106 results on '"Mariyappan, Sathiya"'
Search Results
2. Unlocking anionic redox activity in O3-type sodium 3d layered oxides via Li substitution
- Author
-
Wang, Qing, Mariyappan, Sathiya, Rousse, Gwenaëlle, Morozov, Anatolii V, Porcheron, Benjamin, Dedryvère, Rémi, Wu, Jinpeng, Yang, Wanli, Zhang, Leiting, Chakir, Mohamed, Avdeev, Maxim, Deschamps, Michaël, Yu, Young-Sang, Cabana, Jordi, Doublet, Marie-Liesse, Abakumov, Artem M, and Tarascon, Jean-Marie
- Subjects
Engineering ,Materials Engineering ,Chemical Sciences ,Physical Chemistry ,Affordable and Clean Energy ,Nanoscience & Nanotechnology - Abstract
Sodium ion batteries, because of their sustainability attributes, could be an attractive alternative to Li-ion technology for specific applications. However, it remains challenging to design high energy density and moisture stable Na-based positive electrodes. Here, we report an O3-type NaLi1/3Mn2/3O2 phase showing anionic redox activity, obtained through a ceramic process by carefully adjusting synthesis conditions and stoichiometry. This phase shows a sustained reversible capacity of 190 mAh g-1 that is rooted in cumulative oxygen and manganese redox processes as deduced by combined spectroscopy techniques. Unlike many other anionic redox layered oxides so far reported, O3-NaLi1/3Mn2/3O2 electrodes do not show discernible voltage fade on cycling. This finding, rationalized by density functional theory, sheds light on the role of inter- versus intralayer 3d cationic migration in ruling voltage fade in anionic redox electrodes. Another practical asset of this material stems from its moisture stability, hence facilitating its handling and electrode processing. Overall, this work offers future directions towards designing highly performing sodium electrodes for advanced Na-ion batteries.
- Published
- 2021
3. Sodium systems – Low temperature (LIB equivalent) | Sodium-ion conductive nonaqueous electrolytes
- Author
-
Forero-Saboya, Juan, primary and Mariyappan, Sathiya, additional
- Published
- 2023
- Full Text
- View/download PDF
4. Zero volt storage of Na-ion batteries: Performance dependence on cell chemistry!
- Author
-
Desai, Parth, Huang, Jiaqiang, Foix, Dominique, Tarascon, Jean-Marie, and Mariyappan, Sathiya
- Published
- 2022
- Full Text
- View/download PDF
5. Practicality of methyl acetate as a co-solvent for fast charging Na-ion battery electrolytes
- Author
-
Desai, Parth, Abou-Rjeily, John, Tarascon, Jean-Marie, and Mariyappan, Sathiya
- Published
- 2022
- Full Text
- View/download PDF
6. A Hydridoaluminate Additive Producing a Protective Coating on Ni‐Rich Cathode Materials in Lithium‐Ion Batteries.
- Author
-
Forero‐Saboya, Juan, Moiseev, Ivan A., Vlara, Marina‐Lamprini, Foix, Dominique, Deschamps, Michael, Abakumov, Artem M., Tarascon, Jean‐Marie, and Mariyappan, Sathiya
- Subjects
ENERGY density ,PROTECTIVE coatings ,TRANSITION metals ,SURFACE impedance ,SURFACE reconstruction - Abstract
To enhance the energy density of Li‐ion batteries, high‐capacity and high‐voltage cathode materials are needed. Recently, Ni‐rich layered oxides have attracted attention as they can offer ≈200 mAh g−1 when cycled up to 4.3 V. However, cycling these materials in their full capacity range often leads to excessive reactivity with the electrolyte, resulting in particle cracking, transition metal dissolution, and oxygen loss. In this study, the use of lithium hydridoaluminates as electrolyte additives is explored for lithium‐ion batteries based on nickel‐rich cathode materials. Being mild reducing agents, these additives act as HF scavengers, avoiding transition metal dissolution from the cathode. Additionally, their oxidation results in the formation of an Al‐rich protective layer on the cathode, which dampens the surface reactivity, preventing surface reconstruction and impedance build‐up. This study further stresses the important role of the cathode‐electrolyte interface phenomena on the capacity degradation of Ni‐rich cathode materials and provides a novel avenue for controlling this reactivity, thus extending their cycling life. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
7. Unraveling gas evolution in sodium batteries by online electrochemical mass spectrometry
- Author
-
Zhang, Leiting, Tsolakidou, Chrysi, Mariyappan, Sathiya, Tarascon, Jean-Marie, and Trabesinger, Sigita
- Published
- 2021
- Full Text
- View/download PDF
8. Challenges of today for Na-based batteries of the future: From materials to cell metrics
- Author
-
Hasa, Ivana, Mariyappan, Sathiya, Saurel, Damien, Adelhelm, Philipp, Koposov, Alexey Y., Masquelier, Christian, Croguennec, Laurence, and Casas-Cabanas, Montse
- Published
- 2021
- Full Text
- View/download PDF
9. Influence of Formation Temperature on Cycling Stability of Sodium-Ion Cells: A Case Study of Na3V2(PO4)2F3|HC Cells
- Author
-
Forero-Saboya, Juan, primary, Desai, Parth, additional, Healy Corominas, Roman, additional, Raymundo-Piñero, Encarnacion, additional, Canizarès, Aurélien, additional, Foix, Dominique, additional, Tarascon, Jean-Marie, additional, and Mariyappan, Sathiya, additional
- Published
- 2023
- Full Text
- View/download PDF
10. Rational Selection of Sodium Layered Oxides for High Performance Na-Ion Batteries: P2 vs O3 vs P2-O3 Intergrowths
- Author
-
Grépin, Elisa, primary, Moiseev, Ivan A., additional, Abakumov, Artem M., additional, Tarascon, Jean-Marie, additional, and Mariyappan, Sathiya, additional
- Published
- 2023
- Full Text
- View/download PDF
11. Higher energy and safer sodium ion batteries via an electrochemically made disordered Na3V2(PO4)2F3 material
- Author
-
Yan, Guochun, Mariyappan, Sathiya, Rousse, Gwenaelle, Jacquet, Quentin, Deschamps, Michael, David, Renald, Mirvaux, Boris, Freeland, John William, and Tarascon, Jean-Marie
- Published
- 2019
- Full Text
- View/download PDF
12. Mastering the synergy between Na3V2(PO4)2F3 electrode and electrolyte: A must for Na-ion cells
- Author
-
Desai, Parth, primary, Forero-Saboya, Juan, additional, Meunier, Valentin, additional, Rousse, Gwenaëlle, additional, Deschamps, Michael, additional, Abakumov, Artem M., additional, Tarascon, Jean-Marie, additional, and Mariyappan, Sathiya, additional
- Published
- 2023
- Full Text
- View/download PDF
13. Mastering the synergy between Na 3 V 2 (PO 4 ) 2 F 3 electrode and electrolyte: A must for Na-ion cells
- Author
-
Desai, Parth, Forero-Saboya, Juan, Meunier, Valentin, Rousse, Gwenaëlle, Deschamps, Michael, Abakumov, Artem M., Tarascon, Jean-Marie, Mariyappan, Sathiya, Collège de France - Chaire Chimie du solide et énergie, Chimie du solide et de l'énergie (CSE), Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), and Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)
- Subjects
hard carbon poisoning ,high temperature cycling ,Renewable Energy, Sustainability and the Environment ,transition metal dissolution ,surface coating ,Energy Engineering and Power Technology ,[CHIM]Chemical Sciences ,General Materials Science ,Na-ion batteries transition metal dissolution hard carbon poisoning surface coating high temperature cycling ,Na-ion batteries - Abstract
International audience; Sodium-ion batteries are emerging as suitable energy storage devices for special applications such as high-power devices with the advantages of being cheaper and more sustainable than the Li-ion equivalents. The sodium ion cells consisting of polyanionic Na 3 V 2 (PO 4) 2 F 3-hard carbon electrodes exhibit high power rate capabilities but limited cycle life, especially at high temperatures. To circumvent this drawback we herein conducted in-depth analyses of the origins of structural degradations occurring in Na 3 V 2 (PO 4) 2 F 3 electrodes upon long cycling. Vanadium dissolution with associated parasitic reactions is identified as one of the major reasons for cell failure. Its amount varies depending on the electrolyte, with NaTFSI-based electrolyte showing the least vanadium dissolution as the TFSI-anion decomposes without producing acidic impurities, in contrast to the Na-PF 6-based electrolyte. The dissolved vanadium species undergoes oxidation and reduction processes at the Na 3 V 2 (PO 4) 2 F 3 and HC electrodes, respectively, with the electrochemical signature of these processes being used as a fingerprint to identify state of health of the 18650 cells. Having found that surface reactivity is the primary cause of vanadium dissolution we provide methods to mitigate it by combining surface coating and optimized electrolyte formulation.
- Published
- 2023
14. Mastering the synergy between Na3V2(PO4)2F3 electrode and electrolyte: A must for Na-ion cells
- Author
-
Mariyappan, Sathiya, primary, Desai, Parth, additional, Forero-Saboya, Juan, additional, Meunier, Valentin, additional, Rousse, Gwenaëlle, additional, Deschamps, Michael, additional, Abakumov, Artem, additional, and Tarascon, Jean-Marie, additional
- Published
- 2022
- Full Text
- View/download PDF
15. Triggering Anionic Redox Activity in Li3NbS4 Through Cationic Disordering or Substitution
- Author
-
Marchandier, Thomas, primary, Mariyappan, Sathiya, additional, Kirsanova, Maria A., additional, Abakumov, Artem M., additional, Rousse, Gwenaëlle, additional, Foix, Dominique, additional, Sougrati, Moulay‐Tahar, additional, Doublet, Marie Liesse, additional, and Tarascon, Jean‐Marie, additional
- Published
- 2022
- Full Text
- View/download PDF
16. Nitrate-Melt Synthesized HT-LiCoO2 as a Superior Cathode-Material for Lithium-Ion Batteries
- Author
-
Mariyappan Sathiya, Kannadka Ramesha, Annigere S. Prakash, and Ashok K. Shukla
- Subjects
LiCoO2 ,synthesis ,nitrate decomposition ,Li-ion batteries ,Technology ,Electrical engineering. Electronics. Nuclear engineering ,TK1-9971 ,Engineering (General). Civil engineering (General) ,TA1-2040 ,Microscopy ,QH201-278.5 ,Descriptive and experimental mechanics ,QC120-168.85 - Abstract
An electrochemically-active high-temperature form of LiCoO2 (HT-LiCoO2)is prepared by thermally decomposing its constituent metal-nitrates at 700 ºC. The synthetic conditions have been optimized to achieve improved performance with the HT-LiCoO2cathode in Li-ion batteries. For this purpose, the synthesized materials have been characterized by powder X-ray diffraction, scanning electron microscopy, and galvanostatic charge-discharge cycling. Cathodes comprising HT-LiCoO2 exhibit a specific capacity of 140 mAhg-1 with good capacity-retention over several charge-discharge cycles in the voltage range between 3.5 V and 4.2 V, and can sustain improved rate capability in contrast to a cathode constituting LiCoO2 prepared by conventional ceramic method. The nitrate-melt-decomposition method is also found effective for synthesizing Mg-/Al- doped HT-LiCoO2; these also are investigated as cathode materials for Li-ion batteries.
- Published
- 2009
- Full Text
- View/download PDF
17. Chemical Design of IrS2 Polymorphs to Understand the Charge/Discharge Asymmetry in Anionic Redox Systems
- Author
-
Marchandier, Thomas, primary, Mariyappan, Sathiya, additional, Abakumov, Artem M., additional, Jobic, Stéphane, additional, Humbert, Bernard, additional, Mevellec, Jean-Yves, additional, Rousse, Gwenaëlle, additional, Avdeev, Maxim, additional, Dedryvère, Rémi, additional, Foix, Dominique, additional, Iadecola, Antonella, additional, Doublet, Marie-Liesse, additional, and Tarascon, Jean-Marie, additional
- Published
- 2021
- Full Text
- View/download PDF
18. Elucidation of Gas Evolution in Model Sodium Battery Cells By Online Electrochemical Mass Spectrometry
- Author
-
Zhang, Leiting, primary, Tsolakidou, Chrysi, additional, Mariyappan, Sathiya, additional, Tarascon, Jean-Marie, additional, and Trabesinger, Sigita, additional
- Published
- 2021
- Full Text
- View/download PDF
19. Triggering Anionic Redox Activity in Li3NbS4 Through Cationic Disordering or Substitution.
- Author
-
Marchandier, Thomas, Mariyappan, Sathiya, Kirsanova, Maria A., Abakumov, Artem M., Rousse, Gwenaëlle, Foix, Dominique, Sougrati, Moulay‐Tahar, Doublet, Marie Liesse, and Tarascon, Jean‐Marie
- Subjects
- *
ANALYTICAL chemistry , *ELECTROCHEMICAL analysis , *CHEMICAL properties , *LITHIUM-ion batteries , *ENERGY density - Abstract
Extensive utilization of Li‐ion batteries for varieties of applications necessitates ceaseless improvements of electrode materials for achieving higher energy density. Towards this goal, Li‐rich layered oxides exhibiting high capacity due to cumulated cationic and anionic redox activities are under study for nearly a decade. Still, several unanswered questions remain with respect to these Li‐driven anionic redox reactions in terms of the activation process and long‐term consequences upon cycling. Here, the Li‐rich Li3NbS4 phase is focused, and synthesized as two different polymorphs, namely ordered and disordered phases. From analyses of their chemical and electrochemical properties, a crystal‐electronic structure relationship is unraveled that triggers the anionic redox activity in these compounds. Moreover, through complementary theoretical calculations, the capability of cationic disorder to trigger anionic redox activity via the hybridization of cationic and non‐bonding anionic energy levels is shown. This finding is further supported by the appearance of anionic redox activity by introducing the disorder through cationic substitution. Altogether, the insights derived can help in designing new anionic redox materials with optimum performances for practical applications. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
20. Deciphering Interfacial Reactions via Optical Sensing to Tune the Interphase Chemistry for Optimized Na‐Ion Electrolyte Formulation
- Author
-
Desai, Parth, primary, Huang, Jiaqiang, additional, Hijazi, Hussein, additional, Zhang, Leiting, additional, Mariyappan, Sathiya, additional, and Tarascon, Jean‐Marie, additional
- Published
- 2021
- Full Text
- View/download PDF
21. Deciphering Interfacial Reactions via Optical Sensing to Tune the Interphase Chemistry for Optimized Na‐Ion Electrolyte Formulation
- Author
-
Desai, Parth, Huang, Jiaqiang, Hijazi, Hussein, Zhang, Leiting, Mariyappan, Sathiya, Tarascon, Jean‐Marie, Desai, Parth, Huang, Jiaqiang, Hijazi, Hussein, Zhang, Leiting, Mariyappan, Sathiya, and Tarascon, Jean‐Marie
- Published
- 2021
- Full Text
- View/download PDF
22. Non‐Aqueous Electrolytes for Sodium‐Ion Batteries: Challenges and Prospects Towards Commercialization
- Author
-
Hijazi, Hussein, primary, Desai, Parth, additional, and Mariyappan, Sathiya, additional
- Published
- 2021
- Full Text
- View/download PDF
23. The Role of Divalent (Zn2+/Mg2+/Cu2+) Substituents in Achieving Full Capacity of Sodium Layered Oxides for Na-Ion Battery Applications
- Author
-
Mariyappan, Sathiya, primary, Marchandier, Thomas, additional, Rabuel, François, additional, Iadecola, Antonella, additional, Rousse, Gwenaëlle, additional, Morozov, Anatoly V., additional, Abakumov, Artem M., additional, and Tarascon, Jean-Marie, additional
- Published
- 2020
- Full Text
- View/download PDF
24. Chemical Design of IrS2 Polymorphs to Understand the Charge/Discharge Asymmetry in Anionic Redox Systems.
- Author
-
Marchandier, Thomas, Mariyappan, Sathiya, Abakumov, Artem M., Jobic, Stéphane, Humbert, Bernard, Mevellec, Jean-Yves, Rousse, Gwenaëlle, Avdeev, Maxim, Dedryvère, Rémi, Foix, Dominique, Iadecola, Antonella, Doublet, Marie-Liesse, and Tarascon, Jean-Marie
- Published
- 2022
- Full Text
- View/download PDF
25. A chemical approach to raise cell voltage and suppress phase transition in O3 sodium layered oxide electrodes
- Author
-
Jean-Marie Tarascon, Joke Hadermann, Quentin Jacquet, Mariyappan Sathiya, Olesia M. Karakulina, Marie-Liesse Doublet, Chaire Chimie du solide et énergie, Chimie du solide et de l'énergie (CSE), Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Sorbonne Université (SU), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), Electron Microscopy for Materials Science - EMAT (Antwerp, Belgium), Universiteit Antwerpen [Antwerpen], Collège de France - Chaire Chimie du solide et énergie, Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), and Universiteit Antwerpen = University of Antwerpen [Antwerpen]
- Subjects
Phase transition ,Materials science ,Oxide ,02 engineering and technology ,010402 general chemistry ,Electrochemistry ,7. Clean energy ,01 natural sciences ,Redox ,Metal ,chemistry.chemical_compound ,Transition metal ,Phase (matter) ,[CHIM]Chemical Sciences ,General Materials Science ,Renewable Energy, Sustainability and the Environment ,Physics ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Chemistry ,Chemical engineering ,chemistry ,visual_art ,Electrode ,visual_art.visual_art_medium ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,0210 nano-technology ,Engineering sciences. Technology - Abstract
International audience; Sodium ion batteries (NIBs) are one of the versatile technologies for low‐cost rechargeable batteries. O3‐type layered sodium transition metal oxides (NaMO2, M = transition metal ions) are one of the most promising positive electrode materials considering their capacity. However, the use of O3 phases is limited due to their low redox voltage and associated multiple phase transitions which are detrimental for long cycling. Herein, a simple strategy is proposed to successfully combat these issues. It consists of the introduction of a larger, nontransition metal ion Sn4+ in NaMO2 to prepare a series of NaNi0.5Mn0.5− y Sn y O2 (y = 0–0.5) compositions with attractive electrochemical performances, namely for y = 0.5, which shows a single‐phase transition from O3 ⇔ P3 at the very end of the oxidation process. Na‐ion NaNi0.5Sn0.5O2/C coin cells are shown to deliver an average cell voltage of 3.1 V with an excellent capacity retention as compared to an average stepwise voltage of ≈2.8 V and limited capacity retention for the pure NaNi0.5Mn0.5O2 phase. This study potentially shows the way to manipulate the O3 NaMO2 for facilitating their practical use in NIBs.
- Published
- 2018
26. A New Electrolyte Formulation for Securing High Temperature Cycling and Storage Performances of Na‐Ion Batteries
- Author
-
Yan, Guochun, primary, Reeves, Kyle, additional, Foix, Dominique, additional, Li, Zhujie, additional, Cometto, Claudio, additional, Mariyappan, Sathiya, additional, Salanne, Mathieu, additional, and Tarascon, Jean‐Marie, additional
- Published
- 2019
- Full Text
- View/download PDF
27. Reaching the Energy Density Limit of Layered O3‐NaNi0.5Mn0.5O2 Electrodes via Dual Cu and Ti Substitution
- Author
-
Wang, Qing, primary, Mariyappan, Sathiya, additional, Vergnet, Jean, additional, Abakumov, Artem M., additional, Rousse, Gwenaëlle, additional, Rabuel, François, additional, Chakir, Mohamed, additional, and Tarascon, Jean‐Marie, additional
- Published
- 2019
- Full Text
- View/download PDF
28. Means of Using Cyclic Voltammetry to Rapidly Design a Stable DMC-Based Electrolyte for Na-Ion Batteries
- Author
-
Cometto, Claudio, primary, Yan, Guochun, additional, Mariyappan, Sathiya, additional, and Tarascon, Jean-Marie, additional
- Published
- 2019
- Full Text
- View/download PDF
29. Dual stabilization and sacrificial effect of Na2CO3 for increasing capacities of Na-ion cells based on P2- NaxMO2 electrodes
- Author
-
Joy Thomas, Mariyappan Sathiya, Dmitry Batuk, Vanessa Pimenta, Raghavan Gopalan, Jean-Marie Tarascon, International Advanced Research Centre for powder metallurgy and new materials, Universiteit Antwerpen [Antwerpen], Chaire Chimie du solide et énergie, Chimie du solide et de l'énergie (CSE), Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU), Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Universiteit Antwerpen = University of Antwerpen [Antwerpen], Collège de France - Chaire Chimie du solide et énergie, Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), and Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)
- Subjects
chemistry.chemical_classification ,Physics ,General Chemical Engineering ,Sodium ,Inorganic chemistry ,Oxide ,Sodium-ion battery ,Salt (chemistry) ,chemistry.chemical_element ,02 engineering and technology ,General Chemistry ,[CHIM.MATE]Chemical Sciences/Material chemistry ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,Ion ,Chemistry ,chemistry.chemical_compound ,chemistry ,Phase (matter) ,Materials Chemistry ,Lithium ,0210 nano-technology ,Sodium carbonate - Abstract
International audience; Sodium ion battery technology is gradually advancing and can be viewed as a viable alternative to lithium ion batteries in niche applications. One of the promising positive electrode candidates is P2 type layered sodium transition metal oxide, which offers attractive sodium ion conductivity. However, the reversible capacity of P2 phases is limited by the inability to directly synthesize stoichiometric compounds with sodium to transition metal ratio equals to 1. To alleviate this issue, we report herein the in-situ synthesis of P2-NaxMO2 (x≤ 0.7, M= transition metal ions) - Na2CO3 composites. We find that sodium carbonate acts as a sacrificial salt, providing Na+ ion to increase the reversible capacity of the P2 phase in sodium ion full cells, and also as a useful additive that stabilizes the formation of P2 over competing P3 phases. We offer a new phase diagram for tuning the synthesis of the P2 phase under various experimental conditions and demonstrate, by in-situ XRD analysis, the role of Na2CO3 as a sodium reservoir in full sodium ion cells. These results provide insights into the practical use of P2 layered materials and can be extended to a variety of other layered phases.
- Published
- 2017
30. Synthesis of Li-Rich NMC: A Comprehensive Study
- Author
-
Mariyappan Sathiya, Jean-Marie Tarascon, Dmitry Batuk, Vanessa Pimenta, Dominique Larcher, Domitille Giaume, Artem M. Abakumov, Sophie Cassaignon, Chimie du solide et de l'énergie (CSE), Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA), Collège de France - Chaire Chimie du solide et énergie, Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Universiteit Antwerpen = University of Antwerpen [Antwerpen], Skolkovo Institute of Science and Technology [Moscow] (Skoltech), Institut de Recherche de Chimie Paris (IRCP), Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Ministère de la Culture (MC), Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire réactivité et chimie des solides - UMR CNRS 7314 (LRCS), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Chaire Chimie du solide et énergie, Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU), Universiteit Antwerpen [Antwerpen], Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Ministère de la Culture (MC), and Université de Picardie Jules Verne (UPJV)
- Subjects
Coprecipitation ,General Chemical Engineering ,Kinetics ,Solid-state ,Nanotechnology ,02 engineering and technology ,010402 general chemistry ,Electrochemistry ,01 natural sciences ,law.invention ,chemistry.chemical_compound ,law ,Materials Chemistry ,Physics ,General Chemistry ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,Cathode ,0104 chemical sciences ,Chemistry ,chemistry ,Chemical engineering ,Electrode ,Energy density ,Carbonate ,0210 nano-technology - Abstract
International audience; Li-rich NMC are considered nowadays as one of the most promising candidates for high energy density cathodes. One significant challenge is nested in adjusting their synthesis conditions to reach optimum electrochemical performance, but no consensus has been reached yet on the ideal synthesis protocol. Herein we revisited the elaboration of Li-rich NMC electrodes by focusing on the science involved through each synthesis steps using carbonate Ni 0.1625 Mn 0.675 Co 0.1625 CO 3 precursor co-precipitation combined with solid state synthesis. We demonstrate the effect of precursor's concentration on the kinetics of the precipitation reaction and provide clues to obtain spherically agglomerated NMC carbonates of different sizes. Moreover, we highlight the strong impact of the Li 2 CO 3 /NMC carbonate ratio on the morphology and particles size of Li-rich NMC and subsequently on their electrochemical performance. Ratio of 1.35 was found to reproducibly give the best performance with namely a 1 st discharge capacity of 269 mAh.g-1 and capacity retention of 89.6% after 100 cycles. We hope that our results, which reveal how particle size, morphology and phase composition affect the material's electrochemical performance, will help in reconciling literature data while providing valuable fundamental information for up scaling approaches.
- Published
- 2017
31. Will Sodium Layered Oxides Ever Be Competitive for Sodium Ion Battery Applications?
- Author
-
Mariyappan, Sathiya, primary, Wang, Qing, additional, and Tarascon, Jean Marie, additional
- Published
- 2018
- Full Text
- View/download PDF
32. Rotating Ring Disk Electrode for Monitoring the Oxygen Release at High Potentials in Li-Rich Layered Oxides
- Author
-
Yin, Wei, primary, Mariyappan, Sathiya, additional, Grimaud, Alexis, additional, and Tarascon, J. M., additional
- Published
- 2018
- Full Text
- View/download PDF
33. X-ray Photoemission Spectroscopy Study of Cationic and Anionic Redox Processes in High-Capacity Li-Ion Battery Layered-Oxide Electrodes
- Author
-
Jean-Marie Tarascon, Eric McCalla, Danielle Gonbeau, Dominique Foix, Mariyappan Sathiya, Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux (IPREM), Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire réactivité et chimie des solides - UMR CNRS 7314 (LRCS), Université de Picardie Jules Verne (UPJV)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Advanced Lithium Energy Storage Systems - ALISTORE-ERI (ALISTORE-ERI), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Chaire Chimie du solide et énergie, Chimie du solide et de l'énergie (CSE), Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA), Collège de France - Chaire Chimie du solide et énergie, and Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Valence (chemistry) ,Photoemission spectroscopy ,Inorganic chemistry ,Oxide ,Cationic polymerization ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,7. Clean energy ,01 natural sciences ,Redox ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,chemistry.chemical_compound ,General Energy ,chemistry ,X-ray photoelectron spectroscopy ,Covalent bond ,[CHIM]Chemical Sciences ,Physical and Theoretical Chemistry ,0210 nano-technology ,Spectroscopy - Abstract
International audience; Electrode materials based on Li-rich layered oxides are of growing interest for high-energy Li-ion battery applications because of their staggering capacities associated with the emergence of a novel, reversible anionic process. However, the fundamental science at work behind this new process needs to be well understood for further optimization. Here we report on the redox mechanisms in high-capacity Li-rich materials Li2Ru1-xMxO3 and Li2Ir1-xMxO3, by combining X-ray photoemission spectroscopy (XPS) core peaks and valence intensity analyses. We fully confirm that these materials electrochemically react with Li via cumulative reversible cationic/anionic redox processes, but more importantly we reveal that, depending on the nature of the metal (Ru or Ir), there is a delicate balance between metal and oxygen contributions. For instance, we show a greater implication of oxide ions for Ir-based electrodes, consistent with the higher covalent character of Ir-O bonds compared to Ru-O bonds. We equally provide evidence that the oxygen redox process is responsible for the high capacity displayed by the Li-rich NMC Li1.2Ni0.13Co0.13Mn0.54O2 electrodes that are serious contenders for the next generation of Li-ion batteries. These combined results highlight the benefit of collecting both XPS core and valence spectra for a better understanding of anionic redox mechanisms in Li-rich layered oxides. © 2015 American Chemical Society.
- Published
- 2016
34. Unlocking anionic redox activity in O3-type sodium 3dlayered oxides via Li substitution
- Author
-
Wang, Qing, Mariyappan, Sathiya, Rousse, Gwenaëlle, Morozov, Anatolii V., Porcheron, Benjamin, Dedryvère, Rémi, Wu, Jinpeng, Yang, Wanli, Zhang, Leiting, Chakir, Mohamed, Avdeev, Maxim, Deschamps, Michaël, Yu, Young-Sang, Cabana, Jordi, Doublet, Marie-Liesse, Abakumov, Artem M., and Tarascon, Jean-Marie
- Abstract
Sodium ion batteries, because of their sustainability attributes, could be an attractive alternative to Li-ion technology for specific applications. However, it remains challenging to design high energy density and moisture stable Na-based positive electrodes. Here, we report an O3-type NaLi1/3Mn2/3O2phase showing anionic redox activity, obtained through a ceramic process by carefully adjusting synthesis conditions and stoichiometry. This phase shows a sustained reversible capacity of 190 mAh g−1that is rooted in cumulative oxygen and manganese redox processes as deduced by combined spectroscopy techniques. Unlike many other anionic redox layered oxides so far reported, O3-NaLi1/3Mn2/3O2electrodes do not show discernible voltage fade on cycling. This finding, rationalized by density functional theory, sheds light on the role of inter- versus intralayer 3dcationic migration in ruling voltage fade in anionic redox electrodes. Another practical asset of this material stems from its moisture stability, hence facilitating its handling and electrode processing. Overall, this work offers future directions towards designing highly performing sodium electrodes for advanced Na-ion batteries.
- Published
- 2021
- Full Text
- View/download PDF
35. Anionic Redox Activity in a Newly Zn-Doped Sodium Layered Oxide P2-Na2/3 Mn1− y Zn y O2 (0 < y < 0.23)
- Author
-
Jean Vergnet, Matthieu Saubanère, Artem M. Abakumov, Patrick Rozier, Mariyappan Sathiya, Beatriz Mendoza-Sánchez, Antonella Iadecola, Xue Bai, Rémi Dedryvère, and Jean-Marie Tarascon
- Subjects
Battery (electricity) ,Materials science ,Renewable Energy, Sustainability and the Environment ,Sodium ,Inorganic chemistry ,Cationic polymerization ,Oxide ,chemistry.chemical_element ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Oxygen ,0104 chemical sciences ,Redox Activity ,chemistry.chemical_compound ,chemistry ,Phase (matter) ,General Materials Science ,Density functional theory ,0210 nano-technology - Abstract
The revival of the Na‐ion battery concept has prompted intense research activities toward new sustainable Na‐based insertion compounds and their implementation in full Na‐ion cells. Efforts are parted between Na‐based polyanionic and layered compounds. For the latter, there has been a specific focus on Na‐deficient layered phases that show cationic and anionic redox activity similar to a Na0.67Mn0.72Mg0.28O2 phase. Herein, a new alkali‐deficient P2‐Na2/3Mn7/9Zn2/9O2 phase using a more electronegative element (Zn) than Mg is reported. Like its Mg counterpart, this phase shows anionic redox activity and no O2 release despite evidence of cationic migration. Density functional theory (DFT) calculations show that it is the presence of an oxygen nonbonding state that triggers the anionic redox activity in this material. The phase delivers a reversible capacity of 200 mAh g−1 in Na‐half cells with such a value be reduced to 140 mAh g−1 in full Na‐ion cells which additionally shows capacity decay upon cycling. These findings establish Na‐deficient layered oxides as a promising platform to further explore the underlying science behind O2 release in insertion compounds based on anionic redox activity.
- Published
- 2018
36. Rapid synthetic routes to prepare LiNi1/3Mn1/3Co1/3O2 as a high voltage, high-capacity Li-ion battery cathode material
- Author
-
Kannadka Ramesha, A.K. Shukla, Annigere S. Prakash, and Mariyappan Sathiya
- Subjects
Materials science ,Mechanics of Materials ,Cathode material ,Mechanical Engineering ,Analytical chemistry ,General Materials Science ,High capacity ,Condensed Matter Physics ,Electrochemistry ,Combustion ,Ion ,Voltage - Abstract
LiNi1/3Mn1/3Co1/3O2, a high voltage and high-capacity cathode material for Li-ion batteries, has been synthesized by three different rapid synthetic methods. viz. nitrate-melt decomposition, combustion and sol-gel methods. The first two methods are ultra rapid and a time period as small as 15 min is sufficient to prepare nano-crystalline LiNi1/3Mn1/3Co1/3O2. The processing parameters in obtaining the best performing materials are optimized for each process and their electrochemical performance is evaluated in Li-ion cells. The combustion-derived LiNi1/3Mn1/3Co1/3O2 sample exhibits large extent of cation mixing (10%) while the other two methods yield LiNi1/3Mn1/3Co1/3O2 with cation mixing
- Published
- 2009
37. Nitrate-Melt Synthesized HT-LiCoO2 as a Superior Cathode-Material for Lithium-Ion Batteries
- Author
-
Annigere S. Prakash, Ashok Kumar Shukla, Kannadka Ramesha, and Mariyappan Sathiya
- Subjects
Diffraction ,Materials science ,synthesis ,Scanning electron microscope ,Inorganic chemistry ,chemistry.chemical_element ,Li-ion batteries ,lcsh:Technology ,Article ,law.invention ,Ion ,chemistry.chemical_compound ,Nitrate ,law ,nitrate decomposition ,General Materials Science ,Ceramic ,LiCoO2 ,lcsh:Microscopy ,lcsh:QC120-168.85 ,lcsh:QH201-278.5 ,lcsh:T ,Doping ,Cathode ,chemistry ,lcsh:TA1-2040 ,visual_art ,visual_art.visual_art_medium ,Lithium ,lcsh:Descriptive and experimental mechanics ,lcsh:Electrical engineering. Electronics. Nuclear engineering ,lcsh:Engineering (General). Civil engineering (General) ,lcsh:TK1-9971 - Abstract
An electrochemically-active high-temperature form of LiCoO2 (HT-LiCoO2) is prepared by thermally decomposing its constituent metal-nitrates at 700 ºC. The synthetic conditions have been optimized to achieve improved performance with the HT-LiCoO2 cathode in Li-ion batteries. For this purpose, the synthesized materials have been characterized by powder X-ray diffraction, scanning electron microscopy, and galvanostatic charge-discharge cycling. Cathodes comprising HT-LiCoO2 exhibit a specific capacity of 140 mAhg-1 with good capacity-retention over several charge-discharge cycles in the voltage range between 3.5 V and 4.2 V, and can sustain improved rate capability in contrast to a cathode constituting LiCoO2 prepared by conventional ceramic method. The nitrate-melt-decomposition method is also found effective for synthesizing Mg-/Al- doped HT-LiCoO2; these also are investigated as cathode materials for Li-ion batteries.
- Published
- 2009
38. Anionic redox chemistry in Na-rich Na2Ru1−ySnyO3 positive electrode material for Na-ion batteries
- Author
-
Pierre-Louis Taberna, Mariyappan Sathiya, Patrice Simon, Dominique Foix, Thomas Desaunay, Jean-Marie Tarascon, Alagar Raj Paulraj, Patrick Rozier, Centre interuniversitaire de recherche et d'ingenierie des matériaux (CIRIMAT), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT), Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA), Collège de France - Chaire Chimie du solide et énergie, Chimie du solide et de l'énergie (CSE), Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut pluridisciplinaire de recherche sur l'environnement et les matériaux (IPREM), Université de Pau et des Pays de l'Adour (UPPA)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Chaire Chimie du solide et énergie, Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU), Institut Pluridisciplinaire de Recherche sur l'Environnement et les Matériaux (IPREM), Centre National de la Recherche Scientifique - CNRS (FRANCE), Collège de France (FRANCE), Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE), Université Pierre et Marie Curie, Paris 6 - UPMC (FRANCE), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), Université de Pau et des Pays de l'Adour - UPPA (FRANCE), and Institut National Polytechnique de Toulouse - INPT (FRANCE)
- Subjects
Cathode materials ,Matériaux ,Inorganic chemistry ,Anionic redox activity ,02 engineering and technology ,010402 general chemistry ,Electrochemistry ,01 natural sciences ,Redox ,Science des matériaux ,Na-ion batteries ,[SPI.MAT]Engineering Sciences [physics]/Materials ,lcsh:Chemistry ,Crystallinity ,Na-rich phases ,X-ray photoelectron spectroscopy ,Electrode material ,Chemistry ,Cationic polymerization ,High capacity ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,lcsh:Industrial electrochemistry ,lcsh:QD1-999 ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,0210 nano-technology ,lcsh:TP250-261 - Abstract
The synthesis and Na- electrochemical activity of Na-rich layered Na2Ru1−ySnyO3 compounds is reported. Like their Li-analogue, Na2Ru1−ySnyO3 shows capacities that exceed theoretical capacity calculated from the cationic redox species. The high capacity was found, by means of XPS analysis, to be associated to the accumulation of both cationic (Ru4+/Ru5+) and anionic (O2−/O2n−) redox processes. The structural evolutions during cycling have been followed and found to be associated with the cation disordering and loss of crystallinity on cycling. Keywords: Na-ion batteries, Cathode materials, Na-rich phases, Anionic redox activity
- Published
- 2015
39. Understanding the Roles of Anionic Redox and Oxygen Release during Electrochemical Cycling of Lithium-Rich Layered Li4FeSbO6
- Author
-
Gustaaf Van Tendeloo, Nadir Recham, Petr Novák, Moulay Tahar Sougrati, Gwenaëlle Rousse, Jean-Marie Tarascon, Erik J. Berg, Mariyappan Sathiya, Eric McCalla, Artem M. Abakumov, Kannadka Ramesha, Robert Dominko, Advanced Lithium Energy Storage Systems - ALISTORE-ERI (ALISTORE-ERI), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Collège de France - Chaire Chimie du solide et énergie, Chimie du solide et de l'énergie (CSE), Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), National Institute of Chemistry, Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Institut de minéralogie et de physique des milieux condensés (IMPMC), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS), Paul Scherrer Institute (PSI), EMAT, University of Antwerp, University of Antwerp (UA), Laboratoire réactivité et chimie des solides - UMR CNRS 7314 (LRCS), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), CSIR (CSIR), CSIR, Laboratory for Materials Electrochemistry, Chaire Chimie du solide et énergie, Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), Université Pierre et Marie Curie - Paris 6 (UPMC)-IPG PARIS-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), and Université de Picardie Jules Verne (UPJV)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)
- Subjects
Inorganic chemistry ,chemistry.chemical_element ,General Chemistry ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Electrochemistry ,Photochemistry ,Biochemistry ,Oxygen ,Redox ,Catalysis ,Crystallinity ,Chemistry ,Colloid and Surface Chemistry ,Antimony ,chemistry ,Phase (matter) ,Electrode ,Lithium ,ComputingMilieux_MISCELLANEOUS - Abstract
Li-rich oxides continue to be of immense interest as potential next generation Li-ion battery positive electrodes, and yet the role of oxygen during cycling is still poorly understood. Here, the complex electrochemical behavior of Li4FeSbO6 materials is studied thoroughly with a variety of methods. Herein, we show that oxygen release occurs at a distinct voltage plateau from the peroxo/superoxo formation making this material ideal for revealing new aspects of oxygen redox processes in Li-rich oxides. Moreover, we directly demonstrate the limited reversibility of the oxygenated species (O-2(n-); n = 1, 2, 3) for the first time. We also find that during charge to 4.2 V iron is oxidized from +3 to an unusual +4 state with the concomitant formation of oxygenated species. Upon further charge to 5.0 V, an oxygen release process associated with the reduction of iron +4 to +3 is present, indicative of the reductive coupling mechanism between oxygen and metals previously reported. Thus, in full state of charge, lithium removal is fully compensated by oxygen only, as the iron and antimony are both very close to their pristine states. Besides, this charging step results in complex phase transformations that are ultimately destructive to the crystallinity of the material. Such findings again demonstrate the vital importance of fully understanding the behavior of oxygen in such systems. The consequences of these new aspects of the electrochemical behavior of lithium-rich oxides are discussed in detail.
- Published
- 2015
40. Electron paramagnetic resonance imaging for real-time monitoring of Li-ion batteries
- Author
-
J.-B Leriche, Elodie Salager, Hervé Vezin, Jean-Marie Tarascon, Didier Gourier, Mariyappan Sathiya, Université Pierre et Marie Curie - Paris 6 (UPMC), Collège de France - Chaire Chimie du solide et énergie, Chimie du solide et de l'énergie (CSE), Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire réactivité et chimie des solides - UMR CNRS 7314 (LRCS), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA), Conditions Extrêmes et Matériaux : Haute Température et Irradiation (CEMHTI), Université d'Orléans (UO)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL), Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement - UMR 8516 (LASIRE), Institut de Chimie du CNRS (INC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Sorbonne Universités, Collège de France (CDF), Collège de France (CdF), Laboratoire réactivité et chimie des solides (LRCS), Université de Picardie Jules Verne (UPJV)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS), Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS), Research University Chimie Paristech (PSL), Laboratoire de Spectrochimie Infrarouge et Raman - UMR 8516 (LASIR), Université de Lille-Centre National de la Recherche Scientifique (CNRS), Chaire Chimie du solide et énergie, Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU), Université de Picardie Jules Verne (UPJV)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), and Institut de Chimie du CNRS (INC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Centrale Lille Institut (CLIL)
- Subjects
Materials science ,Analytical chemistry ,Nucleation ,Oxide ,General Physics and Astronomy ,Nanotechnology ,7. Clean energy ,Redox ,Article ,General Biochemistry, Genetics and Molecular Biology ,Ion ,law.invention ,Paramagnetism ,chemistry.chemical_compound ,Operando spectroscopy ,law ,Electron paramagnetic resonance ,Multidisciplinary ,General Chemistry ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,[SPI.ELEC]Engineering Sciences [physics]/Electromagnetism ,Chemical sciences ,chemistry ,Electrode - Abstract
Batteries for electrical storage are central to any future alternative energy paradigm. The ability to probe the redox mechanisms occurring at electrodes during their operation is essential to improve battery performances. Here we present the first report on Electron Paramagnetic Resonance operando spectroscopy and in situ imaging of a Li-ion battery using Li2Ru0.75Sn0.25O3, a high-capacity (>270 mAh g−1) Li-rich layered oxide, as positive electrode. By monitoring operando the electron paramagnetic resonance signals of Ru5+ and paramagnetic oxygen species, we unambiguously prove the formation of reversible (O2)n− species that contribute to their high capacity. In addition, we visualize by imaging with micrometric resolution the plating/stripping of Li at the negative electrode and highlight the zones of nucleation and growth of Ru5+/oxygen species at the positive electrode. This efficient way to locate ‘electron’-related phenomena opens a new area in the field of battery characterization that should enable future breakthroughs in battery research., It is important as well as challenging to in situ probe redox mechanisms occurring at battery electrodes. Here, the authors develop an in situ electron paramagnetic resonance imaging technique and provide measurements on the nucleation growth of the anionic and cationic redox species at a battery electrode.
- Published
- 2015
41. Origin of voltage decay in high-capacity layered oxide electrodes
- Author
-
Marie-Liesse Doublet, Matthieu Saubanère, Danielle Gonbeau, Prakash As, VanTendeloo G, Artem M. Abakumov, Laisa Cp, Jean-Marie Tarascon, Hervé Vezin, Kannadka Ramesha, Gwenaëlle Rousse, Dominique Foix, Mariyappan Sathiya, Laboratoire réactivité et chimie des solides - UMR CNRS 7314 (LRCS), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Advanced Lithium Energy Storage Systems - ALISTORE-ERI (ALISTORE-ERI), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA), EMAT, University of Antwerp, University of Antwerp (UA), Institut pluridisciplinaire de recherche sur l'environnement et les matériaux (IPREM), Université de Pau et des Pays de l'Adour (UPPA)-Centre National de la Recherche Scientifique (CNRS), Institut de minéralogie et de physique des milieux condensés (IMPMC), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS), Collège de France - Chaire Chimie du solide et énergie, Chimie du solide et de l'énergie (CSE), Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), CSIR (CSIR), CSIR, Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement - UMR 8516 (LASIRE), Institut de Chimie du CNRS (INC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Université de Picardie Jules Verne (UPJV)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Institut Pluridisciplinaire de Recherche sur l'Environnement et les Matériaux (IPREM), Université Pierre et Marie Curie - Paris 6 (UPMC)-IPG PARIS-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Chaire Chimie du solide et énergie, Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), and Institut de Chimie du CNRS (INC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Centrale Lille Institut (CLIL)
- Subjects
Metal ions in aqueous solution ,Analytical chemistry ,Oxide ,Li-ion batteries ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,Ion ,Metal ,chemistry.chemical_compound ,X-ray photoelectron spectroscopy ,General Materials Science ,Ionic radius ,Chemistry ,Physics ,Mechanical Engineering ,General Chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,0104 chemical sciences ,Mechanics of Materials ,Transmission electron microscopy ,visual_art ,Electrode ,visual_art.visual_art_medium ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,0210 nano-technology - Abstract
International audience; Although Li-rich layered oxides (Li1+xNiyCozMn1−x−y−zO2 > 250 mAh g−1) are attractive electrode materials providing energy densities more than 15% higher than today’s commercial Li-ion cells, they suffer from voltage decay on cycling. To elucidate the origin of this phenomenon, we employ chemical substitution in structurally related Li2RuO3 compounds. Li-rich layered Li2Ru1−yTiyO3 phases with capacities of ~240 mAh g−1 exhibit the characteristic voltage decay on cycling. A combination of transmission electron microscopy and X-ray photoelectron spectroscopy studies reveals that the migration of cations between metal layers and Li layers is an intrinsic feature of the charge–discharge process that increases the trapping of metal ions in interstitial tetrahedral sites. A correlation between these trapped ions and the voltage decay is established by expanding the study to both Li2Ru1−ySnyO3 and Li2RuO3; the slowest decay occurs for the cations with the largest ionic radii. This effect is robust, and the finding provides insights into new chemistry to be explored for developing high-capacity layered electrodes that evade voltage decay.
- Published
- 2015
42. Optimal Ti-Substitution in Layered Oxide Cathodes for Na-Ion Batteries
- Author
-
Grépin, Elisa, Zhou, Yue, Li, Biao, Rousse, Gwenaëlle, Tarascon, Jean-Marie, and Mariyappan, Sathiya
- Abstract
Sodium layered oxides NaxMO2(x≤ 1 and M = transition metal ions) gain interest as sodium-ion battery (NIB) cathodes due to their high energy density and cost-effectiveness. The nature of transition metal ions (M) defines the material properties, and the substitution of M with redox inactive Ti4+is often seen as beneficial in reducing phase transitions during cycling and thus improving the cycle life. In this respect, our present study focuses on understanding the origin of this improvement by studying the highly substituted P2 Na0.67Ni0.30Zn0.03Mn0.67–yTiyO2(0 ≤ y≤ 0.67) phases based on their electrochemical performance combined with structural analyses and DFT calculations. The results indicate that Ti4+, by increasing the M–O bond ionicity, disrupts the Na+-vacancy ordering at lower voltages (<4 V, until ∼60% SOC) and reduces the participation of O 2pin the redox process, thereby suppressing Na-removal and the extent of P2–O2 phase transition at high voltages. We show that this effect becomes maximum for y= 0.52 (P2 Na0.67Ni0.30Zn0.03Mn0.15Ti0.52O2) and beyond, for which we observe a nearly solid-solution-like behavior of the P2-type structure. However, the d0Ti4+is prone to cation migration leading to poor structural reversibility as observed from operando XRD analyses, making the highly Ti4+-substituted material less suitable for practical applications. An optimum ratio of y= 0.3 (Na0.67Ni0.3Zn0.03Mn0.37Ti0.3O2) is beneficial for the cycle life as well as rate capability, and the study points to the importance of carefully selecting transition metal combinations in the finest ratio to achieve the best performing sodium layered oxide electrode materials.
- Published
- 2024
- Full Text
- View/download PDF
43. Influence of Formation Temperature on Cycling Stability of Sodium-Ion Cells: A Case Study of Na3V2(PO4)2F3 | HC Cells.
- Author
-
Forero-Saboya, Juan, Desai, Parth, Raymundo-Piñero, Encarnacion, Canizares, Aurélien, Foix, Dominique, Mariyappan, Sathiya, and Tarascon, Jean-Marie
- Published
- 2023
- Full Text
- View/download PDF
44. Solid-state NMR of the family of positive electrode materials Li2Ru1-ySnyO3 for lithium-ion batteries
- Author
-
Elodie Salager, Hervé Vezin, Vincent Sarou-Kanian, Catherine Bessada, Philippe Melin, Michaël Deschamps, Mingxue Tang, Mariyappan Sathiya, Jean Bernard Leriche, Jean-Marie Tarascon, Zhongli Wang, Conditions Extrêmes et Matériaux : Haute Température et Irradiation (CEMHTI), Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS), Réseau sur le stockage électrochimique de l'énergie (RS2E), Centre National de la Recherche Scientifique (CNRS), Collège de France (CDF), Collège de France (CdF), Laboratoire réactivité et chimie des solides (LRCS), Université de Picardie Jules Verne (UPJV)-Centre National de la Recherche Scientifique (CNRS), Alistore ERI, Laboratoire de Spectrochimie Infrarouge et Raman - UMR 8516 (LASIR), Université de Lille-Centre National de la Recherche Scientifique (CNRS), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Université d'Orléans (UO)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Chaire Chimie du solide et énergie, Chimie du solide et de l'énergie (CSE), Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU), Laboratoire réactivité et chimie des solides - UMR CNRS 7314 (LRCS), Université de Picardie Jules Verne (UPJV)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Advanced Lithium Energy Storage Systems - ALISTORE-ERI (ALISTORE-ERI), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement - UMR 8516 (LASIRE), Institut de Chimie du CNRS (INC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Centrale Lille Institut (CLIL), Centre National de la recherche scientifique (CNRS)Agence Nationale de la Recherche (ANR)European Regional Development Fund (ERDF/FEDER) in region Centre, ANR-10-LABX-0076,STORE-EX,Laboratory of excellency for electrochemical energy storage(2010), ANR-09-BLAN-0188,MILIFOX,Milieux Fondus à haute température : nouvelle approche expérimentale et théorique des oxo et fluoroacidités(2009), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA), Collège de France - Chaire Chimie du solide et énergie, Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie du CNRS (INC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), and Centre National de la Recherche Scientifique (CNRS)-Université de Lille
- Subjects
Lithium-ion batteries ,Electronic structure ,Spectroscopic studies ,General Chemical Engineering ,Analytical chemistry ,chemistry.chemical_element ,Li-ion batteries ,Lithium ,Spectroscopic analysis ,Ruthenium ,solid-state ,Lithium-ion battery ,Electrochemical cell ,Ion ,Paramagnetism ,Magnetic resonance imaging ,substitution ,Magnetic resonance imaging MRI ,Materials Chemistry ,Positive electrodes ,Redox reactions ,Electrodes ,Nuclear magnetic resonance spectroscopy ,paramagnetic ,Lithium alloys ,Lithium compounds ,Positive electrode materials ,disorder ,[CHIM.MATE]Chemical Sciences/Material chemistry ,General Chemistry ,Electric batteries ,lithium batteries ,NMR spectra database ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,positive electrode ,Crystallography ,Solid-state nuclear magnetic resonance ,chemistry ,electrolyte decomposition ,Tin ,battery ,nuclear magnetic resonance NMR ,Solid state nmr - Abstract
This document is the Accepted Manuscript version of a Published Work that appeared in final form in Chemistry of Materials, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work, see http://pubs.acs.org/articlesonrequest/AOR-edDmXCWYqzMgy4MWqMqV.; International audience; The possibilities offered by ex situ and in situ operando 7Li solid-state nuclear magnetic resonance (NMR) are explored for the Li2Ru1-ySnyO3 family (0
- Published
- 2014
45. Sodium systems – Low temperature (LIB equivalent) | Sodium-ion conductive nonaqueous electrolytes
- Author
-
Forero-Saboya, Juan and Mariyappan, Sathiya
- Published
- 2013
- Full Text
- View/download PDF
46. Rotating Ring Disk Electrode for Monitoring the Oxygen Release at High Potentials in Li-Rich Layered Oxides.
- Author
-
Wei Yin, Mariyappan, Sathiya, Grimaud, Alexis, and Tarascon, J. M.
- Subjects
ELECTRODES ,ANIONS ,CATIONS - Abstract
Li-rich layered oxides show a staggering capacity that relies on cumulative cationic and anionic redox processes. However, their practical applications are plagued by roadblocks dealing with large hysteresis, capacity fade and irreversible oxygen loss during the first charge that causes undesirable structural changes. Hence, the first step to screen the Li-rich layered oxides is the identification of this gas release phenomenon and its better understanding. Online electrochemical mass spectrometry (OEMS) is presently used for the elucidation of gas evolution, but its usage is lengthy and far to be routine. Herein we propose the utilization of the simple rotating ring disc electrode (RRDE) technique for the identification of O
2 release phenomenon and hence the quick screening of Li-rich layered oxides. We have evaluated the feasibility of RRDE to monitor the O2 generation by conducting studies on Li-half cells having various Li-rich layered oxides as cathodes and found that our results nicely compare with those obtained by OEMS, hence demonstrating the validity of RRDE technique. The proposed RRDE approach which offers high sensitivity for the identification of O2 release while being fast and simple should greatly help to advance the understanding of oxygen redox processes and promote the design of new materials. [ABSTRACT FROM AUTHOR]- Published
- 2018
- Full Text
- View/download PDF
47. High Performance Li2Ru1−yMnyO3 (0.2 ≤ y ≤ 0.8) Cathode Materials for Rechargeable Lithium-Ion Batteries: Their Understanding
- Author
-
Jean-Marie Tarascon, Kannadka Ramesha, Gwenaëlle Rousse, Danielle Gonbeau, Mariyappan Sathiya, Marie-Liesse Doublet, K. Hemalatha, Dominique Foix, Annigere S. Prakash, Laboratoire réactivité et chimie des solides - UMR CNRS 7314 (LRCS), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Advanced Lithium Energy Storage Systems - ALISTORE-ERI (ALISTORE-ERI), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), CSIR Central Electrochemical Research Institute (CSIR), CSIR, Institut de minéralogie et de physique des milieux condensés (IMPMC), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS), Institut pluridisciplinaire de recherche sur l'environnement et les matériaux (IPREM), Université de Pau et des Pays de l'Adour (UPPA)-Centre National de la Recherche Scientifique (CNRS), Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université de Picardie Jules Verne (UPJV)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Université Pierre et Marie Curie - Paris 6 (UPMC)-IPG PARIS-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Institut Pluridisciplinaire de Recherche sur l'Environnement et les Matériaux (IPREM), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), and Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC)
- Subjects
Materials science ,General Chemical Engineering ,Analytical chemistry ,chemistry.chemical_element ,02 engineering and technology ,General Chemistry ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Redox ,Cathode ,0104 chemical sciences ,Ion ,law.invention ,Ruthenium ,chemistry ,X-ray photoelectron spectroscopy ,law ,Materials Chemistry ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Lithium ,0210 nano-technology ,Voltage ,Solid solution - Abstract
International audience; Understanding the origin of the high capacity displayed by Li2MnO3−LiMO2 (M = Ni, Co) composites is essential for improving their cycling and rate capability performances. To address this issue, the Li2Ru1−yMnyO3 series between the iso-structural layered end-members Li2MnO3 and Li2RuO3 was investigated. A complete solid solution was found, with the 0.4 ≤ y ≤ 0.6 members showing sustainable reversible capacities exceeding 220 mAh*g−1 centered around 3.6 V vs Li+/Li. The voltage−composition profiles display a plateau on the first charge as compared to an S-type curve on subsequent discharge which is maintained on the following charges/discharges, with therefore a lowering of the average voltage. We show this profile to evolve upon long cycling due to a structural phase transition as deduced from XRD measurements. Finally we demonstrate, via XPS measurements, the oxidation and reduction of ruthenium (Ru5+/Ru4+) during cycling together with a partial activity of the Mn4+/Mn3+ redox couple. Moreover, we provide direct evidence for the reversibility of the O2− → O− anionic process upon cycling, hence accounting for the high capacity displayed by these materials. This work, by capturing the main redox processes pertaining to these materials, should facilitate their development.
- Published
- 2013
48. Understanding and Promoting the Rapid Preparation of the Triplite- Phase of LiFeSO4F for Use as a Large-Potential Fe Cathode
- Author
-
Jean-Marie Tarascon, Brent C. Melot, Sylvain Boulineau, Gwenaëlle Rousse, Artem M. Abakumov, Marine Reynaud, Mohamed Ati, Mariyappan Sathiya, Gustaaf Van Tendeloo, Laboratoire réactivité et chimie des solides - UMR CNRS 7314 (LRCS), Université de Picardie Jules Verne (UPJV)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Advanced Lithium Energy Storage Systems - ALISTORE-ERI (ALISTORE-ERI), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), EMAT, University of Antwerp, University of Antwerp (UA), Institut de minéralogie et de physique des milieux condensés (IMPMC), Université Pierre et Marie Curie - Paris 6 (UPMC)-IPG PARIS-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Department of Chemistry, University of Southern California, University of Southern California (USC), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), and Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Reaction mechanism ,Chemistry ,Nucleation ,Spark plasma sintering ,Nanotechnology ,02 engineering and technology ,General Chemistry ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Biochemistry ,Catalysis ,Energy storage ,Cathode ,0104 chemical sciences ,law.invention ,Colloid and Surface Chemistry ,Transmission electron microscopy ,law ,[PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other] ,Anhydrous ,0210 nano-technology ,Ball mill - Abstract
International audience; The development of new electrode materials, which are composed of Earth-abundant elements and that can be made via eco-efficient processes, is becoming absolutely necessary for reasons of sustainable production. The 3.9 V triplite-phase of LiFeSO4F, compared to the 3.6 V tavorite-phase, could satisfy this requirement provided the currently complex synthetic pathway can be simplified. Here, we present our work aiming at better understanding the reaction mechanism that govern its formation as a way to optimize its preparation. We first demonstrate, using complementary X-ray diffraction and transmission electron microscopy studies, that triplite-LiFeSO4F can nucleate from tavorite-LiFeSO4F via a reconstructive process whose kinetics are significantly influenced by moisture and particle morphology. Perhaps the most spectacular finding is that it is possible to prepare electrochemically active triplite-LiFeSO4F from anhydrous precursors using either reactive spark plasma sintering (SPS) synthesis in a mere 20 min at 320 °C or room-temperature ball milling for 3 h. These new pathways appear to be strongly driven by the easy formation of a disordered phase with higher entropy, as both techniques trigger disorder via rapid annealing steps or defect creation. Although a huge number of phases adopts the tavorite structure-type, this new finding offers both a potential way to prepare new compositions in the triplite structure and a wealth of opportunities for the synthesis of new materials which could benefit many domains beyond energy storage.
- Published
- 2012
49. Reversible Li-Intercalation through Oxygen Reactivity in Li-Rich Li-Fe-Te Oxide Materials
- Author
-
McCalla, Eric, primary, Prakash, Annigere S., additional, Berg, Erik, additional, Saubanère, Matthieu, additional, Abakumov, Artem M., additional, Foix, Dominique, additional, Klobes, Benedikt, additional, Sougrati, Moulay-Tahar, additional, Rousse, Gwenaelle, additional, Lepoivre, Florent, additional, Mariyappan, Sathiya, additional, Doublet, Marie-Liesse, additional, Gonbeau, Danielle, additional, Novak, Petr, additional, Van Tendeloo, Gustaaf, additional, Hermann, Raphaël P., additional, and Tarascon, Jean-Marie, additional
- Published
- 2015
- Full Text
- View/download PDF
50. ChemInform Abstract: Preparation and Characterization of a Stable FeSO4F‐Based Framework for Alkali Ion Insertion Electrodes.
- Author
-
Recham, Nadir, primary, Rousse, Gwenaelle, additional, Sougrati, Moulay T., additional, Chotard, Jean‐Noel, additional, Frayret, Christine, additional, Mariyappan, Sathiya, additional, Melot, Brent C., additional, Jumas, Jean‐Claude, additional, and Tarascon, Jean‐Marie, additional
- Published
- 2013
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.