43 results on '"Marine Laroche"'
Search Results
2. Simulation of Nanoscale Multidimensional Transient Heat Conduction Problems Using Ballistic-Diffusive Equations and Phonon Boltzmann Equation
- Author
-
Ronggui Yang, Gang Chen, Yuan Taur, Marine Laroche, Department Mechanical Engineering, Massachusetts Institute of Technology (MIT), Laboratoire d'Énergétique Moléculaire et Macroscopique, Combustion (EM2C), CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Université Paris Saclay (COmUE), Department of Electrical Engineering - University of California, University of California [San Diego] (UC San Diego), and University of California-University of California
- Subjects
FINITE-VOLUME METHOD ,UNSTRUCTURED MESHES ,DISCRETE-ORDINATES METHOD ,02 engineering and technology ,Relativistic heat conduction ,Thermal diffusivity ,01 natural sciences ,THIN-FILMS ,Thermal conductivity ,RADIATIVE-TRANSFER ,Ballistic conduction ,0103 physical sciences ,General Materials Science ,Boundary value problem ,FALSE SCATTERING ,010302 applied physics ,Physics ,Heat current ,Condensed matter physics ,Mechanical Engineering ,Mechanics ,[SPI.MECA]Engineering Sciences [physics]/Mechanics [physics.med-ph] ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Thermal conduction ,Boltzmann equation ,TRANSPORT ,Mechanics of Materials ,[SPI.MECA.THER]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Thermics [physics.class-ph] ,[PHYS.MECA.THER]Physics [physics]/Mechanics [physics]/Thermics [physics.class-ph] ,ENCLOSURES ,0210 nano-technology - Abstract
International audience; Heat conduction. in micro- and nanoscale and in ultrafast processes may deviate from the predictions of the Fourier law, due to boundary and interface scattering, the ballistic nature of the transport, and the finite relaxation time of heat carriers. The transient ballistic-diffusive heat conduction equations (BDE) were developed as an approximation to the phonon Boltzmann equation (BTE) for nanoscale heat conduction problems. In this paper, we further develop BDE for multidimensional heat conduction, including nanoscale heat source term and different boundary conditions, and compare the simulation results with those obtained from the phonon BTE and the Fourier law. The numerical solution strategies for multidimensional nanoscale heat conduction using BDE are presented. Several two-dimensional cases are simulated and compared to the results of the transient phonon BTE and the Fourier heat conduction theory. The transient BTE is solved using the discrete ordinates method with a two Gauss-Legendre quadratures. Special attention has been paid to the boundary conditions. Compared to the cases without internal heat generation, the difference between the BTE and BDE is larger for the case studied with internal heat generation due to the nature of the ballistic-diffusive approximation, but the results from BDE are still significantly better than those from the Fourier law. Thus we conclude that BDE captures the characteristics of the phonon BTE with much shorter computational time.
- Published
- 2005
- Full Text
- View/download PDF
3. Asymptotic expressions describing radiative heat transfer between polar materials from the far-field regime to the nanoscale regime
- Author
-
Emmanuel Rousseau, Jean-Jacques Greffet, Marine Laroche, Laboratoire Charles Coulomb (L2C), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Charles Fabry / Naphel, Laboratoire Charles Fabry (LCF), and Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Institut d'Optique Graduate School (IOGS)-Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Institut d'Optique Graduate School (IOGS)
- Subjects
Physics ,[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics] ,Condensed matter physics ,General Physics and Astronomy ,02 engineering and technology ,Heat transfer coefficient ,Surface phonon ,021001 nanoscience & nanotechnology ,Thermal conduction ,01 natural sciences ,Radiation flux ,Heat flux ,Thermal radiation ,0103 physical sciences ,Heat transfer ,Radiative transfer ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,[PHYS.MECA.THER]Physics [physics]/Mechanics [physics]/Thermics [physics.class-ph] ,[SPI.MECA.THER]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Thermics [physics.class-ph] ,010306 general physics ,0210 nano-technology - Abstract
International audience; Heat transfer between two plates of polar materials at nanoscale distance is known to be enhanced by several orders of magnitude as compared with its far-field value. In this article, we derive accu- rate analytical expressions to quantitatively predict heat fluxes in the near-field. These analytical expressions reveal the physical mechanisms responsible for the enhancement. For two dielectric polar materials and for gaps smaller than 75nm at room temperature the heat transfer is dominated by the surface phonon polariton contribution. Between 75nm and 500 nm, the enhancement is mostly due to frustrated total internal reflection. The paper reports accurate analytical expressions for both contributions. Our analytical results highlight two differences between radiation flux at the nanoscale and in the far field: i)the heat flux spectrum depends on the gap distance, ii) the temperature dependence of the heat transfer coefficient deviates strongly from the T3 law valid for gray bodies in the far-field
- Published
- 2012
- Full Text
- View/download PDF
4. Hot Carrier Solar Cells: Controlling Thermalization in Ultrathin Devices
- Author
-
Jean-François Guillemoles, Stéphane Collin, Jean-Jacques Greffet, Ruben Esteban, Marine Laroche, Guillaume Boissier, Clément Colin, Arthur Le Bris, Jean-Luc Pelouard, Sana Laribi, Philippe Christol, Laurent Lombez, Institut de Recherche et Développement sur l'Energie Photovoltaïque (IRDEP), EDF R&D (EDF R&D), EDF (EDF)-EDF (EDF)-Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC), Laboratoire de photonique et de nanostructures (LPN), Centre National de la Recherche Scientifique (CNRS), Laboratoire Charles Fabry / Naphel, Laboratoire Charles Fabry (LCF), and Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Institut d'Optique Graduate School (IOGS)-Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Institut d'Optique Graduate School (IOGS)
- Subjects
Materials science ,chemistry.chemical_element ,02 engineering and technology ,01 natural sciences ,7. Clean energy ,Charge-carrier density ,Antimony ,Lattice (order) ,0103 physical sciences ,Electrical and Electronic Engineering ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,Nanoscopic scale ,Quantum well ,ComputingMilieux_MISCELLANEOUS ,Photonic crystal ,010302 applied physics ,business.industry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Electronic, Optical and Magnetic Materials ,Thermalisation ,chemistry ,Thermodynamic limit ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Optoelectronics ,0210 nano-technology ,business - Abstract
In operating hot carrier solar cells, a steady-state hot carrier distribution is established in the absorber in such a way that the excess kinetic energy of carriers can be collected. A high-carrier concentration is normally favorable to the formation of a nonequilibrium hot-carrier population. A small absorber thickness is thus expected to improve the efficiency of hot carrier solar cells, but no quantitative analysis of the impact of the cell thickness on its performance has been done so far. Here, the potential of efficiency improvement using thinned absorber is investigated by simulating the absorption, heat losses, and efficiency of a hot carrier solar cell with varying absorber thickness. Efficiency improvement requires efficient light trapping to maintain absorption in ultrathin layers. Solutions are proposed to achieve strong absorption in a 25-50-nm-thick absorber, resulting in cell efficiencies that are higher than the Shockley-Queisser limit corresponding to the absorber's bandgap.
- Published
- 2012
- Full Text
- View/download PDF
5. Optical extinction in a single layer of nanorods
- Author
-
Grégory Vincent, Nathalie Bardou, Riad Haïdar, Jean-Luc Pelouard, Stéphane Collin, Petru Ghenuche, Marine Laroche, Laboratoire de photonique et de nanostructures (LPN), Centre National de la Recherche Scientifique (CNRS), ONERA - The French Aerospace Lab [Palaiseau], ONERA-Université Paris Saclay (COmUE), Institute of Space Science [Bucharest-Măgurele] (ISS), Laboratoire Charles Fabry / Naphel, Laboratoire Charles Fabry (LCF), and Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Institut d'Optique Graduate School (IOGS)-Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Institut d'Optique Graduate School (IOGS)
- Subjects
Materials science ,Opacity ,General Physics and Astronomy ,Physics::Optics ,FOS: Physical sciences ,02 engineering and technology ,Dielectric ,01 natural sciences ,Condensed Matter::Materials Science ,0103 physical sciences ,Scattering, Radiation ,Surface plasmon resonance ,010306 general physics ,Absorption (electromagnetic radiation) ,Plasmon ,Photons ,[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics] ,Nanotubes ,Scattering ,business.industry ,Silicon Compounds ,Fano resonance ,Membranes, Artificial ,021001 nanoscience & nanotechnology ,Models, Chemical ,Optoelectronics ,Nanorod ,0210 nano-technology ,business ,Electromagnetic Phenomena ,Physics - Optics ,Optics (physics.optics) - Abstract
International audience; We demonstrate that almost 100% of incident photons can interact with a monolayer of scatterers in a symmetrical environment. Nearly perfect optical extinction through free-standing transparent nanorod arrays has been measured. The sharp spectral opacity window, in the form of a characteristic Fano resonance, arises from the coherent multiple scattering in the array. In addition, we show that nanorods made of absorbing material exhibit a 25-fold absorption enhancement per unit volume compared to unstructured thin film. These results open new perspectives for light management in high-Q, low volume dielectric nanostructures, with potential applications in optical systems, spectroscopy, and optomechanics. Enhancing light-matter interactions at the nanometer scale is a key for many applications in the area of pho-tonics, biophysics and material sciences [1,2]. Metallic particles are the archetype of nano-objects that can lead to strong interaction with light due to plasmonic resonances , with the drawback of intrinsic metal absorption [3]. Conversely, the weak scattering cross section of tiny dielectric nanoparticles originates from their nonresonant nature, making them inefficient for optical manipulation at the nanoscale. However, the extinction cross section can be increased by coherent multiple scattering in assemblies of nanoparticles, offering another degree of freedom to manipulate their optical response. It has been shown theoretically that it can lead to extremely sharp geometric resonances [4–9]. From the experimental point of view, arrays of resonant, metallic nanoparticles demonstrated the potential of the effect [10,11], making the localized surface plasmon resonance much narrower [12,13]. Arrays of non-resonant, dielectric nanorods should offer new possibilities for even higher quality-factor geometric resonances [14,15]. Indeed, sharp reflection resonances [7,8] and absorption enhancement [9] have been predicted for dielec-tric, sub-wavelength cylinder arrays. It has to be emphasized that the scattering properties of nanoparticles are substantially modified, or even suppressed , in the proximity of a surface [6,7,16–19]. Here, we study a free-standing array of nanorods, with a filling fraction around 0.15. In contrast with the periodic nano-structures studied extensively in the past ten years (nano-hole arrays in metal films [20,21], metal nanoparticle arrays [10–13], high-index-contrast gratings [22], guided-mode resonant structures [23,24]), resonant effects cannot be attributed to localized resonances neither to interactions between nanostructures mediated by electromagnetic
- Published
- 2012
- Full Text
- View/download PDF
6. Nearly total optical extinction in arrays of non-resonant nanorods
- Author
-
Riad Haïdar, Marine Laroche, Nathalie Bardou, Stéphane Collin, Grégory Vincent, Petru Ghenuche, and Jean-Luc Pelouard
- Subjects
Optics ,Materials science ,Transmission (telecommunications) ,Optical testing ,business.industry ,Scattering ,Extinction (optical mineralogy) ,Optical measurements ,Reflection (physics) ,Physics::Optics ,Nanorod ,Dielectric ,business - Abstract
We provide the first experimental evidence of sharp resonant extinction in free-standing arrays of non-resonant dielectric nanorods. Nearly perfect optical extinction is shown for transparent material. High-resolution optical measurements (absolute transmission and reflection) of one dimensional gratings with very low fill factors have been obtained. The results can be fully explained by coherent multiple scattering in arrays of non-resonant subwavelength nanorods and are in good agreement with an analytical model.
- Published
- 2011
- Full Text
- View/download PDF
7. Hot carrier solar cells: Controlling thermalization in ultra thin devices
- Author
-
Arthur Le Bris, Laurent Lombez, Sana Laribi, Jean-Francois Guillemoles, Clement Colin, Stephane Collin, Jean-Luc Pelouard, Marine Laroche, Ruben Esteban, Jean-Jacques Greffet, Guillaume Boissier, Philippe Christol, Institut de Recherche et Développement sur l'Energie Photovoltaïque (IRDEP), EDF R&D (EDF R&D), EDF (EDF)-EDF (EDF)-Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC), Laboratoire de photonique et de nanostructures (LPN), Centre National de la Recherche Scientifique (CNRS), MiNaO, Laboratoire de Photonique et de Nanostructures (LPN), Laboratoire Charles Fabry de l'Institut d'Optique / Naphel, Laboratoire Charles Fabry de l'Institut d'Optique (LCFIO), Centre National de la Recherche Scientifique (CNRS)-Institut d'Optique Graduate School (IOGS)-Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Institut d'Optique Graduate School (IOGS)-Université Paris-Sud - Paris 11 (UP11), Institut d’Electronique et des Systèmes (IES), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Composants à Nanostructure pour le moyen infrarouge (NANOMIR), and Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,ComputingMilieux_MISCELLANEOUS ,[SPI.TRON]Engineering Sciences [physics]/Electronics - Abstract
International audience
- Published
- 2011
- Full Text
- View/download PDF
8. Hot-carrier solar cells
- Author
-
Ruben Esteban, Jean-Jacques Greffet, Daniel Lincot, Arthur Le Bris, Jean-Luc Pelouard, Philippe Christol, Guilhem Boissier, Jean-François Guillemoles, Stéphane Collin, Sana Laribi, Clément Colin, Myriam Paire, Laurent Lombez, and Marine Laroche
- Subjects
010302 applied physics ,Range (particle radiation) ,Materials science ,Band gap ,business.industry ,Photovoltaic system ,Energy conversion efficiency ,02 engineering and technology ,021001 nanoscience & nanotechnology ,7. Clean energy ,01 natural sciences ,law.invention ,Renewable energy ,law ,0103 physical sciences ,Solar cell ,Optoelectronics ,Charge carrier ,Thin film ,0210 nano-technology ,business - Abstract
As the importance of renewable energy sources grows, the development of highly-efficient solar cells is increasingly gaining relevance. Today, the most efficient laboratory prototypes for solar cells are based on thin film multi-layered structures. These cells have 40% solar-to-electricity conversion efficiencies, which are well below the theoretical limit of 87% and leave considerable room for improvement. However, the design of multilayered solar cells can be complicated, and their workings might fail to tolerate changes to their operational conditions, such as the cell temperature or the power of the incident sunlight. Hotcarrier solar cells (HCSC), with their simplicity of design and ability to approach limiting conversion efficiencies, provide an attractive alternative to the multi-layer approach.1 Heat dissipation occurs when a material absorbs photons with energies larger than its bandgap. To circumvent this problem, the photo-generated charge carriers have to be collected through specially designed contacts that are energy-selective. In this way, heat production can be minimized: carriers with large kinetic energies—‘hot-carriers’—reach these contacts before losing most of their energy as heat. In principle, efficiencies as high as 86% could be achieved.1 However, since hot-carriers normally transfer their kinetic energy to the material in sub-picosecond times, the collection through contacts should be fast. This could be achieved at high-injection conditions, under which the interaction between the absorbent material and the hot-carriers becomes inefficient.2 As for any solar cell design, conversion efficiency is expected to grow with the concentration of incoming light, as this increases the output voltage of the solar cell by increasing the extracted work per absorbed photon. However, an optimal coupling between the incident radiation and the solar cells will lead to the high-injection regime, where drops in the cell’s output Figure 1. Energy band diagram of a hot-carrier solar cell with bandgap Eg and voltage qV. Electron-hole pairs are photo-generated in the absorber and kept hot at a temperature of TH (TH > TC , where TC is the ambient temperature). They are subsequently extracted using energyselective contacts with a transmission range iE and an extraction energy Eext. The Fermi levels in the electrodes are n and p , and the electron and hole chemical potentials in the absorber are e and h. The difference e h D H is known as the quasi-Fermi level splitting.
- Published
- 2011
- Full Text
- View/download PDF
9. Efficient white light emission by upconversion in Yb(3+)-, Er(3+)- and Tm(3+)-doped Y2BaZnO5
- Author
-
Anthony K. Cheetham, Arnaud Huignard, Richard J. Curry, Marine Laroche, Isabelle Etchart, William P. Gillin, Mathieu Berard, and Ignacio Hernández
- Subjects
Materials science ,business.industry ,Upconversion luminescence ,Doping ,Metals and Alloys ,Phosphor ,General Chemistry ,Catalysis ,Photon upconversion ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Optics ,Materials Chemistry ,Ceramics and Composites ,White light ,Optoelectronics ,business ,Excitation - Abstract
We report efficient white upconversion luminescence in Yb(3+)-, Er(3+)- and Tm(3+)-doped monophasic and biphasic Y(2)BaZnO(5) phosphors under 977 nm near-infrared excitation and at low excitation power densities (down to ∼25 mW mm(-2)).
- Published
- 2011
10. Oxide Phosphors for Light Upconversion; Yb3+ and Tm3+ Co-Doped Y2BaZnO5
- Author
-
Anthony K. Cheetham, Ignacio Hernández, Arnaud Huignard, Isabelle Etchart, Marine Laroche, Richard J. Curry, Mathieu Berard, and William P. Gillin
- Subjects
Ytterbium ,Materials science ,Dopant ,General Physics and Astronomy ,chemistry.chemical_element ,Phosphor ,medicine.disease_cause ,Laser ,Photochemistry ,Photon upconversion ,law.invention ,Thulium ,chemistry ,law ,medicine ,Luminescence ,Ultraviolet - Abstract
The optical properties of Yb3+ and Tm3+ co-doped Y2BaZnO5, synthesized by solid-state reaction, are investigated in detail. Three main emission bands centered around 479 nm (blue), 654 nm (red), and 796 nm (near-infrared) are observed under near-infrared laser excitation via an upconversion process. Detailed studies of the upconversion properties as a function of dopant concentrations are described and upconversion efficiencies quantified precisely. Maximum efficiencies of ∼ 1.53% in the 730-870 nm near-infrared emission range and of ∼ 0.09% in the 420-530 nm blue range are obtained. The results of power dependence studies and concentration dependent lifetime measurements are presented. This in-depth spectroscopic study allows us, for the first time, to identify the dominant processes involved in the upconversion mechanism of Yb3+, Tm3+ co-doped Y2BaZnO5 oxides.
- Published
- 2011
11. Radiative heat transfer from a black body to dielectric nanoparticles
- Author
-
Marc Hayoun, Jean-Jacques Greffet, Hichem Dammak, Marine Laroche, Yann Chalopin, Laboratoire d'Énergétique Moléculaire et Macroscopique, Combustion (EM2C), Université Paris Saclay (COmUE)-Centre National de la Recherche Scientifique (CNRS)-CentraleSupélec, Laboratoire Structures, Propriétés et Modélisation des solides (SPMS), Institut de Chimie du CNRS (INC)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS), Laboratoire Charles Fabry de l'Institut d'Optique / Naphel, Laboratoire Charles Fabry de l'Institut d'Optique (LCFIO), Centre National de la Recherche Scientifique (CNRS)-Institut d'Optique Graduate School (IOGS)-Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Institut d'Optique Graduate School (IOGS)-Université Paris-Sud - Paris 11 (UP11), Laboratoire des Solides Irradiés (LSI), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Université Paris Saclay (COmUE), Université Paris-Sud - Paris 11 (UP11)-Institut d'Optique Graduate School (IOGS)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-Institut d'Optique Graduate School (IOGS)-Centre National de la Recherche Scientifique (CNRS), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics] ,Materials science ,02 engineering and technology ,Dielectric ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,7. Clean energy ,01 natural sciences ,Molecular physics ,Electronic, Optical and Magnetic Materials ,Magnetic radiation reaction force ,Thermal radiation ,Normal mode ,Electric field ,Molecular vibration ,0103 physical sciences ,Thermal ,Polariton ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,010306 general physics ,0210 nano-technology - Abstract
Heating of dielectric nanoparticles by black-body radiation is investigated by using molecular-dynamics simulation. The thermal interaction with the radiation is modeled by coupling the ions with a random electric field and including a radiation reaction force. This approach shows that the heat is absorbed by the polariton mode. Its subsequent redistribution among other vibration modes strongly depends on the particle size and on temperature. We observe energy trapping in a finite subset of vibrational modes and study the relaxation pathway of (MgO)${}_{4}$ by performing a selective excitation with a deterministic force.
- Published
- 2011
- Full Text
- View/download PDF
12. Dielectric gratings for wide-angle, broadband absorption by thin film photovoltaic cells
- Author
-
Ruben Esteban, Jean-Jacques Greffet, Marine Laroche, Laboratoire Charles Fabry de l'Institut d'Optique / Naphel, Laboratoire Charles Fabry de l'Institut d'Optique (LCFIO), Centre National de la Recherche Scientifique (CNRS)-Institut d'Optique Graduate School (IOGS)-Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Institut d'Optique Graduate School (IOGS)-Université Paris-Sud - Paris 11 (UP11), Centro de Fisica de Materiales (CSIS-UPV/EHU), and University San Sebastian
- Subjects
[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics] ,Materials science ,Physics and Astronomy (miscellaneous) ,business.industry ,Band gap ,02 engineering and technology ,Grating ,021001 nanoscience & nanotechnology ,7. Clean energy ,01 natural sciences ,Active layer ,Numerical aperture ,010309 optics ,Optics ,Optical coating ,0103 physical sciences ,Optoelectronics ,Thin film ,0210 nano-technology ,business ,Absorption (electromagnetic radiation) ,Diffraction grating ,ComputingMilieux_MISCELLANEOUS - Abstract
3 páginas, 3 figuras., Optical management is essential to increase absorption in thin photovoltaic cells. In this article, full electromagnetic simulations show that a back mirror and a one-dimensional front SiC sawtooth grating of ∼ 1 μm dimensions can significantly increase absorption in a thin layer under light concentration. A 50 nm thick GaSb active layer in the described configuration absorbs ∼ 66% of the incident solar photons above the band gap for a concentration equivalent to a numerical aperture NA = 1/(raiz de 2). This absorption represents a ∼ 76% or 26% increase over the same structure but with the grating removed or substituted by an ideal antireflection coating, respectively, We acknowledge financial support from the ANR project THRI-PV and support of the RTRA Triangle de la Physique. One of us (R.E.) acknowledges financial support from the Spanish National project “Euroinvestigación” EUI2008–03816 CUBiHOLE.
- Published
- 2010
- Full Text
- View/download PDF
13. HOT CARRIER SOLAR CELLS : IN THE MAKING ?
- Author
-
Le Bris, A., Lombez, L., Jean-François Guillemoles, Ruben Esteban, Marine Laroche, Jean-Jacques Greffet, Boissier, G., Philippe Christol, Collin, S., Jl. Pelouard, Aschehoug, P., Pellé, F., Institut de Recherche et Développement sur l'Energie Photovoltaïque (IRDEP), Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-EDF R&D (EDF R&D), EDF (EDF)-EDF (EDF), Laboratoire Charles Fabry de l'Institut d'Optique / Naphel, Laboratoire Charles Fabry de l'Institut d'Optique (LCFIO), Centre National de la Recherche Scientifique (CNRS)-Institut d'Optique Graduate School (IOGS)-Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Institut d'Optique Graduate School (IOGS)-Université Paris-Sud - Paris 11 (UP11), Institut d’Electronique et des Systèmes (IES), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Composants à Nanostructure pour le moyen infrarouge (NANOMIR), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de photonique et de nanostructures (LPN), Centre National de la Recherche Scientifique (CNRS), Laboratoire de Chimie de la Matière Condensée de Paris (site ENSCP) (LCMCP (site ENSCP)), Université Pierre et Marie Curie - Paris 6 (UPMC)-Collège de France (CdF (institution))-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), ANR THRI-PV, and Université Paris-Sud - Paris 11 (UP11)-Institut d'Optique Graduate School (IOGS)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-Institut d'Optique Graduate School (IOGS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
010302 applied physics ,Condensed Matter - Materials Science ,[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics] ,Advanced Photovoltaics: New Concepts and Ultra-high Efficiency ,Materials Science (cond-mat.mtrl-sci) ,FOS: Physical sciences ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,7. Clean energy ,[SPI.MAT]Engineering Sciences [physics]/Materials ,13. Climate action ,0103 physical sciences ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,0210 nano-technology ,New Materials, Cells and Modules - Abstract
25th European Photovoltaic Solar Energy Conference and Exhibition / 5th World Conference on Photovoltaic Energy Conversion, 6-10 September 2010, Valencia, Spain; 683-685, Hot carrier solar cells allow potential efficiency close to the thermodynamical limit in ideal conditions. However, the feasability of such devices has not been clearly stated so far and only ideal cells were considered in previous studies. Here we develop a model with realistic energy selective contacts, carrier thermalization and absorptivity. The requirements in term of contact selectivity is investigated, showing that semi-selective contacts are not incompatible with high efficiencies. Candidates for absorbing material were synthesized and the required thermalization properties are obtained. Specific structures were designed to enhance absorption of concentrated sunlight in a small material thickness, allowing high carrier density in the absorber.
- Published
- 2010
14. Impedance of a nanoantenna and a single quantum emitter
- Author
-
Marine Laroche, Jean-Jacques Greffet, François Marquier, Laboratoire Charles Fabry de l'Institut d'Optique / Naphel, Laboratoire Charles Fabry de l'Institut d'Optique (LCFIO), and Université Paris-Sud - Paris 11 (UP11)-Institut d'Optique Graduate School (IOGS)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-Institut d'Optique Graduate School (IOGS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Coupling ,Physics ,[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics] ,business.industry ,Detector ,Cavity quantum electrodynamics ,General Physics and Astronomy ,Physics::Optics ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,Dipole ,Optics ,0103 physical sciences ,Atom ,Radiative transfer ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,Optoelectronics ,010306 general physics ,0210 nano-technology ,business ,Absorption (electromagnetic radiation) ,Electrical impedance - Abstract
International audience; Antennas are widely used by electrical engineers to enhance the coupling between propagating waves and electric sources or detectors. It is thus tempting to develop an optical analog to tailor visible light emission or absorption by an atom or a molecule. This idea has been put forward recently and it has been demonstrated that both the radiative rate and the emission pattern of optical emitters can be modified by metallic nanostructures. In this Letter, we introduce the concept of impedance for a nanoantenna and for two-level systems or nanoparticles described by electric dipole moments. We show how these concepts can be used to reconcile different descriptions and also to optimize nanoantennas.
- Published
- 2010
- Full Text
- View/download PDF
15. Radiative heat transfer at nanoscale: Closed-form expression for silicon at different doping levels
- Author
-
Emmanuel Rousseau, Marine Laroche, Jean-Jacques Greffet, Laboratoire Charles Fabry de l'Institut d'Optique / Naphel, Laboratoire Charles Fabry de l'Institut d'Optique (LCFIO), and Université Paris-Sud - Paris 11 (UP11)-Institut d'Optique Graduate School (IOGS)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-Institut d'Optique Graduate School (IOGS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Silicon ,SURFACE ,chemistry.chemical_element ,02 engineering and technology ,01 natural sciences ,Electromagnetic radiation ,CLOSELY-SPACED BODIES ,0103 physical sciences ,Radiative transfer ,010306 general physics ,THERMAL-RADIATION ,Spectroscopy ,Physics ,Coupling ,Nanoelectromechanical systems ,[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics] ,Radiation ,Condensed matter physics ,CASIMIR FORCE ,FIELD ENERGY DENSITY ,Asymptotic expression ,Doping ,Near-field gray body ,021001 nanoscience & nanotechnology ,Atomic and Molecular Physics, and Optics ,Near-field radiative heat transfer ,Classical mechanics ,Doped silicon ,chemistry ,Thermal radiation ,Heat transfer ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,[PHYS.MECA.THER]Physics [physics]/Mechanics [physics]/Thermics [physics.class-ph] ,[SPI.MECA.THER]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Thermics [physics.class-ph] ,0210 nano-technology ,ELECTROMAGNETIC-WAVES ,NEAR-FIELD - Abstract
Radiative heat transfer at the nanoscale is becoming an important technological issue with the development of nano electromechanical systems (NEMS). In this article, we derive asymptotic expressions to compute near-field radiative heat transfer between two planes of silicon. We identify two physical mechanisms that give the dominant contribution at small gaps. For intrinsic and low-doped silicon, the main contribution is due to evanescent waves coming from propagating waves undergoing frustrated total internal reflections at the interfaces. For doping levels larger than N-e=10(16) cm(-3) surface mode coupling contributes to the heat transfer. Asymptotic expressions are also given in that case. In all cases, we compare analytical formulas with exact numerical calculations when varying the temperature and the doping concentration. We also give their range of validity. (C) 2010 Elsevier Ltd. All rights reserved.
- Published
- 2010
- Full Text
- View/download PDF
16. Radiative heat transfer at nanoscale mediated by surface plasmons for highly doped silicon
- Author
-
Emmanuel Rousseau, Jean-Jacques Greffet, Marine Laroche, Laboratoire Charles Fabry de l'Institut d'Optique / Naphel, Laboratoire Charles Fabry de l'Institut d'Optique (LCFIO), Université Paris-Sud - Paris 11 (UP11)-Institut d'Optique Graduate School (IOGS)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-Institut d'Optique Graduate School (IOGS)-Centre National de la Recherche Scientifique (CNRS), Leti-Carnot Institute, and ANR-06-NANO-0062,MONACO,Modélisation et exploitation des phénomènes physiques nanométriques intervenant dans les NEMS(2006)
- Subjects
[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics] ,Materials science ,Physics and Astronomy (miscellaneous) ,Condensed matter physics ,Silicon ,Surface plasmon ,Doping ,chemistry.chemical_element ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,Heat flux ,chemistry ,Thermal radiation ,0103 physical sciences ,Heat transfer ,Radiative transfer ,Quasiparticle ,[PHYS.MECA.THER]Physics [physics]/Mechanics [physics]/Thermics [physics.class-ph] ,[SPI.MECA.THER]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Thermics [physics.class-ph] ,Atomic physics ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,010306 general physics ,0210 nano-technology - Abstract
International audience; In this letter, we revisit the role of surface plasmons for nanoscale radiative heat transfer between doped silicon surfaces. We derive a new accurate and closed-form expression of the radiative near-field heat transfer. We also analyse the flux and find that there is a doping level that maximizes the heat flux.
- Published
- 2009
- Full Text
- View/download PDF
17. Quantum thermal bath for molecular dynamics simulation
- Author
-
Hichem Dammak, Marc Hayoun, Yann Chalopin, Marine Laroche, Jean-Jacques Greffet, Laboratoire Structures, Propriétés et Modélisation des solides (SPMS), Institut de Chimie du CNRS (INC)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Énergétique Moléculaire et Macroscopique, Combustion (EM2C), CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Université Paris Saclay (COmUE), Laboratoire Charles Fabry de l'Institut d'Optique / Naphel, Laboratoire Charles Fabry de l'Institut d'Optique (LCFIO), Université Paris-Sud - Paris 11 (UP11)-Institut d'Optique Graduate School (IOGS)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-Institut d'Optique Graduate School (IOGS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire des Solides Irradiés (LSI), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Université Paris Saclay (COmUE)-Centre National de la Recherche Scientifique (CNRS)-CentraleSupélec, Centre National de la Recherche Scientifique (CNRS)-Institut d'Optique Graduate School (IOGS)-Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Institut d'Optique Graduate School (IOGS)-Université Paris-Sud - Paris 11 (UP11), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)
- Subjects
Physics ,[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics] ,010304 chemical physics ,Computer simulation ,Quantum dynamics ,General Physics and Astronomy ,01 natural sciences ,Heat capacity ,Molecular dynamics ,0103 physical sciences ,Thermal ,Statistical physics ,010306 general physics ,Quantum statistical mechanics ,Quantum dissipation ,Quantum - Abstract
International audience; Molecular dynamics (MD) is a numerical simulation technique based on classical mechanics. It has been taken for granted that its use is limited to a large temperature regime where classical statistics is valid. To overcome this limitation, the authors introduce in a universal way a quantum thermal bath that accounts for quantum statistics while using standard MD. The efficiency of the new technique is illustrated by reproducing several experimental data at low temperatures in a regime where quantum statistical effects cannot be neglected.
- Published
- 2009
- Full Text
- View/download PDF
18. Scattering Forces from the Curl of the Spin Angular Momentum of a Light Field
- Author
-
Silvia Albaladejo, Marine Laroche, Juan José Sáenz, Manuel I. Marqués, Departamento de Fisica de la Materia Condensada and Instituto 'Nicolas Cabrera', Universidad Autonoma de Madrid (UAM), Departamento de Fisica de Materiales C-IV, Laboratoire Charles Fabry de l'Institut d'Optique / Naphel, Laboratoire Charles Fabry de l'Institut d'Optique (LCFIO), Université Paris-Sud - Paris 11 (UP11)-Institut d'Optique Graduate School (IOGS)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-Institut d'Optique Graduate School (IOGS)-Centre National de la Recherche Scientifique (CNRS), and UAM. Departamento de Física de la Materia Condensada
- Subjects
Physics ,[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics] ,General Physics and Astronomy ,Física ,01 natural sciences ,Pressure-gradient force ,Helicity ,Classical central-force problem ,010309 optics ,Classical mechanics ,Central force ,0103 physical sciences ,Angular momentum of light ,Angular momentum coupling ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,Orbital angular momentum of light ,010306 general physics ,Conservative force - Abstract
Light forces on small (Rayleigh) particles are usually described as the sum of two terms: the dipolar or gradient force and the scattering or radiation pressure force. The scattering force is traditionally considered proportional to the Poynting vector, which gives the direction and magnitude of the momentum flow. However, as we will show, there is an additional nonconservative contribution to the scattering force arising in a light field with nonuniform helicity. This force is shown to be proportional to the curl of the spin angular momentum of the light field. The relevance of the spin force is illustrated in the simple case of a 2D field geometry arising in the intersection region of two standing waves, This work was supported by the Spanish MEC through the Consolider NanoLight (CSD2007-00046), FIS2005-05137 and FIS2006-11170-C02-02 projects, Microseres-CM and by the Spanish-French PICASSO program (HF2007- 0068)
- Published
- 2009
- Full Text
- View/download PDF
19. Impedance of a nanoantenna
- Author
-
Jean-Jacques Greffet, Marine Laroche, François Marquier, and Dmitry N. Chigrin
- Subjects
Physics ,Quantum optics ,Photon ,Photon emission ,business.industry ,Physics::Optics ,Optoelectronics ,Nonlinear optics ,Light emission ,Visible radiation ,Link (knot theory) ,business ,Electrical impedance - Abstract
We introduce a generalized definition of the impedance of a nanoantenna that can be applied to any system. We also introduce a definition of the impedance of a two level system. Using this framework, we establish a link between the electrical engineering and the quantum optics picture of light emission.
- Published
- 2009
- Full Text
- View/download PDF
20. Enhanced absorption by nanostructured silicon
- Author
-
Jean-Jacques Greffet, François Marquier, David Jacob, S. Bandiera, T. Muller, Marine Laroche, Laboratoire d'Énergétique Moléculaire et Macroscopique, Combustion (EM2C), CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Université Paris Saclay (COmUE), Laboratoire Charles Fabry de l'Institut d'Optique / Naphel, Laboratoire Charles Fabry de l'Institut d'Optique (LCFIO), and Université Paris-Sud - Paris 11 (UP11)-Institut d'Optique Graduate School (IOGS)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-Institut d'Optique Graduate School (IOGS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics] ,Materials science ,Physics and Astronomy (miscellaneous) ,Silicon ,Band gap ,business.industry ,Infrared spectroscopy ,chemistry.chemical_element ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,010309 optics ,Wavelength ,chemistry ,Photovoltaics ,0103 physical sciences ,Optoelectronics ,Thin film ,0210 nano-technology ,business ,Absorption (electromagnetic radiation) ,Ultrashort pulse - Abstract
International audience; Some applications such as ultrafast detectors or high efficiency photovoltaics require absorption by thin films. However, close to the bandgap, silicon absorbs very poorly. In this letter, we show that the absorption of a 100 nm slab can be as high as 50% in the range of wavelengths 700-830 nm when using a periodic structure properly designed.
- Published
- 2008
- Full Text
- View/download PDF
21. Radiative heat transfer between metallic nanoparticles
- Author
-
Pierre-Olivier Chapuis, Jean-Jacques Greffet, Sebastian Volz, Marine Laroche, Laboratoire d'Énergétique Moléculaire et Macroscopique, Combustion (EM2C), CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Université Paris Saclay (COmUE), Institut des Nanosciences de Paris (INSP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), and Projets ANR Ethna, ThermaEscape, Monaco
- Subjects
PACS:44.40.+a ,Materials science ,Physics and Astronomy (miscellaneous) ,Magnetic dipole ,Nanoparticle ,FOS: Physical sciences ,Physics::Optics ,Physics - Classical Physics ,02 engineering and technology ,Dielectric ,01 natural sciences ,Polarizability ,Radiative heat transfer ,0103 physical sciences ,Physics - Atomic and Molecular Clusters ,Physics::Atomic Physics ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,010306 general physics ,[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics] ,Condensed matter physics ,Magnetic moment ,Polarizabilities ,[PHYS.PHYS.PHYS-ATM-PH]Physics [physics]/Physics [physics]/Atomic and Molecular Clusters [physics.atm-clus] ,Classical Physics (physics.class-ph) ,021001 nanoscience & nanotechnology ,[SPI.ELEC]Engineering Sciences [physics]/Electromagnetism ,Heat flux ,Skin depth ,Thermal radiation ,Heat transfer ,Near field ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,[PHYS.MECA.THER]Physics [physics]/Mechanics [physics]/Thermics [physics.class-ph] ,[SPI.MECA.THER]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Thermics [physics.class-ph] ,Nanoparticles ,0210 nano-technology ,Atomic and Molecular Clusters (physics.atm-clus) ,Physics - Optics ,Optics (physics.optics) - Abstract
International audience; In this letter, we study the radiative heat transfer between two nanoparticles in the near field and in the far field. We find that the heat transfer is dominated by the electric dipole-dipole interaction for dielectric particles and by the magnetic dipole-dipole interaction for metallic nanoparticles. We introduce polarizabilities formulas valid for arbitrary values of the skin depth. While the heat transfer mechanism is different for metallic and dielectric nanoparticles, we show that the distance dependence is the same. However, the dependence of the heat flux on the particle radius is different.
- Published
- 2008
- Full Text
- View/download PDF
22. Near-field induction heating of metallic nanoparticles due to infrared magnetic dipole contribution
- Author
-
Pierre-Olivier Chapuis, Jean-Jacques Greffet, Sebastian Volz, Marine Laroche, Laboratoire d'Énergétique Moléculaire et Macroscopique, Combustion (EM2C), CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Université Paris Saclay (COmUE), and Financement ANR
- Subjects
Electromagnetic field ,Materials science ,FOS: Physical sciences ,Near and far field ,02 engineering and technology ,Optical field ,01 natural sciences ,7. Clean energy ,Magnetization ,Nanoparticle ,Thermal radiation ,0103 physical sciences ,010306 general physics ,Condensed matter physics ,Magnetic energy ,Eddy currents ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Electronic, Optical and Magnetic Materials ,Magnetic field ,Condensed Matter - Other Condensed Matter ,Dipole ,[SPI.ELEC]Engineering Sciences [physics]/Electromagnetism ,Near-field ,Metals ,[PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other] ,PACS numbers: 07.79.Fc, 03.50.De, 44.40.+a ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,0210 nano-technology ,Magnetic dipole ,Other Condensed Matter (cond-mat.other) - Abstract
We revisit the electromagnetic heat transfer between a metallic nanoparticle and a metallic semi-infinite substrate, commonly studied using the electric dipole approximation. For infrared and microwave frequencies, we find that the magnetic polarizability of the particle is larger than the electric one. We also find that the local density of states in the near field is dominated by the magnetic contribution. As a consequence, the power absorbed by the particle in the near field is due to dissipation by fluctuating eddy currents. These results show that a number of near-field effects involving metallic particles should be affected by the fluctuating magnetic fields., publi\'e dans Physical Review B 77 (2008), version avant review
- Published
- 2008
- Full Text
- View/download PDF
23. Optical Antennas for Enhanced Efficiency
- Author
-
Jean-Jacques Greffet, Ruben Esteban, Marine Laroche, CIRCé, Laboratoire Charles Fabry de l'Institut d'Optique / Naphel, Laboratoire Charles Fabry de l'Institut d'Optique (LCFIO), and Centre National de la Recherche Scientifique (CNRS)-Institut d'Optique Graduate School (IOGS)-Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Institut d'Optique Graduate School (IOGS)-Université Paris-Sud - Paris 11 (UP11)
- Subjects
010302 applied physics ,[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics] ,Materials science ,Photon ,business.industry ,Physics::Optics ,Solar energy ,7. Clean energy ,01 natural sciences ,Cross section (physics) ,symbols.namesake ,Light intensity ,Photovoltaics ,0103 physical sciences ,symbols ,Optoelectronics ,010306 general physics ,business ,Absorption (electromagnetic radiation) ,ComputingMilieux_MISCELLANEOUS ,Energy (signal processing) ,Raman scattering - Abstract
High efficiency solutions for photovoltaics requires taking advantage of IR photons energy. Possible solutions are based on up-conversion processes which have a low cross section. We will discuss different solutions to enhance the absorption.
- Published
- 2008
- Full Text
- View/download PDF
24. Influence of metallic nanoparticles on upconversion processes
- Author
-
Ruben Esteban, Marine Laroche, Jean-Jacques Greffet, Laboratoire Charles Fabry de l'Institut d'Optique / Naphel, Laboratoire Charles Fabry de l'Institut d'Optique (LCFIO), and Université Paris-Sud - Paris 11 (UP11)-Institut d'Optique Graduate School (IOGS)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-Institut d'Optique Graduate School (IOGS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Infrared ,General Physics and Astronomy ,Physics::Optics ,FOS: Physical sciences ,02 engineering and technology ,01 natural sciences ,7. Clean energy ,Molecular physics ,Metal ,symbols.namesake ,0103 physical sciences ,010306 general physics ,[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics] ,Radius ,021001 nanoscience & nanotechnology ,Fluorescence ,Photon upconversion ,visual_art ,symbols ,visual_art.visual_art_medium ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,SPHERES ,0210 nano-technology ,Raman spectroscopy ,Raman scattering ,Physics - Optics ,Optics (physics.optics) - Abstract
It is well known that Raman scattering and fluorescence can be enhanced by the presence of metallic nanoparticles. Here, we derive simple equations to analyse the influence of metallic nanoparticles on upconversion processes such as non-radiative energy transfer or excited state absorption. We compare the resulting expressions with the more familiar Raman and fluorescence cases, and find significant differences. We use numerical simulations to calculate the upconverted signal enhancement achievable by means of metallic spheres of different radii, and find particles of 100-400nm radius at infrared frequencies to be favorable. We also discuss the considerable challenges involved in using metallic particles to enhance upconversion for solar energy., Comment: Changes mostly made on the structure of the text and on the notation to improve clarity. Other changes attempt to better clarify the conditions under which the equations and simulations are valid. Main results and conclusions essentially unchanged
- Published
- 2008
- Full Text
- View/download PDF
25. Degree of polarization of thermal light emitted by gratings supporting surface waves
- Author
-
François Marquier, C. Arnold, Jean-Jacques Greffet, Marine Laroche, Yong Chen, Laboratoire d'Énergétique Moléculaire et Macroscopique, Combustion (EM2C), CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Université Paris Saclay (COmUE), Laboratoire de photonique et de nanostructures (LPN), Centre National de la Recherche Scientifique (CNRS), Laboratoire de microfluidique, organisation chimique et nanotechnologies, Processus d'Activation Sélective par Transfert d'Energie Uni-électronique ou Radiatif (UMR 8640) (PASTEUR), Université Pierre et Marie Curie - Paris 6 (UPMC)-Département de Chimie - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Département de Chimie - ENS Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université Paris Saclay (COmUE)-Centre National de la Recherche Scientifique (CNRS)-CentraleSupélec, École normale supérieure - Paris (ENS Paris), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris)
- Subjects
Light ,OCIS codes : (050.2770) gratings ,(050.6624) Subwavelength structures ,(230.6080) sources ,(240.6690) surface waves ,(260.5430) polarization ,Grating ,Elliptical polarization ,01 natural sciences ,010309 optics ,Optics ,gratings ,0103 physical sciences ,Scattering, Radiation ,Computer Simulation ,010306 general physics ,Circular polarization ,Physics ,[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics] ,Polarization rotator ,business.industry ,Surface plasmon ,surface plasmons ,Temperature ,Equipment Design ,Models, Theoretical ,Polarization (waves) ,thermal emission ,surface waves ,Atomic and Molecular Physics, and Optics ,Equipment Failure Analysis ,Refractometry ,Surface wave ,Computer-Aided Design ,Degree of polarization ,business - Abstract
International audience; Absorption and emission of light due to the resonant excitation of surface waves on a grating is a well-known phenomenon. We report the first complete study of the influence of the role of angle and polarization on thermal emission by lamellar gratings.We derive the emitted Stokes vectors in any direction. We find that a source can be quasi isotropic from the point of view of the intensity but strongly anisotropic for polarized light. It follows that the degree of polarization can vary between 0 and 1, depending on directions.
- Published
- 2007
- Full Text
- View/download PDF
26. Drilled dielectric membranes for highly resonant filtering in the infrared
- Author
-
Grégory Vincent, Cyrille Billaudeau, Fabrice Pardo, Jean-Luc Pelouard, Ali Madouri, Marine Laroche, Nicolas Guérineau, S. Collin, D. Chouteau, and Riad Haïdar
- Subjects
Fabrication ,Materials science ,business.industry ,Infrared ,Physics::Optics ,Resonance ,Dielectric ,Spectral line ,chemistry.chemical_compound ,Optics ,Far infrared ,chemistry ,Silicon carbide ,Optoelectronics ,business ,Optical filter - Abstract
Subwavelength dielectric and metallic gratings embedded in vacuum can act as highly-resonant spectral filters. We review the theoretical principles for the design of symmetric dielectric and metal gratings to conceive efficient optical filters in the mid and far infrared range, and we show how both resonance width and resonance wavelength can be tuned. We describe an original process for the fabrication of free-standing SiC gratings, and we present the first samples obtained with 10 mm period. Experimental angularly resolved transmission spectra show evidences of their filtering properties.
- Published
- 2007
- Full Text
- View/download PDF
27. THERMAL RADIATION REVISITED IN THE NEAR FIELD
- Author
-
François Marquier, Sebastian Volz, Pierre-Olivier Chapuis, Jean-Jacques Greffet, Carsten Henkel, Marine Laroche, and Rémi Carminati
- Subjects
Materials science ,Optics ,business.industry ,Thermal radiation ,Near and far field ,business - Published
- 2007
- Full Text
- View/download PDF
28. Thermal Radiation Involving Metallic Nanoparticles in the Near Field
- Author
-
Pierre-Olivier Chapuis, Jean-Jacques Greffet, Marine Laroche, Sebastian Volz, Laboratoire d'Énergétique Moléculaire et Macroscopique, Combustion (EM2C), and Université Paris Saclay (COmUE)-Centre National de la Recherche Scientifique (CNRS)-CentraleSupélec
- Subjects
[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics] ,Materials science ,Condensed matter physics ,Joule effect ,Near and far field ,Magnetic field ,law.invention ,Nuclear magnetic resonance ,law ,Thermal radiation ,Thermal ,Heat transfer ,Eddy current ,Particle - Abstract
International audience; We firstly compare the electric and magnetic polarizabilities of a spherical nanoparticle. We then calculate the electromagnetic heat transfer between a metallic particle and a semi-infinite substrate. We show that the power absorbed by the particle in the near field is due to the magnetic interaction. We then calculate the energy transfer between two metallic nanoparticles and compare the heat dissipated by Joule effect and eddy currents. We find that the heat dissipated due to the magnetic fields is the leading contribution to the heat power. Both calculations show that a number of near-field effects involving metallic particles are affected by the fluctuating magnetic thermal fields.
- Published
- 2007
- Full Text
- View/download PDF
29. Anisotropic polarized emission of a doped silicon lamellar grating
- Author
-
François Marquier, Rémi Carminati, Jean-Jacques Greffet, Marine Laroche, Marquier, François, Laboratoire d'Énergétique Moléculaire et Macroscopique, Combustion (EM2C), and CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Université Paris Saclay (COmUE)
- Subjects
[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics] ,Materials science ,Silicon ,Radiative cooling ,chemistry.chemical_element ,Physics::Optics ,02 engineering and technology ,Grating ,01 natural sciences ,010309 optics ,Optics ,0103 physical sciences ,Perpendicular ,Emissivity ,General Materials Science ,Diffraction grating ,[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics] ,business.industry ,Mechanical Engineering ,Surface plasmon ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Polarization (waves) ,chemistry ,Mechanics of Materials ,0210 nano-technology ,business - Abstract
International audience; Thermal emission of a doped silicon grating has been studied in the plane perpendicular to the grooves. We show how the excitation of surface plasmons produce a resonant emission weakly depending on the polarization and azimuthal angle. We analyze in detail the polarization and angular dependence of the emission out of the plane perpendicular to the grooves. Two kinds of thermal sources, directional and quasi-isotropic, are studied. They have been designed in a previous paper. We also compute the total hemispherical emissivity of these gratings. In addition we show that in applications such as radiative cooling, these sources are less efficient than other structures.
- Published
- 2007
30. Tuning the optical response of nanocylinder arrays: An analytical study
- Author
-
Marine Laroche, Silvia Albaladejo, Juan José Sáenz, R. Gómez-Medina, Departamento de Fisica de la Materia Condensada and Instituto 'Nicolas Cabrera', Universidad Autonoma de Madrid (UAM), Laboratoire d'Énergétique Moléculaire et Macroscopique, Combustion (EM2C), and CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Université Paris Saclay (COmUE)
- Subjects
Materials science ,02 engineering and technology ,01 natural sciences ,7. Clean energy ,Molecular physics ,Spectral line ,symbols.namesake ,Optics ,0103 physical sciences ,Polariton ,Rayleigh scattering ,010306 general physics ,ComputingMilieux_MISCELLANEOUS ,[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics] ,business.industry ,Isotropy ,Thermal emission ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Polarization (waves) ,Electronic, Optical and Magnetic Materials ,symbols ,Quasiparticle ,0210 nano-technology ,business ,Localized surface plasmon - Abstract
An analytical study of the optical properties of nanocylinder arrays is presented. The conditions to tune the absorption/thermal emission and extinction resonances of such systems are derived. We predict two kinds of resonances. Close to the Rayleigh anomalies, the array can generate quasimonochromatic and highly directional thermal emission/absorption. Isotropic emission/absorption can also be obtained when the material exhibits an absorption line or in the presence of localized surface plasmon/polaritons. For $s$ polarization our analysis predicts a theoretical limit of 50% of absorption. Interestingly, for $p$-polarized light, a nanocylinder array can present perfect (100%) absorption.
- Published
- 2006
31. Extraordinary optical reflection from sub-wavelength cylinder arrays
- Author
-
Marine Laroche, R. Gómez-Medina, Juan José Sáenz, Departamento de Fisica de la Materia Condensada and Instituto 'Nicolas Cabrera', Universidad Autonoma de Madrid (UAM), Laboratoire d'Énergétique Moléculaire et Macroscopique, Combustion (EM2C), CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Université Paris Saclay (COmUE), and Laroche, Marine
- Subjects
Diffraction ,[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics] ,Physics::Optics ,02 engineering and technology ,01 natural sciences ,Cylinder (engine) ,law.invention ,Physics::Fluid Dynamics ,symbols.namesake ,Optics ,law ,Diffraction theory ,0103 physical sciences ,Rayleigh scattering ,010306 general physics ,Plasmon ,ComputingMilieux_MISCELLANEOUS ,Physics ,[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics] ,business.industry ,Scattering ,Surface plasmon ,021001 nanoscience & nanotechnology ,Surface plasmon polariton ,Atomic and Molecular Physics, and Optics ,Wavelength ,Multiple scattering ,symbols ,0210 nano-technology ,business - Abstract
A multiple scattering analysis of the reflectance of a periodic array of sub-wavelength cylinders is presented. The optical properties and their dependence on wavelength, geometrical parameters and cylinder dielectric constant are analytically derived for both s- and p-polarized waves. In absence of Mie resonances and surface (plasmon) modes, and for positive cylinder polarizabilities, the reflectance presents sharp peaks close to the onset of new diffraction modes (Rayleigh frequencies). At the lowest resonance frequency, and in the absence of absorption, the wave is perfectly reflected even for vanishingly small cylinder radii.
- Published
- 2006
32. Coherent Thermal Antenna Using a Photonic Crystal Slab
- Author
-
Rémi Carminati, Marine Laroche, Jean-Jacques Greffet, Laboratoire d'Énergétique Moléculaire et Macroscopique, Combustion (EM2C), and CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Université Paris Saclay (COmUE)
- Subjects
Diffraction ,Materials science ,Infrared ,WAVES ,Physics::Optics ,General Physics and Astronomy ,DIFFRACTION ,Radiation ,01 natural sciences ,010309 optics ,[PHYS.MECA.STRU]Physics [physics]/Mechanics [physics]/Structural mechanics [physics.class-ph] ,Optics ,0103 physical sciences ,Thermal ,010306 general physics ,Photonic crystal ,SURFACE-PLASMONS ,business.industry ,Surface plasmon ,PLANE ,LAMELLAR METALLIC GRATINGS ,Yablonovite ,[SPI.MECA.STRU]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanics of the structures [physics.class-ph] ,LIGHT ,[SPI.MECA.STRU]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Structural mechanics [physics.class-ph] ,Thermal radiation ,RADIATION ,Optoelectronics ,EMISSION ,business - Abstract
We show that a photonic crystal film can emit coherent thermal radiation. We demonstrate the key role of leaky waves existing at the air-photonic crystal interface. The frequency and direction of emission depend on the lattice parameters. This paves the way towards the design of coherent infrared antennas.
- Published
- 2006
- Full Text
- View/download PDF
33. Infrared antenna using a photonic crystal slab
- Author
-
Marine Laroche, Rémi Carminati, and Jean-Jacques Greffet
- Subjects
Materials science ,Infrared ,business.industry ,Physics::Optics ,Optics ,Thermal radiation ,Surface wave ,Condensed Matter::Superconductivity ,Slab ,Optoelectronics ,Crystal optics ,business ,Refractive index ,Computer Science::Databases ,Photonic crystal ,Coherence (physics) - Abstract
We show that a photonic crystal film can emit coherent thermal radiation. We demonstrate the key role of leaky waves existing at the interface air-photonic crystal.
- Published
- 2006
- Full Text
- View/download PDF
34. Coherent thermal emission by excitation of surface plasmons on a tungsten sample
- Author
-
Marine Laroche, Christophe Arnold, François Marquier, Rémi Carminati, Jean-Jacques Greffet, Stéphane Collin, Bardou, N., Jl Pelouard, Marquier, François, Laboratoire d'Énergétique Moléculaire et Macroscopique, Combustion (EM2C), Université Paris Saclay (COmUE)-Centre National de la Recherche Scientifique (CNRS)-CentraleSupélec, Laboratoire de photonique et de nanostructures (LPN), and Centre National de la Recherche Scientifique (CNRS)
- Subjects
LIGHT ,[PHYS.PHYS.PHYS-GEN-PH] Physics [physics]/Physics [physics]/General Physics [physics.gen-ph] ,SPATIAL COHERENCE ,DIFFRACTION ,[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph] - Published
- 2006
35. Extraordinary optical reflection and resonant absorption from sub-wavelength cylinder arrays
- Author
-
Juan José Sáenz, R. Gómez-Medina, and Marine Laroche
- Subjects
Materials science ,Scattering ,business.industry ,Surface plasmon ,Surface plasmon polariton ,Light scattering ,Cylinder (engine) ,law.invention ,Resonant inelastic X-ray scattering ,Optics ,law ,Reflection (physics) ,Optoelectronics ,Absorption (electromagnetic radiation) ,business - Abstract
An analytical multiple scattering study of the reflectance and absorption of a periodic array of sub-wavelength cylinders is presented. The conditions for perfect reflection and resonant absorption are discussed.
- Published
- 2006
- Full Text
- View/download PDF
36. Electromagnetic modes of a linear chain of nanoparticles
- Author
-
J. Bourguignon, J.-J. Greffet, Marine Laroche, Rémi Carminati, and M. Thomas
- Subjects
Materials science ,Condensed matter physics ,business.industry ,Nanophotonics ,Physics::Optics ,Nanoparticle ,Chain (algebraic topology) ,Dispersion relation ,Dispersion (optics) ,Polariton ,Radiative transfer ,Optoelectronics ,Metal nanoparticles ,business - Abstract
We study numerically the dispersion relation and the structure of the optical modes along a chain of metallic nanoparticles. Polariton modes exists in both the radiative and non-radiative regions. Applications to nanophotonics are discussed.
- Published
- 2005
- Full Text
- View/download PDF
37. Resonant optical transmission through a photonic crystal
- Author
-
Marine Laroche, Rémi Carminati, and Jean-Jacques Greffet
- Subjects
Materials science ,business.industry ,Guided-mode resonance ,Band gap ,Photonic integrated circuit ,Physics::Optics ,Yablonovite ,Photonic metamaterial ,Optics ,Surface wave ,Optoelectronics ,business ,Computer Science::Databases ,Excitation ,Photonic crystal - Abstract
We show that a slab of photonic crystal can transmit 100% of an incident beam in the forbidden gap. This phenomenon is due to the resonant excitation of leaky modes along the interfaces.
- Published
- 2005
- Full Text
- View/download PDF
38. Resonant optical transmission through a photonic crystal in the forbidden gap
- Author
-
Jean-Jacques Greffet, Marine Laroche, Rémi Carminati, Laboratoire d'Énergétique Moléculaire et Macroscopique, Combustion (EM2C), and CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Université Paris Saclay (COmUE)
- Subjects
Evanescent wave ,Materials science ,Absorption spectroscopy ,SURFACE ,Wave propagation ,Band gap ,WAVES ,Physics::Optics ,PACS: 42.25.Bs, 42.70.Qs, 73.20.Mf, 78.67.-n ,DIFFRACTION ,01 natural sciences ,SUBWAVELENGTH HOLE ARRAYS ,010309 optics ,Optics ,0103 physical sciences ,010306 general physics ,Electronic band structure ,Photonic crystal ,APERTURE ,business.industry ,GRATINGS ,Condensed Matter Physics ,Electronic, Optical and Magnetic Materials ,Transmission (telecommunications) ,LIGHT TRANSMISSION ,Quasiparticle ,Optoelectronics ,business ,EMISSION ,[CHIM.OTHE]Chemical Sciences/Other - Abstract
We show that a slab of a photonic crystal whose thickness is 3.5 mu m can transmit 100% of an incident beam whose frequency lies in the forbidden gap. This phenomenon is not linked to a volume defect but to the resonant coupling of leaky surface modes at both interfaces
- Published
- 2005
- Full Text
- View/download PDF
39. Coherent thermal emission mediated by surface plasmons on a tungsten surface
- Author
-
S. Collin, N. Bardou, François Marquier, J.-J. Greffet, J.-L. Pelouard, Marine Laroche, Rémi Carminati, and C. Arnold
- Subjects
Surface (mathematics) ,Materials science ,Phonon ,business.industry ,Surface plasmon ,chemistry.chemical_element ,Thermal emission ,Tungsten ,chemistry.chemical_compound ,Optics ,chemistry ,Surface wave ,Silicon carbide ,Optoelectronics ,business ,Plasmon - Published
- 2005
- Full Text
- View/download PDF
40. Émission thermique cohérente par excitation de plasmons de surface sur un échantillon en tungstène
- Author
-
C. Arnold, S. Collin, François Marquier, Marine Laroche, J.-J. Greffet, Rémi Carminati, J.-L. Pelouard, and N. Bardou
- Subjects
Physics ,Spatial coherence ,Surface plasmon ,Polariton ,General Physics and Astronomy ,Atomic physics - Abstract
Nous avons concu et realise une source de lumiere thermique en tungstene, dont la directivite dans le domaine infrarouge est comparable a celle d'un laser CO 2 [1]. Cette grande directivite est la signature de la coherence spatiale du champ dans le plan de la source. Ce phenomene trouve son origine dans l'excitation thermique resonnante de plasmons polaritons de surface.
- Published
- 2006
- Full Text
- View/download PDF
41. Erratum: 'Radiative heat transfer between metallic nanoparticles' [Appl. Phys. Lett. 92, 201906 (2010)]
- Author
-
Pierre-Olivier Chapuis, Jean-Jacques Greffet, Marine Laroche, and Sebastian Volz
- Subjects
Materials science ,Physics and Astronomy (miscellaneous) ,Condensed matter physics ,Thermal radiation ,Heat transfer ,Nanoparticle ,Metal nanoparticles - Published
- 2010
- Full Text
- View/download PDF
42. Optical resonances in one-dimensional dielectric nanorod arrays: field-induced fluorescence enhancement
- Author
-
Rémi Carminati, Silvia Albaladejo, Juan José Sáenz, and Marine Laroche
- Subjects
Materials science ,business.industry ,Near-field optics ,Physics::Optics ,Dielectric ,Grating ,Atomic and Molecular Physics, and Optics ,Wavelength ,Optics ,Nanorod ,Laser-induced fluorescence ,business ,Local field ,Diffraction grating - Abstract
Arrays of transparent dielectric nanorods are shown to produce very large local field enhancements at specific resonant conditions. These structures would lead to enhancement of molecular fluorescence signals without quenching. The resonant angular width and field enhancements are analytically derived as a function of wavelength, grating period, rod radius, and dielectric constant.
- Published
- 2007
- Full Text
- View/download PDF
43. Highly directional radiation generated by a tungsten thermal source
- Author
-
Jean-Jacques Greffet, François Marquier, Nathalie Bardou, C. Arnold, Marine Laroche, Stéphane Collin, Rémi Carminati, J.-L. Pelouard, Laboratoire d'Énergétique Moléculaire et Macroscopique, Combustion (EM2C), Université Paris Saclay (COmUE)-Centre National de la Recherche Scientifique (CNRS)-CentraleSupélec, Laboratoire de photonique et de nanostructures (LPN), Centre National de la Recherche Scientifique (CNRS), and Laroche, Marine
- Subjects
Electromagnetic field ,[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics] ,Materials science ,chemistry.chemical_element ,Physics::Optics ,SPATIAL COHERENCE ,02 engineering and technology ,Radiation ,Tungsten ,DIFFRACTION ,7. Clean energy ,01 natural sciences ,Directivity ,010309 optics ,Optics ,Electric field ,0103 physical sciences ,Polariton ,[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics] ,business.industry ,INTENSITY ,SURFACES ,021001 nanoscience & nanotechnology ,Atomic and Molecular Physics, and Optics ,LIGHT ,chemistry ,Thermal radiation ,Optoelectronics ,0210 nano-technology ,business ,EMISSION ,Excitation - Abstract
We report the design of a tungsten thermal source with extraordinarily high directivity in the near infrared, comparable to the directivity of a CO2 laser. This high directivity is the signature of the long-range correlation of the electromagnetic field in the source plane. This phenomenon is due to the resonant thermal excitation of surface-plasmon polaritons.
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.