1. Luminescence Properties of Y3F[Si3O10]:Ln3+ (Ln = Eu, Tb, Er) with Thalenite-Type Host Lattice and Crystal Structure of Tm3F[Si3O10]
- Author
-
Marion C. Schäfer, Michael Petter, Ingo Hartenbach, Ralf J. C. Locke, Shuang Zhang, Claudia Wickleder, and Thomas Schleid
- Subjects
oxosilicates ,fluorides ,thalenite ,crystal structure ,luminescence ,Crystallography ,QD901-999 - Abstract
With Tm3F[Si3O10], a new representative of the Ln3F[Si3O10] series could be synthesized by the reaction of Tm2O3, TmF3 and SiO2 (molar ratio: 1:1:3), applying an excess of CsBr as a fluxing agent in gas-tightly sealed platinum crucibles for eight days at 750 °C, and designed to yield Tm3F3[Si3O9] or Cs2TmF[Si4O10]. Single crystals of Tm3F[Si3O10] (monoclinic, P21/n; a = 725.04(6), b = 1102.43(9), c = 1032.57(8) pm, β = 97.185(7)°; Z = 4) appear as pale celadon, transparent, air- and water-resistant rhombic plates. According to its thalenite-type structure, Tm3F[Si3O10] contains catena-trisilicate anions [Si3O10]8− and triangular [FTm3]8+ cations. The three crystallographically different Tm3+ cations are coordinated by seven plus one (Tm1) or only seven anions (Tm2 and Tm3) exhibiting a single F− anion for each polyhedron, additional to the majority of O2− anions. Furthermore, the luminescence properties of the isotypic colorless compound Y3F[Si3O10] doped with Eu3+ (red emission), Tb3+ (green emission) and Er3+ (yellow and infrared emission), respectively, are reported in presenting their different excitation and emission spectra.
- Published
- 2023
- Full Text
- View/download PDF