1. Modelling human navigation and decision dynamics in a first-person herding task
- Author
-
Ayman bin Kamruddin, Hannah Sandison, Gaurav Patil, Mirco Musolesi, Mario di Bernardo, and Michael J. Richardson
- Subjects
navigation ,decision-making ,artificial agents ,Science - Abstract
This study investigated whether dynamical perceptual-motor primitives (DPMPs) could also be used to capture human navigation in a first-person herding task. To achieve this aim, human participants played a first-person herding game, in which they were required to corral virtual cows, called targets, into a specified containment zone. In addition to recording and modelling participants’ movement trajectories during gameplay, participants’ target-selection decisions (i.e. the order in which participants corralled targets) were recorded and modelled. The results revealed that a simple DPMP navigation model could effectively reproduce the movement trajectories of participants and that almost 80% of the participants’ target-selection decisions could be captured by a simple heuristic policy. Importantly, when this policy was coupled to the DPMP navigation model, the resulting system could successfully simulate and predict the behavioural dynamics (movement trajectories and target-selection decisions) of participants in novel multi-target contexts. Implications of the findings for understanding complex human perceptual-motor behaviour and the development of artificial agents for robust human–machine interaction are discussed.
- Published
- 2024
- Full Text
- View/download PDF