1. Potential of Bayesian formalism for the fusion and assimilation of sequential forestry data in time and space
- Author
-
Mohamedou, Cheikh, Kangas, Annika, Hamedianfar, Alireza, and Vauhkonen, Jari
- Subjects
Bayesian statistical decision theory -- Usage ,Electronic data processing -- Usage ,Forests and forestry -- Information management ,Markov processes -- Usage ,Company systems management ,Earth sciences - Abstract
Forest resource assessments based on multi-source and multi-temporal data have become more common. Therefore, enhancing the prediction capabilities of forestry dynamics by efficiently pooling and analyzing time-series and spatial sequential data is now more pivotal. Bayesian filtering and smoothing provide a well-defined formalism for the fusion or assimilation of various data. We ascertained how often the generic, standardized Bayesian framework is used in the scientific literature and whether such an approach is beneficial for forestry applications. A review of the literature showed that the use of Bayesian methods appears to be less common in forestry than in other disciplines, particularly remote sensing. Specifically, time-series analyses were found to favor ad hoc methods. Our review did not reveal strong numeric evidence for better performance by the various Bayesian approaches, but this result may be partly due to the challenge in comparing a variety of methods for different prediction tasks. We identified methodological challenges related to assimilating predictions of forest development; in particular, combining modelled growth with disturbances due to both forest operations and natural phenomena. Nevertheless, the Bayesian frameworks provide possibilities to efficiently combine and update prior and posterior predictive distributions and derive related uncertainty measures that appear under-utilized in forestry. Key words: forest inventory, hierarchical Bayes model, Kalman filter, Markov chain Monte Carlo (MCMC), credible interval. L'evaluation des ressources forestieres fondee sur des donnees de nombreuses sources et multitemporelles est devenue plus frequente. Par consequent, l'amelioration des capacites de previsions de la dynamique forestiere au moyen du regroupement et de l'analyse efficaces des donnees sequentielles spatiales et de series chronologiques est maintenant plus cruciale. Le filtrage et le nivellement bayesiens fournissent un formalisme bien defini pour la fusion ou l'assimilation des diverses donnees. Nous avons determine la frequence a laquelle le cadre bayesien generique et normalise est utilise dans la litterature scientifique et nous avons evalue si une telle approche est avantageuse pour les applications forestieres. Une revue de la litterature a montre que l'utilisation des methodes bayesiennes semble etre moins frequente en foresterie que dans d'autres disciplines, particulierement la teledetection. On a constate plus particulierement que les analyses des series chronologiques favorisaient les methodes ad hoc. Notre revue n'a pas revele de preuves numeriques importantes pour une meilleure performance par diverses approches bayesiennes, mais ce resultat peut etre du en partie a la difficulte de comparer un eventail de methodes pour differentes taches de previsions. Nous avons identifie des defis methodologiques relies a l'assimilation des previsions du developpement forestier; plus particulierement, en combinant la croissance modelisee aux perturbations dues aux operations forestieres et aux phenomenes naturels. Neanmoins, les cadres bayesiens offrent des possibilites de combiner efficacement et de faire une mise a jour avant et apres les distributions predictives et de calculer les mesures connexes de l'incertitude qui semblent sous-utilisees en foresterie. [Traduit par la Redaction] Mots-cles : inventaire forestier, modele hierarchique bayesien, filtre de Kalman, Monte Carlo par chaine de Markov (MCCM), intervalle de credibilite., 1. Introduction 1.1. Motivation and objectives Systematic forest inventories have been carried out for over a century (Kangas et al. 2018a) and have utilized remote sensing and other digital map [...]
- Published
- 2022
- Full Text
- View/download PDF