial transfer of MSCs to AML cells triggered by OxPhos inhibition. Our findings indicate an important role of exogenous mitochondrial trafficking from BM stromal cells to AML cells as well as endogenous mitochondrial fission and mitophagy in the compensatory adaptation of leukemia cells to energetic stress in the BM microenvironment., (© 2021 by The American Society of Hematology. Licensed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0), permitting only noncommercial, nonderivative use with attribution. All other rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
22. Development and characterization of prototypes for in vitro and in vivo mouse models of ibrutinib-resistant CLL.
- Author
-
Aslan B, Kismali G, Chen LS, Iles LR, Mahendra M, Peoples M, Gagea M, Fowlkes NW, Zheng X, Wang J, Vellano CP, Marszalek JR, Bertilaccio MTS, and Gandhi V
- Subjects
- Adenine analogs & derivatives, Agammaglobulinaemia Tyrosine Kinase, Animals, Humans, Mice, Piperidines, Pyrazoles pharmacology, Pyrimidines pharmacology, Leukemia, Lymphocytic, Chronic, B-Cell drug therapy, Leukemia, Lymphocytic, Chronic, B-Cell genetics
- Abstract
Although ibrutinib improves the overall survival of patients with chronic lymphocytic leukemia (CLL), some patients still develop resistance, most commonly through point mutations affecting cysteine residue 481 (C481) in Bruton's tyrosine kinase (BTKC481S and BTKC481R). To enhance our understanding of the biological impact of these mutations, we established cell lines that overexpress wild-type or mutant BTK in in vitro and in vivo models that mimic ibrutinib-sensitive and -resistant CLL. MEC-1 cell lines stably overexpressing wild-type or mutant BTK were generated. All cell lines coexpressed GFP, were CD19+ and CD23+, and overexpressed BTK. Overexpression of wild-type or mutant BTK resulted in increased signaling, as evidenced by the induction of p-BTK, p-PLCγ2, and p-extracellular signal-related kinase (ERK) levels, the latter further augmented upon IgM stimulation. In all cell lines, cell cycle profiles and levels of BTK expression were similar, but the RNA sequencing and reverse-phase protein array results revealed that the molecular transcript and protein profiles were distinct. To mimic aggressive CLL, we created xenograft mouse models by transplanting the generated cell lines into Rag2-/-γc-/- mice. Spleens, livers, bone marrow, and peripheral blood were collected. All mice developed CLL-like disease with systemic involvement (engraftment efficiency, 100%). We observed splenomegaly, accumulation of leukemic cells in the spleen and liver, and macroscopically evident necrosis. CD19+ cells accumulated in the spleen, bone marrow, and peripheral blood. The overall survival duration was slightly lower in mice expressing mutant BTK. Our cell lines and murine models mimicking ibrutinib-resistant CLL will serve as powerful tools to test reversible BTK inhibitors and novel, non-BTK-targeted therapeutics., (© 2021 by The American Society of Hematology.)
- Published
- 2021
- Full Text
- View/download PDF
23. The Combined Treatment With the FLT3-Inhibitor AC220 and the Complex I Inhibitor IACS-010759 Synergistically Depletes Wt- and FLT3-Mutated Acute Myeloid Leukemia Cells.
- Author
-
Lu X, Han L, Busquets J, Collins M, Lodi A, Marszalek JR, Konopleva M, and Tiziani S
- Abstract
Acute myeloid leukemia (AML) is an aggressive hematologic malignancy with a high mortality rate and relapse risk. Although progress on the genetic and molecular understanding of this disease has been made, the standard of care has changed minimally for the past 40 years and the five-year survival rate remains poor, warranting new treatment strategies. Here, we applied a two-step screening platform consisting of a primary cell viability screening and a secondary metabolomics-based phenotypic screening to find synergistic drug combinations to treat AML. A novel synergy between the oxidative phosphorylation inhibitor IACS-010759 and the FMS-like tyrosine kinase 3 (FLT3) inhibitor AC220 (quizartinib) was discovered in AML and then validated by ATP bioluminescence and apoptosis assays. In-depth stable isotope tracer metabolic flux analysis revealed that IACS-010759 and AC220 synergistically reduced glucose and glutamine enrichment in glycolysis and the TCA cycle, leading to impaired energy production and de novo nucleotide biosynthesis. In summary, we identified a novel drug combination, AC220 and IACS-010759, which synergistically inhibits cell growth in AML cells due to a major disruption of cell metabolism, regardless of FLT3 mutation status., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2021 Lu, Han, Busquets, Collins, Lodi, Marszalek, Konopleva and Tiziani.)
- Published
- 2021
- Full Text
- View/download PDF
24. Discovery of IACS-9779 and IACS-70465 as Potent Inhibitors Targeting Indoleamine 2,3-Dioxygenase 1 (IDO1) Apoenzyme.
- Author
-
Hamilton MM, Mseeh F, McAfoos TJ, Leonard PG, Reyna NJ, Harris AL, Xu A, Han M, Soth MJ, Czako B, Theroff JP, Mandal PK, Burke JP, Virgin-Downey B, Petrocchi A, Pfaffinger D, Rogers NE, Parker CA, Yu SS, Jiang Y, Krapp S, Lammens A, Trevitt G, Tremblay MR, Mikule K, Wilcoxen K, Cross JB, Jones P, Marszalek JR, and Lewis RT
- Subjects
- Dose-Response Relationship, Drug, Enzyme Inhibitors chemical synthesis, Enzyme Inhibitors chemistry, Humans, Indoleamine-Pyrrole 2,3,-Dioxygenase metabolism, Molecular Structure, Structure-Activity Relationship, Drug Discovery, Enzyme Inhibitors pharmacology, Indoleamine-Pyrrole 2,3,-Dioxygenase antagonists & inhibitors
- Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1), a heme-containing enzyme that mediates the rate-limiting step in the metabolism of l-tryptophan to kynurenine, has been widely explored as a potential immunotherapeutic target in oncology. We developed a class of inhibitors with a conformationally constrained bicyclo[3.1.0]hexane core. These potently inhibited IDO1 in a cellular context by binding to the apoenzyme, as elucidated by biochemical characterization and X-ray crystallography. A SKOV3 tumor model was instrumental in differentiating compounds, leading to the identification of IACS-9779 ( 62 ) and IACS-70465 ( 71 ). IACS-70465 has excellent cellular potency, a robust pharmacodynamic response, and in a human whole blood assay was more potent than linrodostat (BMS-986205). IACS-9779 with a predicted human efficacious once daily dose below 1 mg/kg to sustain >90% inhibition of IDO1 displayed an acceptable safety margin in rodent toxicology and dog cardiovascular studies to support advancement into preclinical safety evaluation for human development.
- Published
- 2021
- Full Text
- View/download PDF
25. PRMT1-dependent regulation of RNA metabolism and DNA damage response sustains pancreatic ductal adenocarcinoma.
- Author
-
Giuliani V, Miller MA, Liu CY, Hartono SR, Class CA, Bristow CA, Suzuki E, Sanz LA, Gao G, Gay JP, Feng N, Rose JL, Tomihara H, Daniele JR, Peoples MD, Bardenhagen JP, Geck Do MK, Chang QE, Vangamudi B, Vellano C, Ying H, Deem AK, Do KA, Genovese G, Marszalek JR, Kovacs JJ, Kim M, Fleming JB, Guccione E, Viale A, Maitra A, Emilia Di Francesco M, Yap TA, Jones P, Draetta G, Carugo A, Chedin F, and Heffernan TP
- Subjects
- Animals, Biocatalysis drug effects, Carcinoma, Pancreatic Ductal metabolism, Carcinoma, Pancreatic Ductal prevention & control, Cell Line, Tumor, Cell Proliferation drug effects, Cell Proliferation genetics, Enzyme Inhibitors pharmacology, Female, Humans, Mice, Inbred NOD, Mice, Knockout, Mice, SCID, Pancreatic Neoplasms metabolism, Pancreatic Neoplasms prevention & control, Protein-Arginine N-Methyltransferases metabolism, RNA metabolism, RNA Interference, Repressor Proteins metabolism, Tumor Burden drug effects, Xenograft Model Antitumor Assays methods, Mice, Carcinoma, Pancreatic Ductal genetics, DNA Damage, Pancreatic Neoplasms genetics, Protein-Arginine N-Methyltransferases genetics, RNA genetics, Repressor Proteins genetics
- Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer that has remained clinically challenging to manage. Here we employ an RNAi-based in vivo functional genomics platform to determine epigenetic vulnerabilities across a panel of patient-derived PDAC models. Through this, we identify protein arginine methyltransferase 1 (PRMT1) as a critical dependency required for PDAC maintenance. Genetic and pharmacological studies validate the role of PRMT1 in maintaining PDAC growth. Mechanistically, using proteomic and transcriptomic analyses, we demonstrate that global inhibition of asymmetric arginine methylation impairs RNA metabolism, which includes RNA splicing, alternative polyadenylation, and transcription termination. This triggers a robust downregulation of multiple pathways involved in the DNA damage response, thereby promoting genomic instability and inhibiting tumor growth. Taken together, our data support PRMT1 as a compelling target in PDAC and informs a mechanism-based translational strategy for future therapeutic development.Statement of significancePDAC is a highly lethal cancer with limited therapeutic options. This study identified and characterized PRMT1-dependent regulation of RNA metabolism and coordination of key cellular processes required for PDAC tumor growth, defining a mechanism-based translational hypothesis for PRMT1 inhibitors., (© 2021. The Author(s).)
- Published
- 2021
- Full Text
- View/download PDF
26. Cork-in-bottle mechanism of inhibitor binding to mammalian complex I.
- Author
-
Chung I, Serreli R, Cross JB, Di Francesco ME, Marszalek JR, and Hirst J
- Abstract
Mitochondrial complex I (NADH:ubiquinone oxidoreductase), a major contributor of free energy for oxidative phosphorylation, is increasingly recognized as a promising drug target for ischemia-reperfusion injury, metabolic disorders, and various cancers. Several pharmacologically relevant but structurally unrelated small molecules have been identified as specific complex I inhibitors, but their modes of action remain unclear. Here, we present a 3.0-Å resolution cryo-electron microscopy structure of mammalian complex I inhibited by a derivative of IACS-010759, which is currently in clinical development against cancers reliant on oxidative phosphorylation, revealing its unique cork-in-bottle mechanism of inhibition. We combine structural and kinetic analyses to deconvolute cross-species differences in inhibition and identify the structural motif of a "chain" of aromatic rings as a characteristic that promotes inhibition. Our findings provide insights into the importance of π-stacking residues for inhibitor binding in the long substrate-binding channel in complex I and a guide for future biorational drug design., (Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY).)
- Published
- 2021
- Full Text
- View/download PDF
27. Mitochondrial metabolism supports resistance to IDH mutant inhibitors in acute myeloid leukemia.
- Author
-
Stuani L, Sabatier M, Saland E, Cognet G, Poupin N, Bosc C, Castelli FA, Gales L, Turtoi E, Montersino C, Farge T, Boet E, Broin N, Larrue C, Baran N, Cissé MY, Conti M, Loric S, Kaoma T, Hucteau A, Zavoriti A, Sahal A, Mouchel PL, Gotanègre M, Cassan C, Fernando L, Wang F, Hosseini M, Chu-Van E, Le Cam L, Carroll M, Selak MA, Vey N, Castellano R, Fenaille F, Turtoi A, Cazals G, Bories P, Gibon Y, Nicolay B, Ronseaux S, Marszalek JR, Takahashi K, DiNardo CD, Konopleva M, Pancaldi V, Collette Y, Bellvert F, Jourdan F, Linares LK, Récher C, Portais JC, and Sarry JE
- Subjects
- Acute Disease, Aminopyridines pharmacology, Animals, Cell Line, Tumor, Doxycycline pharmacology, Drug Resistance, Neoplasm drug effects, Enzyme Inhibitors pharmacology, Epigenesis, Genetic drug effects, Glycine analogs & derivatives, Glycine pharmacology, HL-60 Cells, Humans, Isocitrate Dehydrogenase antagonists & inhibitors, Isocitrate Dehydrogenase metabolism, Isoenzymes antagonists & inhibitors, Isoenzymes genetics, Isoenzymes metabolism, Leukemia, Myeloid drug therapy, Leukemia, Myeloid metabolism, Mice, Inbred NOD, Mice, Knockout, Mice, SCID, Mitochondria drug effects, Mitochondria metabolism, Oxadiazoles pharmacology, Oxidative Phosphorylation drug effects, Piperidines pharmacology, Pyridines pharmacology, Triazines pharmacology, Xenograft Model Antitumor Assays methods, Mice, Drug Resistance, Neoplasm genetics, Isocitrate Dehydrogenase genetics, Leukemia, Myeloid genetics, Mitochondria genetics, Mutation
- Abstract
Mutations in IDH induce epigenetic and transcriptional reprogramming, differentiation bias, and susceptibility to mitochondrial inhibitors in cancer cells. Here, we first show that cell lines, PDXs, and patients with acute myeloid leukemia (AML) harboring an IDH mutation displayed an enhanced mitochondrial oxidative metabolism. Along with an increase in TCA cycle intermediates, this AML-specific metabolic behavior mechanistically occurred through the increase in electron transport chain complex I activity, mitochondrial respiration, and methylation-driven CEBPα-induced fatty acid β-oxidation of IDH1 mutant cells. While IDH1 mutant inhibitor reduced 2-HG oncometabolite and CEBPα methylation, it failed to reverse FAO and OxPHOS. These mitochondrial activities were maintained through the inhibition of Akt and enhanced activation of peroxisome proliferator-activated receptor-γ coactivator-1 PGC1α upon IDH1 mutant inhibitor. Accordingly, OxPHOS inhibitors improved anti-AML efficacy of IDH mutant inhibitors in vivo. This work provides a scientific rationale for combinatory mitochondrial-targeted therapies to treat IDH mutant AML patients, especially those unresponsive to or relapsing from IDH mutant inhibitors., Competing Interests: Disclosures: B. Nicolay reported "other" from Agios Pharmaceuticals outside the submitted work and is an employee and shareholder of Agios Pharmaceuticals. J.R. Marszalek reported a patent to IACS-010759 issued. K. Takahashi reported personal fees from Celgene during the conduct of the study; and personal fees from Symbio Pharmaceuticals, GSK, and Novartis outside the submitted work. C.D. DiNardo reported personal fees from Agios Pharmaceuticals, Celgene, and AbbVie outside the submitted work. M. Konopleva reported "other" from Amgen, Kisoji, and Reata Pharmaceutical; and grants from AbbVie, Genentech, and Stemline Therapeutics, F. Hoffman La-Roche, Forty Seven, Eli Lilly, Cellectis, Calithera, Ablynx, Agios, Ascentage, Astra Zeneca, Rafael Pharmaceutical, and Sanofi outside the submitted work. In addition, M. Konopleva had a patent to Novartis pending (62/993,166), a patent to Eli Lilly issued, and a patent to Reata Pharmaceutical issued (7,795,305 B2 CDDO). C. Récher reported grants from Celgene, Amgen, Novartis, Jazz, AbbVie, Astellas, MaatPharma, Agios, Daiichi-Sankyo, and Roche; personal fees from Incyte, Macrogenics, Otsuka, Janssen, Pfizer, and Takeda; and non-financial support from Sanofi and Gilead outside the submitted work. No other disclosures were reported., (© 2021 Stuani et al.)
- Published
- 2021
- Full Text
- View/download PDF
28. Author Correction: An enolase inhibitor for the targeted treatment of ENO1-deleted cancers.
- Author
-
Lin YH, Satani N, Hammoudi N, Yan VC, Barekatain Y, Khadka S, Ackroyd JJ, Georgiou DK, Pham CD, Arthur K, Maxwell D, Peng Z, Leonard PG, Czako B, Pisaneschi F, Mandal P, Sun Y, Zielinski R, Pando SC, Wang X, Tran T, Xu Q, Wu Q, Jiang Y, Kang Z, Asara JM, Priebe W, Bornmann W, Marszalek JR, DePinho RA, and Muller FL
- Published
- 2021
- Full Text
- View/download PDF
29. BI-3406, a Potent and Selective SOS1-KRAS Interaction Inhibitor, Is Effective in KRAS-Driven Cancers through Combined MEK Inhibition.
- Author
-
Hofmann MH, Gmachl M, Ramharter J, Savarese F, Gerlach D, Marszalek JR, Sanderson MP, Kessler D, Trapani F, Arnhof H, Rumpel K, Botesteanu DA, Ettmayer P, Gerstberger T, Kofink C, Wunberg T, Zoephel A, Fu SC, Teh JL, Böttcher J, Pototschnig N, Schachinger F, Schipany K, Lieb S, Vellano CP, O'Connell JC, Mendes RL, Moll J, Petronczki M, Heffernan TP, Pearson M, McConnell DB, and Kraut N
- Subjects
- Cell Line, Tumor, Humans, Mitogen-Activated Protein Kinase Kinases, Mutation, Nucleotides, Protein Kinase Inhibitors pharmacology, Lung Neoplasms, Proto-Oncogene Proteins p21(ras) genetics
- Abstract
KRAS is the most frequently mutated driver of pancreatic, colorectal, and non-small cell lung cancers. Direct KRAS blockade has proved challenging, and inhibition of a key downstream effector pathway, the RAF-MEK-ERK cascade, has shown limited success because of activation of feedback networks that keep the pathway in check. We hypothesized that inhibiting SOS1, a KRAS activator and important feedback node, represents an effective approach to treat KRAS-driven cancers. We report the discovery of a highly potent, selective, and orally bioavailable small-molecule SOS1 inhibitor, BI-3406, that binds to the catalytic domain of SOS1, thereby preventing the interaction with KRAS. BI-3406 reduces formation of GTP-loaded RAS and limits cellular proliferation of a broad range of KRAS-driven cancers. Importantly, BI-3406 attenuates feedback reactivation induced by MEK inhibitors and thereby enhances sensitivity of KRAS-dependent cancers to MEK inhibition. Combined SOS1 and MEK inhibition represents a novel and effective therapeutic concept to address KRAS-driven tumors. SIGNIFICANCE: To date, there are no effective targeted pan-KRAS therapies. In-depth characterization of BI-3406 activity and identification of MEK inhibitors as effective combination partners provide an attractive therapeutic concept for the majority of KRAS-mutant cancers, including those fueled by the most prevalent mutant KRAS oncoproteins, G12D, G12V, G12C, and G13D. See related commentary by Zhao et al., p. 17 . This article is highlighted in the In This Issue feature, p. 1 ., (©2020 American Association for Cancer Research.)
- Published
- 2021
- Full Text
- View/download PDF
30. An enolase inhibitor for the targeted treatment of ENO1-deleted cancers.
- Author
-
Lin YH, Satani N, Hammoudi N, Yan VC, Barekatain Y, Khadka S, Ackroyd JJ, Georgiou DK, Pham CD, Arthur K, Maxwell D, Peng Z, Leonard PG, Czako B, Pisaneschi F, Mandal P, Sun Y, Zielinski R, Pando SC, Wang X, Tran T, Xu Q, Wu Q, Jiang Y, Kang Z, Asara JM, Priebe W, Bornmann W, Marszalek JR, DePinho RA, and Muller FL
- Subjects
- Animals, Cell Line, Tumor, Female, Glioma drug therapy, Glycolysis drug effects, Humans, Macaca fascicularis, Male, Mice, Mice, SCID, Phosphopyruvate Hydratase genetics, Precision Medicine, Sequence Deletion, Structure-Activity Relationship, Xenograft Model Antitumor Assays, Antineoplastic Agents therapeutic use, Biomarkers, Tumor genetics, DNA-Binding Proteins genetics, Enzyme Inhibitors therapeutic use, Neoplasms drug therapy, Neoplasms genetics, Phosphopyruvate Hydratase antagonists & inhibitors, Tumor Suppressor Proteins genetics
- Abstract
Inhibiting glycolysis remains an aspirational approach for the treatment of cancer. We have previously identified a subset of cancers harbouring homozygous deletion of the glycolytic enzyme enolase (ENO1) that have exceptional sensitivity to inhibition of its redundant paralogue, ENO2, through a therapeutic strategy known as collateral lethality. Here, we show that a small-molecule enolase inhibitor, POMHEX, can selectively kill ENO1-deleted glioma cells at low-nanomolar concentrations and eradicate intracranial orthotopic ENO1-deleted tumours in mice at doses well-tolerated in non-human primates. Our data provide an in vivo proof of principle of the power of collateral lethality in precision oncology and demonstrate the utility of POMHEX for glycolysis inhibition with potential use across a range of therapeutic settings.
- Published
- 2020
- Full Text
- View/download PDF
31. Allosteric SHP2 Inhibitor, IACS-13909, Overcomes EGFR-Dependent and EGFR-Independent Resistance Mechanisms toward Osimertinib.
- Author
-
Sun Y, Meyers BA, Czako B, Leonard P, Mseeh F, Harris AL, Wu Q, Johnson S, Parker CA, Cross JB, Di Francesco ME, Bivona BJ, Bristow CA, Burke JP, Carrillo CC, Carroll CL, Chang Q, Feng N, Gao G, Gera S, Giuliani V, Huang JK, Jiang Y, Kang Z, Kovacs JJ, Liu CY, Lopez AM, Ma X, Mandal PK, McAfoos T, Miller MA, Mullinax RA, Peoples M, Ramamoorthy V, Seth S, Spencer ND, Suzuki E, Williams CC, Yu SS, Zuniga AM, Draetta GF, Marszalek JR, Heffernan TP, Kohl NE, and Jones P
- Subjects
- Acrylamides pharmacology, Aniline Compounds pharmacology, Animals, Carcinoma, Non-Small-Cell Lung genetics, Carcinoma, Non-Small-Cell Lung pathology, Cell Line, Tumor, Cell Proliferation drug effects, ErbB Receptors genetics, Humans, Lung Neoplasms genetics, Lung Neoplasms pathology, Mice, Mutation, Neoplasms, Experimental genetics, Xenograft Model Antitumor Assays, Antineoplastic Agents pharmacology, Drug Resistance, Neoplasm drug effects, Neoplasms, Experimental pathology, Protein Tyrosine Phosphatase, Non-Receptor Type 11 antagonists & inhibitors
- Abstract
Src homology 2 domain-containing phosphatase (SHP2) is a phosphatase that mediates signaling downstream of multiple receptor tyrosine kinases (RTK) and is required for full activation of the MAPK pathway. SHP2 inhibition has demonstrated tumor growth inhibition in RTK-activated cancers in preclinical studies. The long-term effectiveness of tyrosine kinase inhibitors such as the EGFR inhibitor (EGFRi), osimertinib, in non-small cell lung cancer (NSCLC) is limited by acquired resistance. Multiple clinically identified mechanisms underlie resistance to osimertinib, including mutations in EGFR that preclude drug binding as well as EGFR-independent activation of the MAPK pathway through alternate RTK (RTK-bypass). It has also been noted that frequently a tumor from a single patient harbors more than one resistance mechanism, and the plasticity between multiple resistance mechanisms could restrict the effectiveness of therapies targeting a single node of the oncogenic signaling network. Here, we report the discovery of IACS-13909, a specific and potent allosteric inhibitor of SHP2, that suppresses signaling through the MAPK pathway. IACS-13909 potently impeded proliferation of tumors harboring a broad spectrum of activated RTKs as the oncogenic driver. In EGFR-mutant osimertinib-resistant NSCLC models with EGFR-dependent and EGFR-independent resistance mechanisms, IACS-13909, administered as a single agent or in combination with osimertinib, potently suppressed tumor cell proliferation in vitro and caused tumor regression in vivo . Together, our findings provide preclinical evidence for using a SHP2 inhibitor as a therapeutic strategy in acquired EGFRi-resistant NSCLC. SIGNIFICANCE: These findings highlight the discovery of IACS-13909 as a potent, selective inhibitor of SHP2 with drug-like properties, and targeting SHP2 may serve as a therapeutic strategy to overcome tumor resistance to osimertinib., (©2020 American Association for Cancer Research.)
- Published
- 2020
- Full Text
- View/download PDF
32. Pharmacologic profiling of patient-derived xenograft models of primary treatment-naïve triple-negative breast cancer.
- Author
-
Powell RT, Redwood A, Liu X, Guo L, Cai S, Zhou X, Tu Y, Zhang X, Qi Y, Jiang Y, Echeverria G, Feng N, Ma X, Giuliani V, Marszalek JR, Heffernan TP, Vellano CP, White JB, Stephan C, Davies PJ, Moulder S, Symmans WF, Chang JT, and Piwnica-Worms H
- Subjects
- Animals, Antineoplastic Agents therapeutic use, Disease Models, Animal, Drug Repositioning methods, Female, Heterografts, High-Throughput Screening Assays methods, Humans, Kinesins antagonists & inhibitors, Mice, Inbred NOD, Mice, SCID, Molecular Targeted Therapy, Neoplasm Transplantation, Quinuclidines, Triple Negative Breast Neoplasms drug therapy, Triple Negative Breast Neoplasms genetics, Antineoplastic Agents pharmacology, Triple Negative Breast Neoplasms pathology, Xenograft Model Antitumor Assays methods
- Abstract
Triple-negative breast cancer (TNBC) accounts for 15-20% of breast cancer cases in the United States, lacks targeted therapeutic options, and is associated with a 40-80% risk of recurrence. Thus, identifying actionable targets in treatment-naïve and chemoresistant TNBC is a critical unmet medical need. To address this need, we performed high-throughput drug viability screens on human tumor cells isolated from 16 patient-derived xenograft models of treatment-naïve primary TNBC. The models span a range of TNBC subtypes and exhibit a diverse set of putative driver mutations, thus providing a unique patient-derived, molecularly annotated pharmacologic resource that is reflective of TNBC. We identified therapeutically actionable targets including kinesin spindle protein (KSP). The KSP inhibitor targets the mitotic spindle through mechanisms independent of microtubule stability and showed efficacy in models that were resistant to microtubule inhibitors used as part of the current standard of care for TNBC. We also observed subtype selectivity of Prima-1
Met , which showed higher levels of efficacy in the mesenchymal subtype. Coupling pharmacologic data with genomic and transcriptomic information, we showed that Prima-1Met activity was independent of its canonical target, mutant p53, and was better associated with glutathione metabolism, providing an alternate molecularly defined biomarker for this drug.- Published
- 2020
- Full Text
- View/download PDF
33. Discovery of IACS-9439, a Potent, Exquisitely Selective, and Orally Bioavailable Inhibitor of CSF1R.
- Author
-
Czako B, Marszalek JR, Burke JP, Mandal P, Leonard PG, Cross JB, Mseeh F, Jiang Y, Chang EQ, Suzuki E, Kovacs JJ, Feng N, Gera S, Harris AL, Liu Z, Mullinax RA, Pang J, Parker CA, Spencer ND, Yu SS, Wu Q, Tremblay MR, Mikule K, Wilcoxen K, Heffernan TP, Draetta GF, and Jones P
- Subjects
- Antineoplastic Agents chemical synthesis, Antineoplastic Agents pharmacokinetics, Benzothiazoles chemical synthesis, Benzothiazoles pharmacokinetics, Drug Stability, Humans, Microsomes, Liver metabolism, Molecular Structure, Pyrimidines chemical synthesis, Pyrimidines pharmacokinetics, Structure-Activity Relationship, THP-1 Cells, Tumor-Associated Macrophages drug effects, Antineoplastic Agents therapeutic use, Benzothiazoles therapeutic use, Neoplasms drug therapy, Pyrimidines therapeutic use, Receptors, Granulocyte-Macrophage Colony-Stimulating Factor antagonists & inhibitors
- Abstract
Tumor-associated macrophages (TAMs) have a significant presence in the tumor stroma across multiple human malignancies and are believed to be beneficial to tumor growth. Targeting CSF1R has been proposed as a potential therapy to reduce TAMs, especially the protumor, immune-suppressive M2 TAMs. Additionally, the high expression of CSF1R on tumor cells has been associated with poor survival in certain cancers, suggesting tumor dependency and therefore a potential therapeutic target. The CSF1-CSF1R signaling pathway modulates the production, differentiation, and function of TAMs; however, the discovery of selective CSF1R inhibitors devoid of type III kinase activity has proven to be challenging. We discovered a potent, highly selective, and orally bioavailable CSF1R inhibitor, IACS-9439 ( 1 ). Treatment with 1 led to a dose-dependent reduction in macrophages, promoted macrophage polarization toward the M1 phenotype, and led to tumor growth inhibition in MC38 and PANC02 syngeneic tumor models.
- Published
- 2020
- Full Text
- View/download PDF
34. Inhibition of Oxidative Phosphorylation Reverses Bone Marrow Hypoxia Visualized in Imageable Syngeneic B-ALL Mouse Model.
- Author
-
Rytelewski M, Harutyunyan K, Baran N, Mallampati S, Zal MA, Cavazos A, Butler JM, Konoplev S, El Khatib M, Plunkett S, Marszalek JR, Andreeff M, Zal T, and Konopleva M
- Abstract
Abnormally low level of interstitial oxygen, or hypoxia, is a hallmark of tumor microenvironment and a known promoter of cancer chemoresistance. Inside a solid tumor mass, the hypoxia stems largely from inadequate supply of oxygenated blood through sparse or misshapen tumor vasculature whilst oxygen utilization rates are low in typical tumor's glycolytic metabolism. In acute leukemias, however, markers of intracellular hypoxia such as increased pimonidazole adduct staining and HIF-1α stabilization are observed in advanced leukemic bone marrows (BM) despite an increase in BM vasculogenesis. We utilized intravital fast scanning two-photon phosphorescence lifetime imaging microscopy (FaST-PLIM) in a BCR-ABL B-ALL mouse model to image the extracellular oxygen concentrations (pO
2 ) in leukemic BM, and we related the extracellular oxygen levels to intracellular hypoxia, vascular markers and local leukemia burden. We observed a transient increase in BM pO2 in initial disease stages with intermediate leukemia BM burden, which correlated with an expansion of blood-carrying vascular network in the BM. Yet, we also observed increased formation of intracellular pimonidazole adducts in leukemic BM at the same time. This intermediate stage was followed by a significant decrease of extracellular pO2 and further increase of intracellular hypoxia as leukemia cellularity overwhelmed BM in disease end-stage. Remarkably, treatment of leukemic mice with IACS-010759, a pharmacological inhibitor of mitochondrial Complex I, substantially increased pO2 in the BM with advanced B-ALL, and it alleviated intracellular hypoxia reported by pimonidazole staining. High rates of oxygen consumption by B-ALL cells were confirmed by Seahorse assay including in ex vivo cells. Our results suggest that B-ALL expansion in BM is associated with intense oxidative phosphorylation (OxPhos) leading to the onset of metabolic BM hypoxia despite increased BM vascularization. Targeting mitochondrial respiration may be a novel approach to counteract BM hypoxia in B-ALL and, possibly, tumor hypoxia in other OxPhos-reliant malignancies., (Copyright © 2020 Rytelewski, Harutyunyan, Baran, Mallampati, Zal, Cavazos, Butler, Konoplev, El Khatib, Plunkett, Marszalek, Andreeff, Zal and Konopleva.)- Published
- 2020
- Full Text
- View/download PDF
35. Mechanism-Specific Pharmacodynamics of a Novel Complex-I Inhibitor Quantified by Imaging Reversal of Consumptive Hypoxia with [ 18 F]FAZA PET In Vivo .
- Author
-
Gammon ST, Pisaneschi F, Bandi ML, Smith MG, Sun Y, Rao Y, Muller F, Wong F, De Groot J, Ackroyd J, Mawlawi O, Davies MA, Gopal YNV, Di Francesco ME, Marszalek JR, Dewhirst M, and Piwnica-Worms D
- Subjects
- Animals, Biomarkers, Tumor metabolism, Brain Neoplasms diagnostic imaging, Brain Neoplasms drug therapy, Brain Neoplasms metabolism, Cell Line, Tumor, Electron Transport Complex I metabolism, Female, Glioblastoma diagnostic imaging, Glioblastoma drug therapy, Glioblastoma metabolism, Humans, Inhibitory Concentration 50, Mice, Mice, Nude, Nitroimidazoles, Oxidative Phosphorylation drug effects, Oxygen metabolism, Positron Emission Tomography Computed Tomography methods, Radiopharmaceuticals, Electron Transport Complex I antagonists & inhibitors, Oxadiazoles pharmacology, Piperidines pharmacology, Tumor Hypoxia drug effects
- Abstract
Tumors lack a well-regulated vascular supply of O
2 and often fail to balance O2 supply and demand. Net O2 tension within many tumors may not only depend on O2 delivery but also depend strongly on O2 demand. Thus, tumor O2 consumption rates may influence tumor hypoxia up to true anoxia. Recent reports have shown that many human tumors in vivo depend primarily on oxidative phosphorylation (OxPhos), not glycolysis, for energy generation, providing a driver for consumptive hypoxia and an exploitable vulnerability. In this regard, IACS-010759 is a novel high affinity inhibitor of OxPhos targeting mitochondrial complex-I that has recently completed a Phase-I clinical trial in leukemia. However, in solid tumors, the effective translation of OxPhos inhibitors requires methods to monitor pharmacodynamics in vivo. Herein,18 F-fluoroazomycin arabinoside ([18 F]FAZA), a 2-nitroimidazole-based hypoxia PET imaging agent, was combined with a rigorous test-retest imaging method for non-invasive quantification of the reversal of consumptive hypoxia in vivo as a mechanism-specific pharmacodynamic (PD) biomarker of target engagement for IACS-010759. Neither cell death nor loss of perfusion could account for the IACS-010759-induced decrease in [18 F]FAZA retention. Notably, in an OxPhos-reliant melanoma tumor, a titration curve using [18 F]FAZA PET retention in vivo yielded an IC50 for IACS-010759 (1.4 mg/kg) equivalent to analysis ex vivo. Pilot [18 F]FAZA PET scans of a patient with grade IV glioblastoma yielded highly reproducible, high-contrast images of hypoxia in vivo as validated by CA-IX and GLUT-1 IHC ex vivo. Thus, [18 F]FAZA PET imaging provided direct evidence for the presence of consumptive hypoxia in vivo, the capacity for targeted reversal of consumptive hypoxia through the inhibition of OxPhos, and a highly-coupled mechanism-specific PD biomarker ready for translation., Competing Interests: The IACS-010759 patent is issued and held by UT MD Anderson Cancer Center.- Published
- 2019
- Full Text
- View/download PDF
36. Elevated Endogenous SDHA Drives Pathological Metabolism in Highly Metastatic Uveal Melanoma.
- Author
-
Chattopadhyay C, Oba J, Roszik J, Marszalek JR, Chen K, Qi Y, Eterovic K, Robertson AG, Burks JK, McCannel TA, Grimm EA, and Woodman SE
- Subjects
- Humans, Oxidative Phosphorylation, Succinate Dehydrogenase metabolism, Succinic Acid metabolism, Tumor Cells, Cultured, Melanoma metabolism, Succinate Dehydrogenase physiology, Uveal Neoplasms metabolism
- Abstract
Purpose: Metastatic uveal melanoma (UM) has a very poor prognosis and no effective therapy. Despite remarkable advances in treatment of cutaneous melanoma, UM remains recalcitrant to chemotherapy, small-molecule kinase inhibitors, and immune-based therapy., Methods: We assessed two sets of oxidative phosphorylation (OxPhos) genes within 9858 tumors across 31 cancer types. An OxPhos inhibitor was used to characterize differential metabolic programming of highly metastatic monosomy 3 (M3) UM. Seahorse analysis and global metabolomics profiling were done to identify metabolic vulnerabilities. Analyses of UM TCGA data set were performed to determine expressions of key OxPhos effectors in M3 and non-M3 UM. We used targeted knockdown of succinate dehydrogenase A (SDHA) to determine the role of SDHA in M3 UM in conferring resistance to OxPhos inhibition., Results: We identified UM to have among the highest median OxPhos levels and showed that M3 UM exhibits a distinct metabolic profile. M3 UM shows markedly low succinate levels and has highly increased levels of SDHA, the enzyme that couples the tricarboxylic acid cycle with OxPhos by oxidizing (lowering) succinate. We showed that SDHA-high M3 UM have elevated expression of key OxPhos molecules, exhibit abundant mitochondrial reserve respiratory capacity, and are resistant to OxPhos antagonism, which can be reversed by SDHA knockdown., Conclusions: Our study has identified a critical metabolic program within poor prognostic M3 UM. In addition to the heightened mitochondrial functional capacity due to elevated SDHA, M3 UM SDHA-high mediate resistance to therapy that is reversible with targeted treatment.
- Published
- 2019
- Full Text
- View/download PDF
37. Molecular Profiling Reveals Unique Immune and Metabolic Features of Melanoma Brain Metastases.
- Author
-
Fischer GM, Jalali A, Kircher DA, Lee WC, McQuade JL, Haydu LE, Joon AY, Reuben A, de Macedo MP, Carapeto FCL, Yang C, Srivastava A, Ambati CR, Sreekumar A, Hudgens CW, Knighton B, Deng W, Ferguson SD, Tawbi HA, Glitza IC, Gershenwald JE, Vashisht Gopal YN, Hwu P, Huse JT, Wargo JA, Futreal PA, Putluri N, Lazar AJ, DeBerardinis RJ, Marszalek JR, Zhang J, Holmen SL, Tetzlaff MT, and Davies MA
- Subjects
- Animals, Biomarkers, Tumor genetics, Biomarkers, Tumor immunology, Biomarkers, Tumor metabolism, Brain Neoplasms drug therapy, Brain Neoplasms immunology, Brain Neoplasms metabolism, Cohort Studies, Disease Models, Animal, Female, Gene Expression Profiling, Gene Expression Regulation, Neoplastic, Humans, Melanoma drug therapy, Melanoma pathology, Metabolic Flux Analysis, Metabolome, Mice, Mice, Inbred C57BL, Mice, Nude, Oxidative Phosphorylation, Sequence Analysis, RNA methods, Tumor Cells, Cultured, Xenograft Model Antitumor Assays, Brain Neoplasms secondary, Lymphocytes, Tumor-Infiltrating immunology, Melanoma immunology, Melanoma metabolism
- Abstract
There is a critical need to improve our understanding of the pathogenesis of melanoma brain metastases (MBM). Thus, we performed RNA sequencing on 88 resected MBMs and 42 patient-matched extracranial metastases; tumors with sufficient tissue also underwent whole-exome sequencing, T-cell receptor sequencing, and IHC. MBMs demonstrated heterogeneity of immune infiltrates that correlated with prior radiation and post-craniotomy survival. Comparison with patient-matched extracranial metastases identified significant immunosuppression and enrichment of oxidative phosphorylation (OXPHOS) in MBMs. Gene-expression analysis of intracranial and subcutaneous xenografts, and a spontaneous MBM model, confirmed increased OXPHOS gene expression in MBMs, which was also detected by direct metabolite profiling and [U-
13 C]-glucose tracing in vivo . IACS-010759, an OXPHOS inhibitor currently in early-phase clinical trials, improved survival of mice bearing MAPK inhibitor-resistant intracranial melanoma xenografts and inhibited MBM formation in the spontaneous MBM model. The results provide new insights into the pathogenesis and therapeutic resistance of MBMs. SIGNIFICANCE: Improving our understanding of the pathogenesis of MBMs will facilitate the rational development and prioritization of new therapeutic strategies. This study reports the most comprehensive molecular profiling of patient-matched MBMs and extracranial metastases to date. The data provide new insights into MBM biology and therapeutic resistance. See related commentary by Egelston and Margolin, p. 581 . This article is highlighted in the In This Issue feature, p. 565 ., (©2019 American Association for Cancer Research.)- Published
- 2019
- Full Text
- View/download PDF
38. Resistance to neoadjuvant chemotherapy in triple-negative breast cancer mediated by a reversible drug-tolerant state.
- Author
-
Echeverria GV, Ge Z, Seth S, Zhang X, Jeter-Jones S, Zhou X, Cai S, Tu Y, McCoy A, Peoples M, Sun Y, Qiu H, Chang Q, Bristow C, Carugo A, Shao J, Ma X, Harris A, Mundi P, Lau R, Ramamoorthy V, Wu Y, Alvarez MJ, Califano A, Moulder SL, Symmans WF, Marszalek JR, Heffernan TP, Chang JT, and Piwnica-Worms H
- Subjects
- Animals, Cell Line, Tumor, Cyclophosphamide therapeutic use, Drug Resistance, Neoplasm genetics, Female, Humans, Mice, SCID, Neoadjuvant Therapy, Transcriptome genetics, Xenograft Model Antitumor Assays, Doxorubicin therapeutic use, Triple Negative Breast Neoplasms drug therapy
- Abstract
Eradicating triple-negative breast cancer (TNBC) resistant to neoadjuvant chemotherapy (NACT) is a critical unmet clinical need. In this study, patient-derived xenograft (PDX) models of treatment-naïve TNBC and serial biopsies from TNBC patients undergoing NACT were used to elucidate mechanisms of chemoresistance in the neoadjuvant setting. Barcode-mediated clonal tracking and genomic sequencing of PDX tumors revealed that residual tumors remaining after treatment with standard frontline chemotherapies, doxorubicin (Adriamycin) combined with cyclophosphamide (AC), maintained the subclonal architecture of untreated tumors, yet their transcriptomes, proteomes, and histologic features were distinct from those of untreated tumors. Once treatment was halted, residual tumors gave rise to AC-sensitive tumors with similar transcriptomes, proteomes, and histological features to those of untreated tumors. Together, these results demonstrated that tumors can adopt a reversible drug-tolerant state that does not involve clonal selection as an AC resistance mechanism. Serial biopsies obtained from patients with TNBC undergoing NACT revealed similar histologic changes and maintenance of stable subclonal architecture, demonstrating that AC-treated PDXs capture molecular features characteristic of human TNBC chemoresistance. Last, pharmacologic inhibition of oxidative phosphorylation using an inhibitor currently in phase 1 clinical development delayed residual tumor regrowth. Thus, AC resistance in treatment-naïve TNBC can be mediated by nonselective mechanisms that confer a reversible chemotherapy-tolerant state with targetable vulnerabilities., (Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.)
- Published
- 2019
- Full Text
- View/download PDF
39. Niraparib activates interferon signaling and potentiates anti-PD-1 antibody efficacy in tumor models.
- Author
-
Wang Z, Sun K, Xiao Y, Feng B, Mikule K, Ma X, Feng N, Vellano CP, Federico L, Marszalek JR, Mills GB, Hanke J, Ramaswamy S, and Wang J
- Subjects
- Animals, Antibodies immunology, BRCA1 Protein genetics, BRCA2 Protein genetics, Base Sequence, Breast Neoplasms therapy, CD4-Positive T-Lymphocytes immunology, CD8-Positive T-Lymphocytes immunology, Cell Line, Tumor, Female, Gene Expression Profiling, Humans, Immunotherapy, Mice, Mice, Inbred C57BL, Mutation, Neoplasm Transplantation, Ovarian Neoplasms therapy, Breast Neoplasms immunology, Indazoles pharmacology, Interferons immunology, Ovarian Neoplasms immunology, Piperidines pharmacology, Poly(ADP-ribose) Polymerase Inhibitors pharmacology, Programmed Cell Death 1 Receptor immunology
- Abstract
PARP inhibitors have been proven clinically efficacious in platinum-responsive ovarian cancer regardless of BRCA1/2 status and in breast cancers with germline BRCA1/2 mutation. However, resistance to PARP inhibitors may preexist or evolve during treatment in many cancer types and may be overcome by combining PARP inhibitors with other therapies, such as immune checkpoint inhibitors, which confer durable responses and are rapidly becoming the standard of care for multiple tumor types. This study investigated the therapeutic potential of combining niraparib, a highly selective PARP1/2 inhibitor, with anti-PD-1 immune checkpoint inhibitors in preclinical tumor models. Our results indicate that niraparib treatment increases the activity of the type I (alpha) and type II (gamma) interferon pathways and enhances the infiltration of CD8
+ cells and CD4+ cells in tumors. When coadministered in immunocompetent models, the combination of niraparib and anti-PD-1 demonstrated synergistic antitumor activities in both BRCA-proficient and BRCA-deficient tumors. Interestingly, mice with tumors cured by niraparib monotherapy completely rejected tumor growth upon rechallenge with the same tumor cell line, suggesting the potential establishment of immune memory in animals treated with niraparib monotherapy. Taken together, our findings uncovered immunomodulatory effects of niraparib that may sensitize tumors to immune checkpoint blockade therapies.- Published
- 2019
- Full Text
- View/download PDF
40. Functional Genomics Reveals Synthetic Lethality between Phosphogluconate Dehydrogenase and Oxidative Phosphorylation.
- Author
-
Sun Y, Bandi M, Lofton T, Smith M, Bristow CA, Carugo A, Rogers N, Leonard P, Chang Q, Mullinax R, Han J, Shi X, Seth S, Meyers BA, Miller M, Miao L, Ma X, Feng N, Giuliani V, Geck Do M, Czako B, Palmer WS, Mseeh F, Asara JM, Jiang Y, Morlacchi P, Zhao S, Peoples M, Tieu TN, Warmoes MO, Lorenzi PL, Muller FL, DePinho RA, Draetta GF, Toniatti C, Jones P, Heffernan TP, and Marszalek JR
- Subjects
- Animals, Cell Line, Tumor, Female, Fumarate Hydratase genetics, Genomics methods, Glycolysis, Humans, Loss of Function Mutation, Mice, Mice, Nude, Oxidative Phosphorylation, Phosphogluconate Dehydrogenase genetics, Synthetic Lethal Mutations
- Abstract
The plasticity of a preexisting regulatory circuit compromises the effectiveness of targeted therapies, and leveraging genetic vulnerabilities in cancer cells may overcome such adaptations. Hereditary leiomyomatosis renal cell carcinoma (HLRCC) is characterized by oxidative phosphorylation (OXPHOS) deficiency caused by fumarate hydratase (FH) nullizyogosity. To identify metabolic genes that are synthetically lethal with OXPHOS deficiency, we conducted a genetic loss-of-function screen and found that phosphogluconate dehydrogenase (PGD) inhibition robustly blocks the proliferation of FH mutant cancer cells both in vitro and in vivo. Mechanistically, PGD inhibition blocks glycolysis, suppresses reductive carboxylation of glutamine, and increases the NADP
+ /NADPH ratio to disrupt redox homeostasis. Furthermore, in the OXPHOS-proficient context, blocking OXPHOS using the small-molecule inhibitor IACS-010759 enhances sensitivity to PGD inhibition in vitro and in vivo. Together, our study reveals a dependency on PGD in OXPHOS-deficient tumors that might inform therapeutic intervention in specific patient populations., (Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.)- Published
- 2019
- Full Text
- View/download PDF
41. PPM1D Mutations Drive Clonal Hematopoiesis in Response to Cytotoxic Chemotherapy.
- Author
-
Hsu JI, Dayaram T, Tovy A, De Braekeleer E, Jeong M, Wang F, Zhang J, Heffernan TP, Gera S, Kovacs JJ, Marszalek JR, Bristow C, Yan Y, Garcia-Manero G, Kantarjian H, Vassiliou G, Futreal PA, Donehower LA, Takahashi K, and Goodell MA
- Subjects
- Aged, Animals, Antineoplastic Agents chemistry, Cell Proliferation drug effects, Cisplatin chemistry, Doxorubicin chemistry, Drug Screening Assays, Antitumor, Female, HEK293 Cells, Hematopoiesis genetics, Humans, Leukemia, Myeloid, Acute metabolism, Leukemia, Myeloid, Acute pathology, Male, Mice, Mice, Inbred C57BL, Mice, Inbred NOD, Middle Aged, Neoplasms, Experimental drug therapy, Neoplasms, Experimental metabolism, Neoplasms, Experimental pathology, Protein Phosphatase 2C metabolism, Antineoplastic Agents pharmacology, Cisplatin pharmacology, Clone Cells drug effects, Doxorubicin pharmacology, Hematopoiesis drug effects, Leukemia, Myeloid, Acute drug therapy, Mutation, Protein Phosphatase 2C genetics
- Abstract
Clonal hematopoiesis (CH), in which stem cell clones dominate blood production, becomes increasingly common with age and can presage malignancy development. The conditions that promote ascendancy of particular clones are unclear. We found that mutations in PPM1D (protein phosphatase Mn
2+ /Mg2+ -dependent 1D), a DNA damage response regulator that is frequently mutated in CH, were present in one-fifth of patients with therapy-related acute myeloid leukemia or myelodysplastic syndrome and strongly correlated with cisplatin exposure. Cell lines with hyperactive PPM1D mutations expand to outcompete normal cells after exposure to cytotoxic DNA damaging agents including cisplatin, and this effect was predominantly mediated by increased resistance to apoptosis. Moreover, heterozygous mutant Ppm1d hematopoietic cells outcompeted their wild-type counterparts in vivo after exposure to cisplatin and doxorubicin, but not during recovery from bone marrow transplantation. These findings establish the clinical relevance of PPM1D mutations in CH and the importance of studying mutation-treatment interactions. VIDEO ABSTRACT., (Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.)- Published
- 2018
- Full Text
- View/download PDF
42. An inhibitor of oxidative phosphorylation exploits cancer vulnerability.
- Author
-
Molina JR, Sun Y, Protopopova M, Gera S, Bandi M, Bristow C, McAfoos T, Morlacchi P, Ackroyd J, Agip AA, Al-Atrash G, Asara J, Bardenhagen J, Carrillo CC, Carroll C, Chang E, Ciurea S, Cross JB, Czako B, Deem A, Daver N, de Groot JF, Dong JW, Feng N, Gao G, Gay J, Do MG, Greer J, Giuliani V, Han J, Han L, Henry VK, Hirst J, Huang S, Jiang Y, Kang Z, Khor T, Konoplev S, Lin YH, Liu G, Lodi A, Lofton T, Ma H, Mahendra M, Matre P, Mullinax R, Peoples M, Petrocchi A, Rodriguez-Canale J, Serreli R, Shi T, Smith M, Tabe Y, Theroff J, Tiziani S, Xu Q, Zhang Q, Muller F, DePinho RA, Toniatti C, Draetta GF, Heffernan TP, Konopleva M, Jones P, Di Francesco ME, and Marszalek JR
- Subjects
- Animals, Biomarkers, Tumor metabolism, Cell Line, Tumor, Energy Metabolism, Glycolysis drug effects, HEK293 Cells, Humans, Lactic Acid metabolism, Leukemia, Myeloid, Acute pathology, Mice, Mitochondria metabolism, Nucleotides biosynthesis, Tumor Burden, Xenograft Model Antitumor Assays, Neoplasms pathology, Oxidative Phosphorylation
- Abstract
Metabolic reprograming is an emerging hallmark of tumor biology and an actively pursued opportunity in discovery of oncology drugs. Extensive efforts have focused on therapeutic targeting of glycolysis, whereas drugging mitochondrial oxidative phosphorylation (OXPHOS) has remained largely unexplored, partly owing to an incomplete understanding of tumor contexts in which OXPHOS is essential. Here, we report the discovery of IACS-010759, a clinical-grade small-molecule inhibitor of complex I of the mitochondrial electron transport chain. Treatment with IACS-010759 robustly inhibited proliferation and induced apoptosis in models of brain cancer and acute myeloid leukemia (AML) reliant on OXPHOS, likely owing to a combination of energy depletion and reduced aspartate production that leads to impaired nucleotide biosynthesis. In models of brain cancer and AML, tumor growth was potently inhibited in vivo following IACS-010759 treatment at well-tolerated doses. IACS-010759 is currently being evaluated in phase 1 clinical trials in relapsed/refractory AML and solid tumors.
- Published
- 2018
- Full Text
- View/download PDF
43. Biological and metabolic effects of IACS-010759, an OxPhos inhibitor, on chronic lymphocytic leukemia cells.
- Author
-
Vangapandu HV, Alston B, Morse J, Ayres ML, Wierda WG, Keating MJ, Marszalek JR, and Gandhi V
- Abstract
Blood cells from patients with chronic lymphocytic leukemia (CLL) are replicationally quiescent but transcriptionally, translationally, and metabolically active. Recently, we demonstrated that oxidative phosphorylation (OxPhos) is a predominant pathway in CLL for energy production and is further augmented in the presence of the stromal microenvironment. Importantly, CLL cells from patients with poor prognostic markers showed increased OxPhos. From these data, we theorized that OxPhos can be targeted to treat CLL. IACS-010759, currently in clinical development, is a small-molecule, orally bioavailable OxPhos inhibitor that targets mitochondrial complex I. Treatment of primary CLL cells with IACS-010759 greatly inhibited OxPhos but caused only minor cell death at 24 and 48 h. In the presence of stroma, the drug successfully inhibited OxPhos and diminished intracellular ribonucleotide pools. However, glycolysis and glucose uptake were induced as compensatory mechanisms. To mitigate the upregulated glycolytic flux, we used 2-deoxy-D-glucose in combination with IACS-010759. This combination reduced both OxPhos and glycolysis and induced cell death. Consistent with these data, low-glucose culture conditions sensitized CLL cells to IACS-010759. Collectively, these data suggest that CLL cells adapt to use a different metabolic pathway when OxPhos is inhibited and that targeting both OxPhos and glycolysis pathways is necessary for biological effect., Competing Interests: CONFLICTS OF INTEREST The authors have no financial or other conflicts of interests.
- Published
- 2018
- Full Text
- View/download PDF
44. Generation and testing of clinical-grade exosomes for pancreatic cancer.
- Author
-
Mendt M, Kamerkar S, Sugimoto H, McAndrews KM, Wu CC, Gagea M, Yang S, Blanko EVR, Peng Q, Ma X, Marszalek JR, Maitra A, Yee C, Rezvani K, Shpall E, LeBleu VS, and Kalluri R
- Subjects
- Animals, Cell Line, Tumor drug effects, Disease Models, Animal, Drug Therapy methods, Drug Therapy, Combination methods, Female, Genetic Therapy methods, Male, Mice, Mice, Inbred C57BL genetics, Pancreatic Neoplasms drug therapy, Pancreatic Neoplasms metabolism, Pancreatic Neoplasms veterinary, Cell Line, Tumor metabolism, Exosomes genetics, Pancreatic Neoplasms genetics, Proto-Oncogene Proteins p21(ras) genetics, RNA, Small Interfering genetics
- Abstract
Exosomes are extracellular vesicles produced by all cells with a remarkable ability to efficiently transfer genetic material, including exogenously loaded siRNA, to cancer cells. Here, we report on a bioreactor-based, large-scale production of clinical-grade exosomes employing good manufacturing practice (GMP) standards. A standard operating procedure was established to generate engineered exosomes with the ability to target oncogenic Kras (iExosomes). The clinical-grade GMP iExosomes were tested in multiple in vitro and in vivo studies to confirm suppression of oncogenic Kras and an increase in the survival of several mouse models with pancreatic cancer. We perform studies to determine the shelf life, biodistribution, toxicology profile, and efficacy in combination with chemotherapy to inform future clinical testing of GMP iExosomes. Collectively, this report illustrates the process and feasibility of generating clinical-grade exosomes for various therapies of human diseases.
- Published
- 2018
- Full Text
- View/download PDF
45. Mitochondrial Complex I Inhibitors Expose a Vulnerability for Selective Killing of Pten-Null Cells.
- Author
-
Naguib A, Mathew G, Reczek CR, Watrud K, Ambrico A, Herzka T, Salas IC, Lee MF, El-Amine N, Zheng W, Di Francesco ME, Marszalek JR, Pappin DJ, Chandel NS, and Trotman LC
- Subjects
- Animals, Antineoplastic Agents therapeutic use, Cell Line, Tumor, Cells, Cultured, Electron Transport Complex I metabolism, Enzyme Inhibitors therapeutic use, Fibroblasts metabolism, Glucose metabolism, Male, Mice, PTEN Phosphohydrolase deficiency, PTEN Phosphohydrolase genetics, Rotenone pharmacology, Rotenone therapeutic use, Tumor Suppressor Protein p53 genetics, Antineoplastic Agents pharmacology, Electron Transport Complex I antagonists & inhibitors, Enzyme Inhibitors pharmacology, Fibroblasts drug effects, Prostatic Neoplasms drug therapy, Rotenone analogs & derivatives
- Abstract
A hallmark of advanced prostate cancer (PC) is the concomitant loss of PTEN and p53 function. To selectively eliminate such cells, we screened cytotoxic compounds on Pten
-/- ;Trp53-/- fibroblasts and their Pten-WT reference. Highly selective killing of Pten-null cells can be achieved by deguelin, a natural insecticide. Deguelin eliminates Pten-deficient cells through inhibition of mitochondrial complex I (CI). Five hundred-fold higher drug doses are needed to obtain the same killing of Pten-WT cells, even though deguelin blocks their electron transport chain equally well. Selectivity arises because mitochondria of Pten-null cells consume ATP through complex V, instead of producing it. The resulting glucose dependency can be exploited to selectively kill Pten-null cells with clinically relevant CI inhibitors, especially if they are lipophilic. In vivo, deguelin suppressed disease in our genetically engineered mouse model for metastatic PC. Our data thus introduce a vulnerability for highly selective targeting of incurable PC with inhibitors of CI., (Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.)- Published
- 2018
- Full Text
- View/download PDF
46. Pharmacodynamics and proteomic analysis of acalabrutinib therapy: similarity of on-target effects to ibrutinib and rationale for combination therapy.
- Author
-
Patel VK, Lamothe B, Ayres ML, Gay J, Cheung JP, Balakrishnan K, Ivan C, Morse J, Nelson M, Keating MJ, Wierda WG, Marszalek JR, and Gandhi V
- Subjects
- Adenine analogs & derivatives, Adoptive Transfer methods, Animals, B-Lymphocytes drug effects, B-Lymphocytes metabolism, Benzamides administration & dosage, Bridged Bicyclo Compounds, Heterocyclic administration & dosage, Cell Movement drug effects, Chemokine CCL3 metabolism, Chemokine CCL4 metabolism, Clinical Trials, Phase I as Topic, Clinical Trials, Phase II as Topic, Combined Modality Therapy methods, Drug Resistance, Neoplasm drug effects, Humans, Mice, Piperidines, Protein Kinase Inhibitors administration & dosage, Protein-Tyrosine Kinases metabolism, Proteomics, Pyrazines administration & dosage, Pyrazoles administration & dosage, Pyrimidines administration & dosage, Signal Transduction drug effects, Sulfonamides administration & dosage, Antineoplastic Combined Chemotherapy Protocols therapeutic use, Leukemia, Lymphocytic, Chronic, B-Cell drug therapy, Leukemia, Lymphocytic, Chronic, B-Cell metabolism
- Abstract
Acalabrutinib, a highly selective Bruton's tyrosine kinase inhibitor, is associated with high overall response rates and durable remission in previously treated chronic lymphocytic leukemia (CLL); however, complete remissions were limited. To elucidate on-target and pharmacodynamic effects of acalabrutinib, we evaluated several laboratory endpoints, including proteomic changes, chemokine modulation and impact on cell migration. Pharmacological profiling of samples from acalabrutinib-treated CLL patients was used to identify strategies for achieving deeper responses, and to identify additive/synergistic combination regimens. Peripheral blood samples from 21 patients with relapsed/refractory CLL in acalabrutinib phase I (100-400 mg/day) and II (100 mg BID) clinical trials were collected prior to and on days 8 and 28 after treatment initiation and evaluated for plasma chemokines, reverse phase protein array, immunoblotting and pseudoemperipolesis. The on-target pharmacodynamic profile of acalabrutinib in CLL lymphocytes was comparable to ibrutinib in measures of acalabrutinib-mediated changes in CCL3/CCL4 chemokine production, migration assays and changes in B-cell receptor signaling pathway proteins and other downstream survival proteins. Among several CLL-targeted agents, venetoclax, when combined with acalabrutinib, showed optimal complementary activity in vitro, ex vivo and in vivo in TCL-1 adoptive transfer mouse model system of CLL. These findings support selective targeting and combinatorial potential of acalabrutinib.
- Published
- 2018
- Full Text
- View/download PDF
47. Hypoxia-Activated Prodrug TH-302 Targets Hypoxic Bone Marrow Niches in Preclinical Leukemia Models.
- Author
-
Benito J, Ramirez MS, Millward NZ, Velez J, Harutyunyan KG, Lu H, Shi YX, Matre P, Jacamo R, Ma H, Konoplev S, McQueen T, Volgin A, Protopopova M, Mu H, Lee J, Bhattacharya PK, Marszalek JR, Davis RE, Bankson JA, Cortes JE, Hart CP, Andreeff M, and Konopleva M
- Subjects
- Animals, Bone Marrow pathology, Cell Line, Tumor, Disease Models, Animal, Gene Expression Profiling, Gene Expression Regulation, Leukemic, Humans, Leukemia drug therapy, Leukemia genetics, Magnetic Resonance Imaging, Mice, Treatment Outcome, Xenograft Model Antitumor Assays, Antineoplastic Agents pharmacology, Bone Marrow metabolism, Hypoxia metabolism, Leukemia metabolism, Leukemia pathology, Nitroimidazoles pharmacology, Phosphoramide Mustards pharmacology, Prodrugs pharmacology, Tumor Microenvironment drug effects
- Abstract
Purpose: To characterize the prevalence of hypoxia in the leukemic bone marrow, its association with metabolic and transcriptional changes in the leukemic blasts and the utility of hypoxia-activated prodrug TH-302 in leukemia models., Experimental Design: Hyperpolarized magnetic resonance spectroscopy was utilized to interrogate the pyruvate metabolism of the bone marrow in the murine acute myeloid leukemia (AML) model. Nanostring technology was used to evaluate a gene set defining a hypoxia signature in leukemic blasts and normal donors. The efficacy of the hypoxia-activated prodrug TH-302 was examined in the in vitro and in vivo leukemia models., Results: Metabolic imaging has demonstrated increased glycolysis in the femur of leukemic mice compared with healthy control mice, suggesting metabolic reprogramming of hypoxic bone marrow niches. Primary leukemic blasts in samples from AML patients overexpressed genes defining a "hypoxia index" compared with samples from normal donors. TH-302 depleted hypoxic cells, prolonged survival of xenograft leukemia models, and reduced the leukemia stem cell pool in vivo In the aggressive FLT3/ITD MOLM-13 model, combination of TH-302 with tyrosine kinase inhibitor sorafenib had greater antileukemia effects than either drug alone. Importantly, residual leukemic bone marrow cells in a syngeneic AML model remain hypoxic after chemotherapy. In turn, administration of TH-302 following chemotherapy treatment to mice with residual disease prolonged survival, suggesting that this approach may be suitable for eliminating chemotherapy-resistant leukemia cells., Conclusions: These findings implicate a pathogenic role of hypoxia in leukemia maintenance and chemoresistance and demonstrate the feasibility of targeting hypoxic cells by hypoxia cytotoxins., (©2015 American Association for Cancer Research.)
- Published
- 2016
- Full Text
- View/download PDF
48. Identification of potent and selective MTH1 inhibitors.
- Author
-
Petrocchi A, Leo E, Reyna NJ, Hamilton MM, Shi X, Parker CA, Mseeh F, Bardenhagen JP, Leonard P, Cross JB, Huang S, Jiang Y, Cardozo M, Draetta G, Marszalek JR, Toniatti C, Jones P, and Lewis RT
- Subjects
- DNA Repair Enzymes metabolism, Dose-Response Relationship, Drug, Enzyme Inhibitors chemical synthesis, Enzyme Inhibitors chemistry, Humans, Models, Molecular, Molecular Structure, Phosphoric Monoester Hydrolases metabolism, Structure-Activity Relationship, Substrate Specificity, DNA Repair Enzymes antagonists & inhibitors, Enzyme Inhibitors pharmacology, Phosphoric Monoester Hydrolases antagonists & inhibitors
- Abstract
Structure based design of a novel class of aminopyrimidine MTH1 (MutT homolog 1) inhibitors is described. Optimization led to identification of IACS-4759 (compound 5), a sub-nanomolar inhibitor of MTH1 with excellent cell permeability and good metabolic stability in microsomes. This compound robustly inhibited MTH1 activity in cells and proved to be an excellent tool for interrogation of the utility of MTH1 inhibition in the context of oncology., (Copyright © 2016 Elsevier Ltd. All rights reserved.)
- Published
- 2016
- Full Text
- View/download PDF
49. Development of novel cellular histone-binding and chromatin-displacement assays for bromodomain drug discovery.
- Author
-
Zhan Y, Kost-Alimova M, Shi X, Leo E, Bardenhagen JP, Shepard HE, Appikonda S, Vangamudi B, Zhao S, Tieu TN, Jiang S, Heffernan TP, Marszalek JR, Toniatti C, Draetta G, Tyler J, Barton M, Jones P, Palmer WS, Geck Do MK, and Andersen JN
- Abstract
Background: Proteins that 'read' the histone code are central elements in epigenetic control and bromodomains, which bind acetyl-lysine motifs, are increasingly recognized as potential mediators of disease states. Notably, the first BET bromodomain-based therapies have entered clinical trials and there is a broad interest in dissecting the therapeutic relevance of other bromodomain-containing proteins in human disease. Typically, drug development is facilitated and expedited by high-throughput screening, where assays need to be sensitive, robust, cost-effective and scalable. However, for bromodomains, which lack catalytic activity that otherwise can be monitored (using classical enzymology), the development of cell-based, drug-target engagement assays has been challenging. Consequently, cell biochemical assays have lagged behind compared to other protein families (e.g., histone deacetylases and methyltransferases)., Results: Here, we present a suite of novel chromatin and histone-binding assays using AlphaLISA, in situ cell extraction and fluorescence-based, high-content imaging. First, using TRIM24 as an example, the homogenous, bead-based AlphaScreen technology was modified from a biochemical peptide-competition assay to measure binding of the TRIM24 bromodomain to endogenous histone H3 in cells (AlphaLISA). Second, a target agnostic, high-throughput imaging platform was developed to quantify the ability of chemical probes to dissociate endogenous proteins from chromatin/nuclear structures. While overall nuclear morphology is maintained, the procedure extracts soluble, non-chromatin-bound proteins from cells with drug-target displacement visualized by immunofluorescence (IF) or microscopy of fluorescent proteins. Pharmacological evaluation of these assays cross-validated their utility, sensitivity and robustness. Finally, using genetic and pharmacological approaches, we dissect domain contribution of TRIM24, BRD4, ATAD2 and SMARCA2 to chromatin binding illustrating the versatility/utility of the in situ cell extraction platform., Conclusions: In summary, we have developed two novel complementary and cell-based drug-target engagement assays, expanding the repertoire of pharmacodynamic assays for bromodomain tool compound development. These assays have been validated through a successful TRIM24 bromodomain inhibitor program, where a micromolar lead molecule (IACS-6558) was optimized using cell-based assays to yield the first single-digit nanomolar TRIM24 inhibitor (IACS-9571). Altogether, the assay platforms described herein are poised to accelerate the discovery and development of novel chemical probes to deliver on the promise of epigenetic-based therapies.
- Published
- 2015
- Full Text
- View/download PDF
50. The SMARCA2/4 ATPase Domain Surpasses the Bromodomain as a Drug Target in SWI/SNF-Mutant Cancers: Insights from cDNA Rescue and PFI-3 Inhibitor Studies.
- Author
-
Vangamudi B, Paul TA, Shah PK, Kost-Alimova M, Nottebaum L, Shi X, Zhan Y, Leo E, Mahadeshwar HS, Protopopov A, Futreal A, Tieu TN, Peoples M, Heffernan TP, Marszalek JR, Toniatti C, Petrocchi A, Verhelle D, Owen DR, Draetta G, Jones P, Palmer WS, Sharma S, and Andersen JN
- Subjects
- Binding, Competitive, Catalysis, Cell Line, Tumor, Chromatin metabolism, Chromosomal Proteins, Non-Histone genetics, DNA Helicases chemistry, DNA Helicases deficiency, DNA, Complementary genetics, Gene Knockout Techniques, Genetic Complementation Test, Humans, Lung Neoplasms pathology, Microarray Analysis, Neoplasms genetics, Nuclear Proteins chemistry, Nuclear Proteins deficiency, Protein Structure, Tertiary, RNA Interference, RNA, Small Interfering pharmacology, Rhabdoid Tumor genetics, Rhabdoid Tumor pathology, Sarcoma, Synovial genetics, Sarcoma, Synovial pathology, Transcription Factors chemistry, Transcription Factors genetics, Azabicyclo Compounds pharmacology, Chromatin Assembly and Disassembly drug effects, Chromosomal Proteins, Non-Histone deficiency, DNA Helicases antagonists & inhibitors, Molecular Targeted Therapy, Neoplasm Proteins antagonists & inhibitors, Neoplasms drug therapy, Nuclear Proteins antagonists & inhibitors, Pyridines pharmacology, Transcription Factors antagonists & inhibitors, Transcription Factors deficiency
- Abstract
The SWI/SNF multisubunit complex modulates chromatin structure through the activity of two mutually exclusive catalytic subunits, SMARCA2 and SMARCA4, which both contain a bromodomain and an ATPase domain. Using RNAi, cancer-specific vulnerabilities have been identified in SWI/SNF-mutant tumors, including SMARCA4-deficient lung cancer; however, the contribution of conserved, druggable protein domains to this anticancer phenotype is unknown. Here, we functionally deconstruct the SMARCA2/4 paralog dependence of cancer cells using bioinformatics, genetic, and pharmacologic tools. We evaluate a selective SMARCA2/4 bromodomain inhibitor (PFI-3) and characterize its activity in chromatin-binding and cell-functional assays focusing on cells with altered SWI/SNF complex (e.g., lung, synovial sarcoma, leukemia, and rhabdoid tumors). We demonstrate that PFI-3 is a potent, cell-permeable probe capable of displacing ectopically expressed, GFP-tagged SMARCA2-bromodomain from chromatin, yet contrary to target knockdown, the inhibitor fails to display an antiproliferative phenotype. Mechanistically, the lack of pharmacologic efficacy is reconciled by the failure of bromodomain inhibition to displace endogenous, full-length SMARCA2 from chromatin as determined by in situ cell extraction, chromatin immunoprecipitation, and target gene expression studies. Furthermore, using inducible RNAi and cDNA complementation (bromodomain- and ATPase-dead constructs), we unequivocally identify the ATPase domain, and not the bromodomain of SMARCA2, as the relevant therapeutic target with the catalytic activity suppressing defined transcriptional programs. Taken together, our complementary genetic and pharmacologic studies exemplify a general strategy for multidomain protein drug-target validation and in case of SMARCA2/4 highlight the potential for drugging the more challenging helicase/ATPase domain to deliver on the promise of synthetic-lethality therapy., (©2015 American Association for Cancer Research.)
- Published
- 2015
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.