38 results on '"Marie‐Anne de Graaff"'
Search Results
2. Drone imagery protocols to map vegetation are transferable between dryland sites across an elevational gradient
- Author
-
Anna Roser, Josh Enterkine, Juan M. Requena‐Mullor, Nancy F. Glenn, Alex Boehm, Marie‐Anne de Graaff, Patrick E. Clark, Fred Pierson, and T. Trevor Caughlin
- Subjects
fractional photosynthetic cover ,remote sensing ,unoccupied aerial vehicles ,Ecology ,QH540-549.5 - Abstract
Abstract The structure and composition of plant communities in drylands are highly variable across scales, from microsites to landscapes. Fine spatial resolution field surveys of dryland plants are essential to unravel the impact of climate change; however, traditional field data collection is challenging considering sampling efforts and costs. Unoccupied aerial systems (UAS) can alleviate this challenge by providing standardized measurements of plant community attributes with high resolution. However, given widespread heterogeneity in plant communities in drylands, and especially across environmental gradients, the transferability of UAS imagery protocols is unclear. Plant functional types (PFTs) are a classification scheme that aggregates the diversity of plant structure and function. We mapped and modeled PFTs and fractional photosynthetic cover using the same UAS imagery protocol across three dryland communities, differentiated by a landscape‐scale gradient of elevation and precipitation. We compared the accuracy of the UAS products between the three dryland sites. PFT classifications and modeled photosynthetic cover had highest accuracies at higher elevations (2241 m) with denser vegetation. The lowest site (1101 m), with more bare ground, had the least agreement with the field data. Notably, shrub cover was well predicted across the gradient of elevation and precipitation (~230–1100 mm/year). UAS surveys captured the heterogeneity of plant cover across sites and presented options to measure leaf‐level composition and structure at landscape levels. Our results demonstrate that some PFTs (i.e., shrubs) can readily be detected across sites using the same UAS imagery protocols, while others (i.e., grasses) may require site‐specific flight protocols for best accuracy. As UAS are increasingly used to monitor dryland vegetation, developing protocols that maximize information and efficiency is a research and management priority.
- Published
- 2022
- Full Text
- View/download PDF
3. A haploid pseudo-chromosome genome assembly for a keystone sagebrush species of western North American rangelands
- Author
-
Anthony E Melton, Andrew W Child, Richard S Beard, Carlos Dave C Dumaguit, Jennifer S Forbey, Matthew Germino, Marie-Anne de Graaff, Andrew Kliskey, Ilia J Leitch, Peggy Martinez, Stephen J Novak, Jaume Pellicer, Bryce A Richardson, Desiree Self, Marcelo Serpe, and Sven Buerki
- Subjects
Genetics ,QH426-470 - Abstract
AbstractIncreased ecological disturbances, species invasions, and climate change are creating severe conservation problems for several plant species that are widespread and foundational. Understanding the genetic diversity of these species and how it relates to adaptation to these stressors are necessary for guiding conservation and restoration efforts. This need is particularly acute for big sagebrush (Artemisia tridentata2A. tridentatatridentatan ab initioArtemisia tridentatatridentata
- Published
- 2022
- Full Text
- View/download PDF
4. Effects of Climate and Atmospheric Nitrogen Deposition on Early to Mid-Term Stage Litter Decomposition Across Biomes
- Author
-
TaeOh Kwon, Hideaki Shibata, Sebastian Kepfer-Rojas, Inger K. Schmidt, Klaus S. Larsen, Claus Beier, Björn Berg, Kris Verheyen, Jean-Francois Lamarque, Frank Hagedorn, Nico Eisenhauer, Ika Djukic, TeaComposition Network, Inger Kappel Schmidt, Klaus Steenberg Larsen, Jean Francois Lamarque, Adriano Caliman, Alain Paquette, Alba Gutiérrez-Girón, Alessandro Petraglia, Algirdas Augustaitis, Amélie Saillard, Ana Carolina Ruiz-Fernández, Ana I. Sousa, Ana I. Lillebø, Anderson da Rocha Gripp, Andrea Lamprecht, Andreas Bohner, André-Jean Francez, Andrey Malyshev, Andrijana Andrić, Angela Stanisci, Anita Zolles, Anna Avila, Anna-Maria Virkkala, Anne Probst, Annie Ouin, Anzar A. Khuroo, Arne Verstraeten, Artur Stefanski, Aurora Gaxiola, Bart Muys, Beatriz Gozalo, Bernd Ahrends, Bo Yang, Brigitta Erschbamer, Carmen Eugenia Rodríguez Ortíz, Casper T. Christiansen, Céline Meredieu, Cendrine Mony, Charles Nock, Chiao-Ping Wang, Christel Baum, Christian Rixen, Christine Delire, Christophe Piscart, Christopher Andrews, Corinna Rebmann, Cristina Branquinho, Dick Jan, Dirk Wundram, Dušanka Vujanović, E. Carol Adair, Eduardo Ordóñez-Regil, Edward R. Crawford, Elena F. Tropina, Elisabeth Hornung, Elli Groner, Eric Lucot, Esperança Gacia, Esther Lévesque, Evanilde Benedito, Evgeny A. Davydov, Fábio Padilha Bolzan, Fernando T. Maestre, Florence Maunoury-Danger, Florian Kitz, Florian Hofhansl, Flurin Sutter, Francisco de Almeida Lobo, Franco Leadro Souza, Franz Zehetner, Fulgence Kouamé Koffi, Georg Wohlfahrt, Giacomo Certini, Gisele Daiane Pinha, Grizelle González, Guylaine Canut, Harald Pauli, Héctor A. Bahamonde, Heike Feldhaar, Heinke Jäger, Helena Cristina Serrano, Hélène Verheyden, Helge Bruelheide, Henning Meesenburg, Hermann Jungkunst, Hervé Jactel, Hiroko Kurokawa, Ian Yesilonis, Inara Melece, Inge van Halder, Inmaculada García Quirós, István Fekete, Ivika Ostonen, Jana Borovská, Javier Roales, Jawad Hasan Shoqeir, Jean-Christophe Lata, Jean-Luc Probst, Jeyanny Vijayanathan, Jiri Dolezal, Joan-Albert Sanchez-Cabeza, Joël Merlet, John Loehr, Jonathan von Oppen, Jörg Löffler, José Luis Benito Alonso, José-Gilberto Cardoso-Mohedano, Josep Peñuelas, Joseph C. Morina, Juan Darío Quinde, Juan J. Jiménez, Juha M. Alatalo, Julia Seeber, Julia Kemppinen, Jutta Stadler, Kaie Kriiska, Karel Van den Meersche, Karibu Fukuzawa, Katalin Szlavecz, Katalin Juhos, Katarína Gerhátová, Kate Lajtha, Katie Jennings, Katja Tielbörger, Kazuhiko Hoshizaki, Ken Green, Klaus Steinbauer, Laryssa Pazianoto, Laura Dienstbach, Laura Yahdjian, Laura J. Williams, Laurel Brigham, Lee Hanna, Liesbeth van den Brink, Lindsey Rustad, Lourdes Morillas, Luciana Silva Carneiro, Luciano Di Martino, Luis Villar, Luísa Alícida Fernandes Tavares, Madison Morley, Manuela Winkler, Marc Lebouvier, Marcello Tomaselli, Marcus Schaub, Maria Glushkova, Maria Guadalupe Almazan Torres, Marie-Anne de Graaff, Marie-Noëlle Pons, Marijn Bauters, Marina Mazón, Mark Frenzel, Markus Wagner, Markus Didion, Maroof Hamid, Marta Lopes, Martha Apple, Martin Weih, Matej Mojses, Matteo Gualmini, Matthew Vadeboncoeur, Michael Bierbaumer, Michael Danger, Michael Scherer-Lorenzen, Michal Růžek, Michel Isabellon, Michele Di Musciano, Michele Carbognani, Miglena Zhiyanski, Mihai Puşcaş, Milan Barna, Mioko Ataka, Miska Luoto, Mohammed H. Alsafaran, Nadia Barsoum, Naoko Tokuchi, Nathalie Korboulewsky, Nicolas Lecomte, Nina Filippova, Norbert Hölzel, Olga Ferlian, Oscar Romero, Osvaldo Pinto-Jr, Pablo Peri, Pavel Dan Turtureanu, Peter Haase, Peter Macreadie, Peter B. Reich, Petr Petřík, Philippe Choler, Pierre Marmonier, Quentin Ponette, Rafael Dettogni Guariento, Rafaella Canessa, Ralf Kiese, Rebecca Hewitt, Robert Weigel, Róbert Kanka, Roberto Cazzolla Gatti, Rodrigo Lemes Martins, Romà Ogaya, Romain Georges, Rosario G. Gavilán, Sally Wittlinger, Sara Puijalon, Satoshi Suzuki, Schädler Martin, Schmidt Anja, Sébastien Gogo, Silvio Schueler, Simon Drollinger, Simone Mereu, Sonja Wipf, Stacey Trevathan-Tackett, Stefan Stoll, Stefan Löfgren, Stefan Trogisch, Steffen Seitz, Stephan Glatzel, Susanna Venn, Sylvie Dousset, Taiki Mori, Takanori Sato, Takuo Hishi, Tatsuro Nakaji, Theurillat Jean-Paul, Thierry Camboulive, Thomas Spiegelberger, Thomas Scholten, Thomas J. Mozdzer, Till Kleinebecker, Tomáš Rusňák, Tshililo Ramaswiela, Tsutom Hiura, Tsutomu Enoki, Tudor-Mihai Ursu, Umberto Morra di Cella, Ute Hamer, Valentin Klaus, Valter Di Cecco, Vanessa Rego, Veronika Fontana, Veronika Piscová, Vincent Bretagnolle, Vincent Maire, Vinicius Farjalla, Vittoz Pascal, Wenjun Zhou, Wentao Luo, William Parker, Yasuhiro Utsumi, Yuji Kominami, Zsolt Kotroczó, and Zsolt Tóth
- Subjects
tea bag ,Green tea ,Rooibos tea ,litter decomposition ,carbon turnover ,nitrogen deposition ,Forestry ,SD1-669.5 ,Environmental sciences ,GE1-350 - Abstract
Litter decomposition is a key process for carbon and nutrient cycling in terrestrial ecosystems and is mainly controlled by environmental conditions, substrate quantity and quality as well as microbial community abundance and composition. In particular, the effects of climate and atmospheric nitrogen (N) deposition on litter decomposition and its temporal dynamics are of significant importance, since their effects might change over the course of the decomposition process. Within the TeaComposition initiative, we incubated Green and Rooibos teas at 524 sites across nine biomes. We assessed how macroclimate and atmospheric inorganic N deposition under current and predicted scenarios (RCP 2.6, RCP 8.5) might affect litter mass loss measured after 3 and 12 months. Our study shows that the early to mid-term mass loss at the global scale was affected predominantly by litter quality (explaining 73% and 62% of the total variance after 3 and 12 months, respectively) followed by climate and N deposition. The effects of climate were not litter-specific and became increasingly significant as decomposition progressed, with MAP explaining 2% and MAT 4% of the variation after 12 months of incubation. The effect of N deposition was litter-specific, and significant only for 12-month decomposition of Rooibos tea at the global scale. However, in the temperate biome where atmospheric N deposition rates are relatively high, the 12-month mass loss of Green and Rooibos teas decreased significantly with increasing N deposition, explaining 9.5% and 1.1% of the variance, respectively. The expected changes in macroclimate and N deposition at the global scale by the end of this century are estimated to increase the 12-month mass loss of easily decomposable litter by 1.1–3.5% and of the more stable substrates by 3.8–10.6%, relative to current mass loss. In contrast, expected changes in atmospheric N deposition will decrease the mid-term mass loss of high-quality litter by 1.4–2.2% and that of low-quality litter by 0.9–1.5% in the temperate biome. Our results suggest that projected increases in N deposition may have the capacity to dampen the climate-driven increases in litter decomposition depending on the biome and decomposition stage of substrate.
- Published
- 2021
- Full Text
- View/download PDF
5. Crops for Carbon Farming
- Author
-
Christer Jansson, Celia Faiola, Astrid Wingler, Xin-Guang Zhu, Alexandra Kravchenko, Marie-Anne de Graaff, Aaron J. Ogden, Pubudu P. Handakumbura, Christiane Werner, and Diane M. Beckles
- Subjects
carbon budget ,carbon farming ,plant-microbe interactions ,rhizosphere ,rhizosphere microbiome ,PGPB (plant growth-promoting bacteria) ,Plant culture ,SB1-1110 - Abstract
Agricultural cropping systems and pasture comprise one third of the world’s arable land and have the potential to draw down a considerable amount of atmospheric CO2 for storage as soil organic carbon (SOC) and improving the soil carbon budget. An improved soil carbon budget serves the dual purpose of promoting soil health, which supports crop productivity, and constituting a pool from which carbon can be converted to recalcitrant forms for long-term storage as a mitigation measure for global warming. In this perspective, we propose the design of crop ideotypes with the dual functionality of being highly productive for the purposes of food, feed, and fuel, while at the same time being able to facilitate higher contribution to soil carbon and improve the below ground ecology. We advocate a holistic approach of the integrated plant-microbe-soil system and suggest that significant improvements in soil carbon storage can be achieved by a three-pronged approach: (1) design plants with an increased root strength to further allocation of carbon belowground; (2) balance the increase in belowground carbon allocation with increased source strength for enhanced photosynthesis and biomass accumulation; and (3) design soil microbial consortia for increased rhizosphere sink strength and plant growth-promoting (PGP) properties.
- Published
- 2021
- Full Text
- View/download PDF
6. Empirical Methods for Remote Sensing of Nitrogen in Drylands May Lead to Unreliable Interpretation of Ecosystem Function.
- Author
-
Hamid Dashti, Nancy F. Glenn, Susan L. Ustin, Jessica J. Mitchell, Yi Qi, Nayani T. Ilangakoon, Alejandro N. Flores, José Luis Silván-Cárdenas, Kaiguang Zhao, Lucas P. Spaete, and Marie-Anne de Graaff
- Published
- 2019
- Full Text
- View/download PDF
7. Root traits of perennial <scp> C 4 </scp> grasses contribute to cultivar variations in soil chemistry and species patterns in particulate and mineral‐associated carbon pool formation
- Author
-
Megan J. Kelly‐Slatten, Catherine E. Stewart, Malak M. Tfaily, Julie D. Jastrow, Abigail Sasso, and Marie‐Anne de Graaff
- Subjects
Renewable Energy, Sustainability and the Environment ,Forestry ,Waste Management and Disposal ,Agronomy and Crop Science - Published
- 2023
- Full Text
- View/download PDF
8. Getting to the Root of the Problem: Disentangling Interactions between Modern Root Inputs, Microbial Activity, and Carbon Destabilization in Buried Paleosols
- Author
-
Abbygail McMurtry, Chase S. Kasmerchak, Elliot A. Vaughan, Manisha Dolui, Laura M. Szymanski, Carsten W. Mueller, Jennifer Pett-Ridge, Joseph A. Mason, Erika Marin-Spiotta, and Marie-Anne de Graaff
- Published
- 2023
- Full Text
- View/download PDF
9. Disentangling the effects of multiple fires on spatially interspersed sagebrush ( Artemisia spp.) communities
- Author
-
Susan K. McIlroy, Marie-Anne de Graaff, and Douglas J. Shinneman
- Subjects
geography.geographical_feature_category ,Secondary succession ,Ecology ,biology ,Resistance (ecology) ,Plant Science ,Vegetation ,Ecological succession ,biology.organism_classification ,Spatial heterogeneity ,Shrubland ,Geography ,Ecoregion ,Artemisia rigida - Abstract
QUESTIONS: Relative to a landscape with a mosaic of two sagebrush community types and increasing fire frequency, we asked: (a) do vegetation characteristics vary significantly with number of times burned for each sagebrush community; (b) how do vegetation responses to different fire frequencies compare between the two sagebrush communities? LOCATION: Columbia Plateau Ecoregion, Washington, USA. METHODS: We sampled vegetation across a landscape that burned three times over a 10‐year period in two sagebrush community types that are interspersed on unique land forms: big sagebrush (Artemisia tridentata) communities that occur on small “mounds” and scabland sagebrush (A. rigida) communities that occur on surrounding “flats.” Spatially overlapping fires permitted a balanced sampling design to assess unburned and once‐, twice‐, and thrice‐burned locations for each land form/community type. We utilized a suite of statistical analyses to determine differences among plant functional groups and biomass among unburned/burned strata by land form and compared results between land forms. RESULTS: Big sagebrush and scabland sagebrush communities responded uniquely to multiple fires, due to different fuel loadings, fire severities, succession and invasion dynamics. Big sagebrush experienced nearly complete shrub loss and conversion from exotic‐invaded shrubland to exotic annual grassland after only one fire. In contrast, scabland sagebrush retained a minor shrub component and higher relative cover of native herbaceous species, even after three fires. Both communities retained cover of native perennial grasses, including shallow‐ and deep‐rooted species, likely reflecting decreasing fire intensity with number of times burned. CONCLUSIONS: Despite different community‐level responses, increasing fire frequency is transforming the entire landscape to a non‐native/native grassland mix. Quantifying unique ecosystem responses to altered wildfire regimes is critical to understanding the relative resilience of communities to disturbance and their resistance to exotic species invasion (and community type conversion). Management actions may help to maintain spatial heterogeneity of ecosystems and fire‐tolerant native species.
- Published
- 2020
- Full Text
- View/download PDF
10. Cheatgrass-associated AMF community negatively affects sagebrush root production but not C transfer to the soil
- Author
-
Janina Dierks, Linda T. A. van Diepen, Karolien Denef, and Marie-Anne de Graaff
- Subjects
0106 biological sciences ,Biomass (ecology) ,biology ,Community structure ,Soil Science ,04 agricultural and veterinary sciences ,Plant Science ,Bromus tectorum ,Native plant ,biology.organism_classification ,01 natural sciences ,Agronomy ,Shoot ,040103 agronomy & agriculture ,0401 agriculture, forestry, and fisheries ,Artemisia ,Ecosystem ,Species richness ,010606 plant biology & botany - Abstract
Cheatgrass (Bromus tectorum) invasion can alter community structure of arbuscular mycorrhizal fungi (AMF) in the sagebrush-steppe ecosystem. The feedbacks and underlying mechanisms of a changed AMF community on sagebrush (Artemisia tridentate ssp. wyomingensis) remain unclear. We assessed how ‘own’ versus ‘foreign’ AMF impact plant biomass, C transfer to AMF, and decomposition rates. To evaluate the impact of different AMF communities on plant biomass and C transfer, sagebrush and cheatgrass were grown in sterilized soil amended with ‘own’ or ‘foreign’ AMF. Sagebrush plants were labeled with 13C-CO2 to assess changes in allocation of C belowground (13C-PLFA & NLFA) and decomposition (soil respired 13C-CO2). Community structure and alpha-diversity of AMF were examined in native and cheatgrass-invaded communities. Cheatgrass invasion changed AMF community structure and decreased AMF taxon richness. Sagebrush C transfer and decomposition were not altered, but sagebrush root and cheatgrass shoot production was reduced with ‘foreign’ AMF and no AMF, respectively. Our results from the greenhouse experiment suggest that sagebrush performance declines with cheatgrass invasion. This may be caused by a disadvantageous AMF community shift, where ‘foreign’ AMF received the same amount of C but provided fewer benefits to sagebrush, as shown by decreased root biomass. These findings provide insight into the feedback mechanism that may contribute to decreasing native plant performance upon invasion.
- Published
- 2019
- Full Text
- View/download PDF
11. Experimental exclusion of insectivorous predators results in no responses across multiple trophic levels in a water-limited, sagebrush-steppe ecosystem
- Author
-
Akito Y. Kawahara, Marie-Anne de Graaff, Elizeth Cinto Mejia, Keith Reinhardt, Ken Aho, Peggy Martinez (Mentor), Jesse R. Barber, and Maria T. Pacioretty
- Subjects
0106 biological sciences ,Abiotic component ,geography ,geography.geographical_feature_category ,010504 meteorology & atmospheric sciences ,Ecology ,ved/biology ,Steppe ,ved/biology.organism_classification_rank.species ,Growing season ,010603 evolutionary biology ,01 natural sciences ,Shrub ,Predation ,Abundance (ecology) ,Ecosystem ,Ecology, Evolution, Behavior and Systematics ,0105 earth and related environmental sciences ,Earth-Surface Processes ,Trophic level - Abstract
Predators can have strong influences on ecological processes through impacts on individuals at lower trophic levels, and changes in predator-prey dynamics can alter ecosystem functioning. However, much of what we currently know about interactions across trophic levels comes from mesic or relatively fertile systems, with fewer studies examining trophic interactions and resulting ecosystem processes in arid or infertile systems. To address this knowledge gap, we excluded avian predators from shrubs during the growing season using netting in a sagebrush steppe environment. We compared arthropod abundance, shrub herbivory damage, physiology (gas exchange and chlorophyll fluorescence), litter chemistry (C/N ratios and concentrations of phenolic compounds) and decomposition between netted and un-netted (control) sagebrush (Artemisia tridentata ssp. wyomingensis) shrubs across a growing season. While there were clear seasonal patterns in measurements, we observed no statistically significant differences between netting treatments in any of these measurements, though abundances of arthropods in the sap-feeding trophic guilds were appreciably greater (although not significantly) on netted compared to un-netted shrubs. Our results suggest that in the short-term, either top-down effects in this sage-steppe ecosystem are minimal, and/or inter-trophic interactions (vertebrate predators-arthropods-plants) are relatively weak and more dependent on bottom-up processes that are linked with abiotic variables.
- Published
- 2019
- Full Text
- View/download PDF
12. Vulnerability of Paleosol Carbon Decomposition to Root-Derived Carbon Inputs
- Author
-
Marie-Anne de graaff, Abby McMurtry, Laura Szymanski, Manisha Dolui, Jennifer Pett-Ridge, Asmeret Behre, Joe Mason, and Erika Marin-Spiotta
- Published
- 2020
- Full Text
- View/download PDF
13. Beyond the black box: promoting mathematical collaborations for elucidating interactions in soil ecology
- Author
-
Kim Cuddington, Miro Kummel, James D. Bever, Alison E. Bennett, Lori A. Biederman, Alan Hastings, Bonnie H. Ownley, Katharine F. Preedy, Aimée T. Classen, Volodymyr Hrynkiv, Marie-Anne de Graaff, Loren B. Byrne, Keenan M. L. Mack, Vonda Walsh, Justine Karst, Wei Liao, Laura Miller, Charlotte T. Lee, Jason D. Hoeksema, Antonio J. Golubski, Chao Liang, Kent Apostol, Matthew Warren, Claudia Rojas, Lou Gross, James Umbanhowar, Stuart R. Borrett, Jun Zhu, Karen A. Garrett, and Ellen L. Simms
- Subjects
0106 biological sciences ,Ecology ,Mathematical model ,Computer science ,Management science ,010604 marine biology & hydrobiology ,Foundation (engineering) ,plant–soil interactions ,Ecological systems theory ,ecological hierarchy ,soil processes ,010603 evolutionary biology ,01 natural sciences ,Field (geography) ,GeneralLiterature_MISCELLANEOUS ,soil ecology ,Key terms ,Empirical research ,lcsh:QH540-549.5 ,evolution ,Soil ecology ,Ecosystem ,lcsh:Ecology ,Ecology, Evolution, Behavior and Systematics ,mathematical model - Abstract
Understanding soil systems is critical because they form the structural and nutritional foundation for plants and thus every terrestrial habitat and agricultural system. In this paper, we encourage increased use of mathematical models to drive forward understanding of interactions in soil ecological systems. We discuss several distinctive features of soil ecosystems and empirical studies of them. We explore some perceptions that have previously deterred more extensive use of models in soil ecology and some advances that have already been made using models to elucidate soil ecological interactions. We provide examples where mathematical models have been used to test the plausibility of hypothesized mechanisms, to explore systems where experimental manipulations are currently impossible, or to determine the most important variables to measure in experimental and natural systems. To aid in the development of theory in this field, we present a table describing major soil ecology topics, the theory previously used, and providing key terms for theoretical approaches that could potentially address them. We then provide examples from the table that may either contribute to important incremental developments in soil science or potentially revolutionize our understanding of plant–soil systems. We challenge scientists and mathematicians to push theoretical explorations in soil systems further and highlight three major areas for the development of mathematical models in soil ecology: theory spanning scales and ecological hierarchies, processes, and evolution.
- Published
- 2019
14. Fire frequency impacts soil properties and processes in sagebrush steppe ecosystems of the Columbia Basin
- Author
-
Leslie Nichols, Douglas J. Shinneman, Susan K. McIlroy, and Marie-Anne de Graaff
- Subjects
0106 biological sciences ,geography ,geography.geographical_feature_category ,Ecology ,Steppe ,Soil organic matter ,Soil Science ,04 agricultural and veterinary sciences ,Soil carbon ,complex mixtures ,01 natural sciences ,Agricultural and Biological Sciences (miscellaneous) ,Soil structure ,Disturbance (ecology) ,Agronomy ,Soil pH ,Soil water ,040103 agronomy & agriculture ,0401 agriculture, forestry, and fisheries ,Environmental science ,Ecosystem ,010606 plant biology & botany - Abstract
Increased fire frequency in semi-arid ecosystems can alter biochemical soil properties and soil processes that underpin ecosystem structure and functioning, thus threatening native plant communities and the species that rely on them. However, there is much uncertainty about the magnitude of change as soils are exposed to more fires, because soil recovery and changes in fire severity following a first fire mediate the impact of successive fires on soil properties. With this study we aim to evaluate how increased fire frequency affects soil biochemical properties (i.e. soil pH, soil organic matter (SOM), soil organic carbon (SOC), soil structure and mineral N) and processes (i.e. microbial and enzymatic activity) in a sagebrush-steppe ecosystem located in the Columbia Plateau Ecoregion, Washington, USA. During 2016, we collected soils from once (2012), twice (2003 and 2012), and thrice (2003, 2007, and 2012) burned areas, enabling us to test the hypothesis that increasing fire frequency will exacerbate the impact of fire on soil properties and processes. Our study yielded three main results: (1) fire reduced the total soil C concentration and soil C in aggregates relative to unburned soil, but only when soil was exposed to fire once (i.e. the most recent fire), (2) compared to the unburned soils, SOM contents, enzyme activity and microbial CO2 respiration were suppressed in the once and thrice burned soils, but not in the twice burned soils, and (3) fire increased NO3−-N contents across the once and twice burned sites, and reduced enzyme activity associated with N cycling in the thrice burned sites. Taken together, our findings suggest that a one-time fire in this shrub dominated semi-arid ecosystem significantly changes soil biochemical attributes and microbially driven processes. With sufficient time between fires, these structural and functional properties can partially recover, and this may persist even after a second fire, but recovery is limited when a third fire creates an additional disturbance at a shorter time interval. Furthermore, while soil C pools and microbial decomposition processes were able to recover with sufficient time, greater soil resource availability prevailed in soil across all fire frequencies, indicating that fire is likely to promote invasion and reduce ecosystem stability, even when other soil properties recover.
- Published
- 2021
- Full Text
- View/download PDF
15. Enhanced precipitation promotes decomposition and soil C stabilization in semiarid ecosystems, but seasonal timing of wetting matters
- Author
-
Marie-Anne de Graaff, Matthew J. Germino, and Xochi Campos
- Subjects
0106 biological sciences ,biology ,Soil organic matter ,Soil Science ,Growing season ,Soil science ,04 agricultural and veterinary sciences ,Plant Science ,Soil carbon ,Plant litter ,Silt ,biology.organism_classification ,010603 evolutionary biology ,01 natural sciences ,Agropyron cristatum ,Agronomy ,Ecohydrology ,040103 agronomy & agriculture ,0401 agriculture, forestry, and fisheries ,Environmental science ,Precipitation - Abstract
Changing precipitation regimes in semiarid ecosystems will affect the balance of soil carbon (C) input and release, but the net effect on soil C storage is unclear. We asked how changes in the amount and timing of precipitation affect litter decomposition, and soil C stabilization in semiarid ecosystems. The study took place at a long-term (18 years) ecohydrology experiment located in Idaho. Precipitation treatments consisted of a doubling of annual precipitation (+200 mm) added either in the cold-dormant season or in the growing season. Experimental plots were planted with big sagebrush (Artemisia tridentata), or with crested wheatgrass (Agropyron cristatum). We quantified decomposition of sagebrush leaf litter, and we assessed organic soil C (SOC) in aggregates, and silt and clay fractions. We found that: (1) increased precipitation applied in the growing season consistently enhanced decomposition rates relative to the ambient treatment, and (2) precipitation applied in the dormant season enhanced soil C stabilization. These data indicate that prolonged increases in precipitation can promote soil C storage in semiarid ecosystems, but only if these increases happen at times of the year when conditions allow for precipitation to promote plant C inputs rates to soil.
- Published
- 2017
- Full Text
- View/download PDF
16. A hierarchical framework for studying the role of biodiversity in soil food web processes and ecosystem services
- Author
-
Marie-Anne de Graaff, Heather L. Throop, Paul Kardol, and Jaron Adkins
- Subjects
0106 biological sciences ,Soil biodiversity ,business.industry ,Ecology ,Environmental resource management ,Biodiversity ,Soil Science ,04 agricultural and veterinary sciences ,010603 evolutionary biology ,01 natural sciences ,Microbiology ,GeneralLiterature_MISCELLANEOUS ,Ecosystem services ,Geography ,Sustainability ,040103 agronomy & agriculture ,0401 agriculture, forestry, and fisheries ,Soil food web ,Ecosystem ,Ecosystem diversity ,business ,Trophic level - Abstract
Soil food webs play a key role in the cycling of carbon and nutrients and in sustainably provisioning ecosystem services. Despite the tremendous diversity of organisms that soil food webs harbor, we still know surprisingly little about the role of biodiversity in influencing the processes and services provided by soil food webs. To guide future research in this area, we outline a conceptual framework linking hierarchical levels of soil biodiversity to ecosystem processes and services. Here, we distinguish among different hierarchical levels of diversity: trophic, functional, taxonomic and genetic diversity. We conclude that the levels of food web diversity that matter most vary with the processes or services considered, with functional trait diversity being the most universally influential level of diversity. Increased research emphasis on manipulating diversity across hierarchical levels of biodiversity organization, with an explicit focus on the functional role of the component species, is critical for enhancing our understanding of the role of soil food web diversity in driving ecosystem processes and services.
- Published
- 2016
- Full Text
- View/download PDF
17. Effects of agricultural intensification on soil biodiversity and implications for ecosystem functioning: A meta-analysis
- Author
-
Marie-Anne de Graaff, Linda T. A. van Diepen, Heather L. Throop, Nicole Hornslein, and Paul Kardol
- Subjects
Tillage ,Ecology ,Agriculture ,business.industry ,Soil biodiversity ,Intensive farming ,Soil organic matter ,Biodiversity ,Organic farming ,Environmental science ,Ecosystem ,business - Abstract
Environmental perturbations such as agricultural intensification may alter soil biodiversity in a manner that affects ecosystem functioning, but links are not well quantified. With this review we ask: (1) “How does agricultural intensification affect soil biodiversity?” and (2) “How do such changes in soil biodiversity affect ecosystem function?” We used meta-analysis to quantify responses across studies. Our results indicate that agricultural intensification can significantly alter soil biodiversity, with negative impacts of synthetic N fertilization on arbuscular mycorrhizal fungal (AMF) and faunal diversity, and positive effects on fungal- and microbial functional diversity. Bacterial diversity increased with low synthetic N input rates ( 5 years, suggesting that agricultural management practices that promote soil organic matter (SOM) accumulation and retention enhance bacterial biodiversity. Tillage negatively impacted soil faunal and bacterial diversity, but did not affect AMF, fungal or functional diversity, and organic farming relative to conventional farming did not affect soil biodiversity. Biodiversity manipulation studies indicate that changes in soil biodiversity affect ecosystem process rates, although manipulated biodiversity levels tend to exaggerate biodiversity losses and possibly overestimate consequences for ecosystem functioning relative to measured biodiversity losses from environmental perturbations. There is a need for more studies that evaluate how losses in soil biodiversity following environmental perturbations directly affect ecosystem functioning. Advances in analytical techniques to identify soil organisms and an increase in soil biodiversity manipulation experiments should help solidify links between environmental changes, soil biodiversity and ecosystem functioning.
- Published
- 2019
- Full Text
- View/download PDF
18. Effects of switchgrass cultivars and intraspecific differences in root structure on soil carbon inputs and accumulation
- Author
-
Marie-Anne de Graaff, Geoffrey P. Morris, Julie D. Jastrow, Jaron Adkins, and Johan Six
- Subjects
chemistry.chemical_classification ,010504 meteorology & atmospheric sciences ,biology ,Bulk soil ,Soil Science ,Soil chemistry ,04 agricultural and veterinary sciences ,Soil carbon ,Root system ,biology.organism_classification ,01 natural sciences ,chemistry ,Agronomy ,Soil water ,040103 agronomy & agriculture ,0401 agriculture, forestry, and fisheries ,Environmental science ,Panicum virgatum ,Organic matter ,Cultivar ,0105 earth and related environmental sciences - Abstract
Switchgrass (Panicum virgatum L.), a cellulosic biofuel feedstock, may promote soil C accumulation compared to annual cropping systems by increasing the amount and retention of root-derived soil C inputs. However, these inputs and stabilization thereof may differ by cultivar, and it is uncertain which root traits favor soil C input and stabilization rates. The aim of this study was to assess how different switchgrass cultivars impact soil C inputs and retention, whether these impacts vary with depth, and whether specific root length (SRL) explains these impacts. We collected soil to a depth of 30 cm (10 cm increments) from six switchgrass cultivars with root systems ranging from high to low SRL. The cultivars (C4 species) were grown for 27 months on soils previously dominated by C3 plants, allowing us to quantify both total C and switchgrass-derived C accumulation in the bulk soil and in coarse particulate organic matter (CPOM), fine particulate organic matter (FPOM), silt-sized, and clay-sized fractions. The study led to two main results: (1) bulk soil C concentrations beneath switchgrass cultivars varied by 40% in the 0–10 cm soil depth and by 70% in the 10–20 cm soil depth, and cultivars with high bulk soil C concentrations tended to have relatively high C concentrations in the mineral soil fractions and relatively low C concentrations in the POM fractions; (2) there were significant differences in switchgrass-derived soil C between cultivars at the 0–10 cm depth, where soil C inputs ranged from 1.2 to 3.2 mg C g− 1 dry soil. In addition, switchgrass-derived C was positively related to SRL when one outlier data point was removed. These results suggest that switchgrass cultivars differentially impact mechanisms contributing to soil C accumulation.
- Published
- 2016
- Full Text
- View/download PDF
19. VULNERABILITY OF ANCIENT CARBON TO MODERN EROSIONAL PROCESSES
- Author
-
Abbygail McMurtry, Asmeret Asefaw Berhe, Marie-Anne de Graaff, Erika Marin-Spiotta, M. Dolui, L. M. Szymanski, and Joseph A. Mason
- Subjects
chemistry ,Earth science ,Vulnerability ,Environmental science ,chemistry.chemical_element ,Global change ,Carbon - Published
- 2018
- Full Text
- View/download PDF
20. Early stage litter decomposition across biomes
- Author
-
Umberto Morra di Cella, Sean P. Charles, Matteo Gualmini, Naoko Tokuchi, Michael Mirtl, Marta Lobão Lopes, Takeshi Ise, Inmaculada García Quirós, Geovana Carreño-Rocabado, Arne Verstraeten, Joan-Albert Sanchez-Cabeza, Thomas Zechmeister, Jill Thompson, Norbert Hölzel, Maroof Hamid, Rodrigo Lemes Martins, Taiki Mori, José Marcelo Domingues Torezan, Dana Polyanskaya, Peter Haase, Björn Berg, Angela Stanisci, Issaka Senou, Inger Kappel Schmidt, Markus Wagner, Adriano Caliman, Laurel M. Brigham, Alejandro Valdecantos, Céline Meredieu, Kalifa Coulibaly, Margarida Santos-Reis, Georg Wohlfahrt, Regin Rønn, Marcello Tomaselli, Martin Weih, Bernd Ahrends, Kaie Kriiska, Anja Schmidt, Luciana S. Carneiro, Ana I. Lillebø, Alessandro Petraglia, Algirdas Augustaitis, Ana I. Sousa, Sonja Wipf, Chi-Ling Chen, Hassan Bismarck Nacro, Sue J. Milton, Ivan Mihal, Ika Djukic, Florence Maunoury-Danger, Peter Fleischer, Tatsuro Nakaji, Cendrine Mony, Sara Puijalon, Rafael D. Guariento, Rosa Isela Meneses, Mihai Pușcaș, Pablo Luis Peri, Flurin Sutter, Kate Lajtha, Peter B. Reich, Lindsey E. Rustad, María Guadalupe Almazán Torres, Laura Williams, George L. Vourlitis, Evanilde Benedito, Arely N. Palabral-Aguilera, Luis Villar, Stefanie Hoeber, Juan J. Jiménez, Esperança Gacia, Alba Gutiérrez-Girón, Kazuhiko Hoshizaki, Takanori Sato, Eric Lucot, Osvaldo Borges Pinto, Artur Stefanski, Andrew R. Smith, Takuo Hishi, Rosario G. Gavilán, Till Kleinebecker, Julia Seeber, Gina Arena, Marcelo Sternberg, Mo Jiangming, Tsutom Hiura, Satoshi N. Suzuki, Jeyanny Vijayanathan, Christine Delire, Francisco Cuesta, Bill Parker, Mark Frenzel, Franz Zehetner, Vincent Maire, Edward Crawford, Heinke Jäger, Nicolas Lecomte, Tanaka Kenta, Yuji Kominami, Joseph C. Morina, Paige E. Weber, Pavel Dan Turtureanu, Marc Lebouvier, Pascal Vittoz, Jónína Sigríður Þorláksdóttir, Anne Probst, David Fuentes Delgado, Laura Yahdjian, Johan Neirynck, Isaac Ahanamungu Makelele, Bernard Bosman, Fábio Padilha Bolzan, Yury Rozhkov, Ute Hamer, Henning Meesenburg, Vinicius F. Farjalla, Steffen Seitz, Marie-Noëlle Pons, Jess K. Zimmerman, Hans Verbeeck, Thomas Scholten, Elena Preda, Thomas Spiegelberger, Romain Georges, Stefan Löfgren, Ferdinand Kristöfel, Pierre Marmonier, Juha M. Alatalo, Katalin Szlavecz, Ana Carolina Ruiz Fernández, Johannes M. H. Knops, Rita Adrian, Vanessa Mendes Rêgo, Jean-Christophe Lata, Rafaella Canessa, Kathrin Käppeler, Andrea Fischer, Michael Bierbaumer, Jiří Doležal, Hideaki Shibata, Marcus Schaub, Zsolt Toth, Diyaa Radeideh, Matthew A. Vadeboncoeur, Robert Kanka, William H. McDowell, Birgit Sattler, Jean-Luc Probst, Mioko Ataka, Katarína Gerhátová, Jawad Shoqeir, Stefan Stoll, Michael Danger, Sébastien Gogo, Katja Tielbörger, Laryssa Helena Ribeiro Pazianoto, Bo Yang, Franco L. Souza, John Loehr, Francisco de Almeida Lobo, Michael J. Liddell, Sylvie Dousset, Dirk Wundram, Ralf Kiese, Yalin Hu, Miglena Zhiyanski, José-Luis Benito-Alonso, Katie A. Jennings, Tsutomu Enoki, Helena Cristina Serrano, Quentin Ponette, Helge Bruelheide, Simon Drollinger, Vincent Bretagnolle, Ivika Ostonen, Lambiénou Yé, Javier Roales, Philippe Choler, Madison Morley, Charles A. Nock, Grizelle González, Tudor-Mihai Ursu, Maaike Y. Bader, Cristina Branquinho, Hugo López Rosas, Nina V. Filippova, Erzsébet Hornung, Anzar A. Khuroo, Lourdes Morillas, Harald Auge, Andreas Bohner, Florian Kitz, Stephan Glatzel, Aurora Gaxiola, Marijn Bauters, Stefan Trogisch, Guylaine Canut, Oscar Romero, Hélène Verheyden, Yulia Zaika, Veronika Piscová, Michael Scherer-Lorenzen, Valentin H. Klaus, Elena Tropina, Michele Di Musciano, Marie-Andrée Giroux, Florian Hofhansl, Wenjun Zhou, Corinna Rebmann, Thomas J. Mozdzer, Zsolt Kotroczó, Evy Ampoorter, Michal Růžek, Jana Borovská, Jianwu Tang, Petr Petřík, Juan Dario Quinde, Simone Mereu, Esther Lévesque, Olga Ferlian, Veronika Fontana, Joël Merlet, Stacey M. Trevathan-Tackett, André-Jean Francez, Wentao Luo, Héctor Alejandro Bahamonde, Roberto Cazzolla Gatti, Brigitta Erschbamer, Christopher Andrews, Marie-Anne de Graaff, Martin Schädler, Luciano Di Martino, Verena Busch, Elli Groner, Victoria Carbonell, Michinari Matsushita, Maria Glushkova, Sarah Freda, Alain Paquette, Annie Ouin, Robert Weigel, Monique Carnol, Bohdan Juráni, Ian D. Yesilonis, Jean-Paul Theurillat, Hugo L. Rojas Villalobos, Alberto Humber, Martha Apple, Nico Eisenhauer, Claus Beier, Hermann F. Jungkunst, Hiroko Kurokawa, Nadia Barsoum, Thierry Camboulive, Klaus Steenberg Larsen, Frank Berninger, Laura Dienstbach, Yasuhiro Utsumi, Inara Melece, Felipe Varela, Sally Wittlinger, Christian Rixen, Valter Di Cecco, Anderson da Rocha Gripp, Marina Mazón, E. Carol Adair, Hanna Lee, István Fekete, Liesbeth van den Brink, José-Gilberto Cardoso-Mohedano, Ken Green, Heike Feldhaar, Jonathan von Oppen, Michele Carbognani, Lu Xiankai, Christophe Piscart, Fernando T. Maestre, Karibu Fukuzawa, Chiao-Ping Wang, Bart Muys, Lipeng Zhang, Harald Pauli, Inge van Halder, Carmen Eugenia Rodríguez Ortíz, Eduardo Ordóñez-Regil, Priscilla Muriel, Heather D. Alexander, Sebastian Kepfer-Rojas, Victoria Ochoa, Casper T. Christiansen, Mohammed Alsafran, Thaisa Sala Michelan, Christel Baum, Amélie Saillard, Hervé Jactel, Markus Didion, Evgeny A. Davydov, Sabyasachi Dasgupta, Anna Avila, Andrijana Andrić, Kris Verheyen, Jörg Löffler, Gisele Daiane Pinha, Anikó Seres, Jutta Stadler, Milan Barna, Andrey V. Malyshev, Rebecca E. Hewitt, Joh R. Henschel, Peter I. Macreadie, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Norwegian Institute for Water Research (NIVA), Swedish University of Agricultural Sciences (SLU), Dept Forest & Water Management, Lab Forestry, Universiteit Gent = Ghent University [Belgium] (UGENT), Centre for Forest Research (CFR), Université du Québec à Montréal = University of Québec in Montréal (UQAM), Laboratoire d'Ecologie Alpine (LECA ), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria = National Institute for Agricultural and Food Research and Technology (INIA), Ecosystèmes, biodiversité, évolution [Rennes] (ECOBIO), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut Ecologie et Environnement (INEE), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2), Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2), Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Centre National de la Recherche Scientifique (CNRS), Institute for Climate and Atmospheric Science [Leeds] (ICAS), School of Earth and Environment [Leeds] (SEE), University of Leeds-University of Leeds, Laboratoire Ecologie Fonctionnelle et Environnement (ECOLAB), Institut Ecologie et Environnement (INEE), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées, Dynamiques Forestières dans l'Espace Rural (DYNAFOR), Institut National de la Recherche Agronomique (INRA)-École nationale supérieure agronomique de Toulouse [ENSAT]-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées, European Forest Institute = Institut Européen de la Forêt = Euroopan metsäinstituutti (EFI), Institute of Information Engineering [Beijing] (IIE), Chinese Academy of Sciences [Beijing] (CAS), Biodiversité, Gènes & Communautés (BioGeCo), Institut National de la Recherche Agronomique (INRA)-Université de Bordeaux (UB), University of Rostock, WSL Institute for Snow and Avalanche Research SLF, Institut des Sciences de l'Evolution de Montpellier (UMR ISEM), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Montpellier (UM)-Institut de recherche pour le développement [IRD] : UR226-Centre National de la Recherche Scientifique (CNRS), Department Computational Hydrosystems [UFZ Leipzig], Helmholtz Zentrum für Umweltforschung = Helmholtz Centre for Environmental Research (UFZ), Laboratoire Chrono-environnement - CNRS - UBFC (UMR 6249) (LCE), Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC), Département de chimie-biologie & Centre d’études nordiques [CANADA], Université du Québec à Trois-Rivières (UQTR), Area de Biodiversidad y Conservaciín, Universidad Rey Juan Carlos [Madrid] (URJC), Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Terre et Environnement de Lorraine (OTELo), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Helsingin yliopisto = Helsingfors universitet = University of Helsinki, Institute of Soil Research, Universität für Bodenkultur Wien = University of Natural Resources and Life [Vienne, Autriche] (BOKU), Institute of Ecology, University of Innsbruck, Centre national de recherches météorologiques (CNRM), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Computational & Applied Vegetation Ecology (CAVElab), Department Community Ecology [UFZ Leipzig], University of Vienna [Vienna], Institut du Développement rural (IDR), Université Polytechnique Nazi Boni Bobo-Dioulasso (UNB), Unité de recherche Comportement et Ecologie de la Faune Sauvage (CEFS), Institut National de la Recherche Agronomique (INRA), Institute of Biology/Geobotany and Botanical Garden, Martin-Luther-Universität Halle Wittenberg (MLU), Tohoku University [Sendai], Institute of Ecology and Earth Sciences [Tartu], University of Tartu, Institut d'écologie et des sciences de l'environnement de Paris (iEES), Institut National de la Recherche Agronomique (INRA)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Centre alpien de Phytogéographie (CAP), Fondation Jean-Marcel Aubert, Inst Trop Ecosyst Studies, University of Puerto Rico (UPR), Universidad de Valladolid [Valladolid] (UVa), Mountain Agriculture Research Unit, Centre international de recherche-développement sur l'élevage en zone sub-humide (CIRDES), Centre Universitaire Polytechnique de Dédougou (CUP-D), Université Joseph Ki-Zerbo [Ouagadougou] (UJZK), USDA Forest Service, Instituto Pirenaico de Ecologia = Pyrenean Institute of Ecology (IPE), Station Biologique de Paimpont CNRS UMR 6653 (OSUR), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES), Institute of Pharmacology and Toxicology [Zurich], Universität Zürich [Zürich] = University of Zurich (UZH), Centre for Ecology - Evolution and Environmental Changes (cE3c) - Faculdade de Ciências, Universidade de Lisboa = University of Lisbon (ULISBOA), Canada Research in Northern Biodiversity, Université du Québec à Rimouski (UQAR), Laboratoire Réactions et Génie des Procédés (LRGP), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Zone Atelier du Bassin de la Moselle [LTSER France] (ZAM), Department of Crop Production Ecology, University of Freiburg, Forest Research Institute- BAS, Bulgarian Academy of Sciences (BAS), Lab Plant & Microbial Ecol, Inst Bot B22, Université de Liège, Laboratoire Dynamique de la Biodiversité (LADYBIO), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Leipzig University, Westfälische Wilhelms-Universität Münster = University of Münster (WWU), Universitat Politècnica de Catalunya [Barcelona] (UPC), Université de Lausanne = University of Lausanne (UNIL), Department of Limnology and Conservation, Senckenberg Research Institutes and Natural History Museums, Department of Forest Resources, University of Minnesota [Twin Cities] (UMN), University of Minnesota System-University of Minnesota System, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École Nationale des Travaux Publics de l'État (ENTPE)-Centre National de la Recherche Scientifique (CNRS), Université Catholique de Louvain = Catholic University of Louvain (UCL), Institut für Meteorologie und Klimaforschung - Atmosphärische Umweltforschung (IMK-IFU), Karlsruher Institut für Technologie (KIT), Institut des Sciences de la Terre d'Orléans - UMR7327 (ISTO), Bureau de Recherches Géologiques et Minières (BRGM) (BRGM)-Observatoire des Sciences de l'Univers en région Centre (OSUC), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS), Biogéosystèmes Continentaux - UMR7327, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Bureau de Recherches Géologiques et Minières (BRGM) (BRGM)-Observatoire des Sciences de l'Univers en région Centre (OSUC), Department of Science for Nature and Natural Resources, Università degli Studi di Sassari = University of Sassari [Sassari] (UNISS), Biogéosciences [UMR 6282] (BGS), Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS), Ecole Polytechnique Fédérale de Lausanne (EPFL), Tomakomai Research Station, Field Science Center for Northern Biosphere, Hokkaido University [Sapporo, Japan], Bangor University, Technische Universität Dresden = Dresden University of Technology (TU Dresden), Centre d'Études Biologiques de Chizé - UMR 7372 (CEBC), La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), LTSER «Zone Atelier Plaine & Val de Sevre» [France], Institut National de la Recherche Agronomique (INRA)-La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA)-La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS), Condensed Matter Theory Laboratory RIKEN (RIKEN), RIKEN - Institute of Physical and Chemical Research [Japon] (RIKEN), 730938, Biological Interactions Doctoral Programme, Secretaría de Educación Superior, Ciencia, Tecnología e Innovación, 2/0101/18, Scientific Grant Agency VEGA, 2190, Fundación Charles Darwin, UID/AMB/50017, Centro de Estudos Ambientais e Marinhos, Universidade de Aveiro, ILTER Initiative Grant, ClimMani Short-Term Scientific Missions Grant, ES1308-231015-068365, Austrian Environment Agency, SFRH/BPD/107823/2015, Portuguese Foundation, DEB-1557009, NSF, UID/BIA/00329/2013, Fundação para a Ciência e Tecnologia, Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR)-Institut Ecologie et Environnement (INEE), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes 1 (UR1), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), University of Helsinki, Universität für Bodenkultur Wien [Vienne, Autriche] (BOKU), Groupe d'étude de l'atmosphère météorologique (CNRM-GAME), Institut national des sciences de l'Univers (INSU - CNRS)-Météo France-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Recherche Agronomique (INRA), Centre alpien de Phytogéographie, Fondation J.-M. Aubert, Centre international de recherche-développement sur l'élevage en zone Subhumide (CIRDES), Centre international de recherche-développement sur l'élevage en zone Subhumide, Instituto Pirenaico de Ecologia (IPE), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), University of Lisbon, Université de Leipzig, Westfälische Wilhelms-Universität Münster (WWU), Université de Lausanne (UNIL), University of Sassari, Biogéosciences [UMR 6282] [Dijon] (BGS), Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Centre National de la Recherche Scientifique (CNRS), Université de La Rochelle (ULR)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institut National de la Recherche Agronomique (INRA)-Université de La Rochelle (ULR)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA)-Université de La Rochelle (ULR)-Centre National de la Recherche Scientifique (CNRS), Universiteit Gent = Ghent University (UGENT), Université de Rennes (UR)-Institut Ecologie et Environnement (INEE), Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Ecologie Fonctionnelle et Environnement (LEFE), Université de Toulouse (UT)-Université de Toulouse (UT)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT), Institut National de la Recherche Agronomique (INRA)-École nationale supérieure agronomique de Toulouse (ENSAT), Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-École Pratique des Hautes Études (EPHE), Laboratoire Chrono-environnement (UMR 6249) (LCE), Leopold Franzens Universität Innsbruck - University of Innsbruck, Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Instituto Pirenaico de Ecologìa = Pyrenean Institute of Ecology [Zaragoza] (IPE - CSIC), Université de Rennes (UR), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Institut National de la Recherche Agronomique (INRA)-La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique - CNRS (FRANCE), Institut National Polytechnique de Toulouse - INPT (FRANCE), Institut National de la Recherche Agronomique - INRA (FRANCE), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), Météo France (FRANCE), UCL - SST/ELI/ELIE - Environmental Sciences, Swiss Federal Institute for Forest, Snow and Avalanche Research WSL, Swedish University of Agricultural Sciences - Department of Forest Soils, Ghent University [Belgium] (UGENT), Université du Québec à Montréal (UQAM), Laboratoire d'Ecologie Alpine (LECA), Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Université Joseph Fourier - Grenoble 1 (UJF)-Université Grenoble Alpes (UGA), Spanish National Institute for Agriculture and Food Research and Technology (INIA), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR)-Centre National de la Recherche Scientifique (CNRS), Science Politique Relations Internationales Territoire (SPIRIT), Université Montesquieu - Bordeaux 4-Institut d'Études Politiques [IEP] - Bordeaux-Centre National de la Recherche Scientifique (CNRS), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Institut National de la Recherche Agronomique (INRA)-Ecole Nationale Supérieure Agronomique de Toulouse-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Bordeaux (UB)-Institut National de la Recherche Agronomique (INRA), University of Rostock [Germany], Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-École pratique des hautes études (EPHE)-Université de Montpellier (UM)-Institut de recherche pour le développement [IRD] : UR226-Centre National de la Recherche Scientifique (CNRS), Helmholtz Centre for Environmental Research (UFZ), Universiteit Gent [Ghent], Laboratoire de Comportement et d'Ecologie de la Faune Sauvage, INRA, 31326 Castanet-Tolosan cedex, France, Institut d'écologie et des sciences de l'environnement de Paris (IEES), Universidad de Puerto Rico, Centre Universitaire Polytechnique de Dédougou, Université de Ouagadougou, Instituto Pirenaico de Ecología, IPE-CSIC, University of Zürich [Zürich] (UZH), LTSER Zone Atelier du Bassin de la Moselle, Helmholtz Zentrum für Umweltforschung (UFZ), Institute of Terrestrial Ecosystems, University of Minnesota [Twin Cities], Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École Nationale des Travaux Publics de l'État (ENTPE), Université Catholique de Louvain (UCL), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS), PSL Research University (PSL)-PSL Research University (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Bureau de Recherches Géologiques et Minières (BRGM) (BRGM)-Observatoire des Sciences de l'Univers en région Centre (OSUC), Centre National de la Recherche Scientifique (CNRS)-Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement, Hokkaido University, Technische Universität Dresden (TUD), Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA)-Université de La Rochelle (ULR), LTSER Zone Atelier Plaine & Val de Sèvre, Djukic I., Kepfer-Rojas S., Schmidt I.K., Larsen K.S., Beier C., Berg B., Verheyen K., Caliman A., Paquette A., Gutierrez-Giron A., Humber A., Valdecantos A., Petraglia A., Alexander H., Augustaitis A., Saillard A., Fernandez A.C.R., Sousa A.I., Lillebo A.I., da Rocha Gripp A., Francez A.-J., Fischer A., Bohner A., Malyshev A., Andric A., Smith A., Stanisci A., Seres A., Schmidt A., Avila A., Probst A., Ouin A., Khuroo A.A., Verstraeten A., Palabral-Aguilera A.N., Stefanski A., Gaxiola A., Muys B., Bosman B., Ahrends B., Parker B., Sattler B., Yang B., Jurani B., Erschbamer B., Ortiz C.E.R., Christiansen C.T., Carol Adair E., Meredieu C., Mony C., Nock C.A., Chen C.-L., Wang C.-P., Baum C., Rixen C., Delire C., Piscart C., Andrews C., Rebmann C., Branquinho C., Polyanskaya D., Delgado D.F., Wundram D., Radeideh D., Ordonez-Regil E., Crawford E., Preda E., Tropina E., Groner E., Lucot E., Hornung E., Gacia E., Levesque E., Benedito E., Davydov E.A., Ampoorter E., Bolzan F.P., Varela F., Kristofel F., Maestre F.T., Maunoury-Danger F., Hofhansl F., Kitz F., Sutter F., Cuesta F., de Almeida Lobo F., de Souza F.L., Berninger F., Zehetner F., Wohlfahrt G., Vourlitis G., Carreno-Rocabado G., Arena G., Pinha G.D., Gonzalez G., Canut G., Lee H., Verbeeck H., Auge H., Pauli H., Nacro H.B., Bahamonde H.A., Feldhaar H., Jager H., Serrano H.C., Verheyden H., Bruelheide H., Meesenburg H., Jungkunst H., Jactel H., Shibata H., Kurokawa H., Rosas H.L., Rojas Villalobos H.L., Yesilonis I., Melece I., Van Halder I., Quiros I.G., Makelele I., Senou I., Fekete I., Mihal I., Ostonen I., Borovska J., Roales J., Shoqeir J., Lata J.-C., Theurillat J.-P., Probst J.-L., Zimmerman J., Vijayanathan J., Tang J., Thompson J., Dolezal J., Sanchez-Cabeza J.-A., Merlet J., Henschel J., Neirynck J., Knops J., Loehr J., von Oppen J., Thorlaksdottir J.S., Loffler J., Cardoso-Mohedano J.-G., Benito-Alonso J.-L., Torezan J.M., Morina J.C., Jimenez J.J., Quinde J.D., Alatalo J., Seeber J., Stadler J., Kriiska K., Coulibaly K., Fukuzawa K., Szlavecz K., Gerhatova K., Lajtha K., Kappeler K., Jennings K.A., Tielborger K., Hoshizaki K., Green K., Ye L., Pazianoto L.H.R., Dienstbach L., Williams L., Yahdjian L., Brigham L.M., van den Brink L., Rustad L., Zhang L., Morillas L., Xiankai L., Carneiro L.S., Di Martino L., Villar L., Bader M.Y., Morley M., Lebouvier M., Tomaselli M., Sternberg M., Schaub M., Santos-Reis M., Glushkova M., Torres M.G.A., Giroux M.-A., de Graaff M.-A., Pons M.-N., Bauters M., Mazon M., Frenzel M., Didion M., Wagner M., Hamid M., Lopes M.L., Apple M., Schadler M., Weih M., Gualmini M., Vadeboncoeur M.A., Bierbaumer M., Danger M., Liddell M., Mirtl M., Scherer-Lorenzen M., Ruzek M., Carbognani M., Di Musciano M., Matsushita M., Zhiyanski M., Puscas M., Barna M., Ataka M., Jiangming M., Alsafran M., Carnol M., Barsoum N., Tokuchi N., Eisenhauer N., Lecomte N., Filippova N., Holzel N., Ferlian O., Romero O., Pinto O.B., Peri P., Weber P., Vittoz P., Turtureanu P.D., Fleischer P., Macreadie P., Haase P., Reich P., Petrik P., Choler P., Marmonier P., Muriel P., Ponette Q., Guariento R.D., Canessa R., Kiese R., Hewitt R., Ronn R., Adrian R., Kanka R., Weigel R., Gatti R.C., Martins R.L., Georges R., Meneses R.I., Gavilan R.G., Dasgupta S., Wittlinger S., Puijalon S., Freda S., Suzuki S., Charles S., Gogo S., Drollinger S., Mereu S., Wipf S., Trevathan-Tackett S., Lofgren S., Stoll S., Trogisch S., Hoeber S., Seitz S., Glatzel S., Milton S.J., Dousset S., Mori T., Sato T., Ise T., Hishi T., Kenta T., Nakaji T., Michelan T.S., Camboulive T., Mozdzer T.J., Scholten T., Spiegelberger T., Zechmeister T., Kleinebecker T., Hiura T., Enoki T., Ursu T.-M., di Cella U.M., Hamer U., Klaus V.H., Rego V.M., Di Cecco V., Busch V., Fontana V., Piscova V., Carbonell V., Ochoa V., Bretagnolle V., Maire V., Farjalla V., Zhou W., Luo W., McDowell W.H., Hu Y., Utsumi Y., Kominami Y., Zaika Y., Rozhkov Y., Kotroczo Z., Toth Z., and Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE)
- Subjects
DYNAMICS ,010504 meteorology & atmospheric sciences ,Biome ,Biochimie, Biologie Moléculaire ,Carbon turnover ,01 natural sciences ,CARBON ,Waste Management and Disposal ,ComputingMilieux_MISCELLANEOUS ,CLIMATE-CHANGE ,биомы ,Tea bag, Green tea, Rooibos tea, Carbon turnover, TeaComposition initiative ,04 agricultural and veterinary sciences ,Pollution ,Environmental chemistry ,[SDE]Environmental Sciences ,Terrestrial ecosystem ,Life Sciences & Biomedicine ,Biologie ,TRAITS ,Rooibos tea ,IMPACTS ,Environmental Engineering ,почвенные процессы ,chemistry.chemical_element ,Climate change ,Environmental Sciences & Ecology ,Ingénierie de l'environnement ,Green tea ,Tea bag ,TeaComposition initiative ,Ecology and Environment ,Atmosphere ,подстилки ,Environmental Chemistry ,Ecosystem ,RATES ,0105 earth and related environmental sciences ,оборот углерода ,Science & Technology ,Tea composition initiative ,FEEDBACK ,15. Life on land ,Decomposition ,влияние климата ,TERRESTRIAL ECOSYSTEMS ,MODEL ,экосистемы ,chemistry ,13. Climate action ,PATTERNS ,040103 agronomy & agriculture ,Litter ,0401 agriculture, forestry, and fisheries ,Environmental science ,[SDE.BE]Environmental Sciences/Biodiversity and Ecology ,500 Naturwissenschaften und Mathematik::570 Biowissenschaften ,Biologie::577 Ökologie ,Carbon ,Environmental Sciences - Abstract
Through litter decomposition enormous amounts of carbon is emitted to the atmosphere. Numerous large-scale decomposition experiments have been conducted focusing on this fundamental soil process in order to understand the controls on the terrestrial carbon transfer to the atmosphere. However, previous studies were mostly based on site-specific litter and methodologies, adding major uncertainty to syntheses, comparisons and meta-analyses across different experiments and sites. In the TeaComposition initiative, the potential litter decomposition is investigated by using standardized substrates (Rooibos and Green tea) for comparison of litter mass loss at 336 sites (ranging from -9 to +26 °C MAT and from 60 to 3113 mm MAP) across different ecosystems. In this study we tested the effect of climate (temperature and moisture), litter type and land-use on early stage decomposition (3 months) across nine biomes. We show that litter quality was the predominant controlling factor in early stage litter decomposition, which explained about 65% of the variability in litter decomposition at a global scale. The effect of climate, on the other hand, was not litter specific and explained
- Published
- 2018
- Full Text
- View/download PDF
21. Effects of fertilization, plant species, and intra-specific diversity on soil carbon and nitrogen in biofuel cropping systems after five growing seasons
- Author
-
Jaron Adkins, Julie D. Jastrow, Geoffrey P. Morris, and Marie-Anne de Graaff
- Subjects
geography ,geography.geographical_feature_category ,Perennial plant ,Renewable Energy, Sustainability and the Environment ,020209 energy ,Soil organic matter ,food and beverages ,Growing season ,Forestry ,02 engineering and technology ,Soil carbon ,Carbon sequestration ,complex mixtures ,Pasture ,Agronomy ,Bioenergy ,Soil water ,0202 electrical engineering, electronic engineering, information engineering ,Environmental science ,Waste Management and Disposal ,Agronomy and Crop Science - Abstract
Land-use change for bioenergy production can release greenhouse gases (GHG) through disturbance of soil carbon (C) pools, but use of native species with extensive root systems as bioenergy crops may help mitigate GHG emissions by enhancing soil C sequestration. Here, we investigated how (1) fertilization, (2) plant species and cultivars, and (3) inter- and intra-specific diversity affect soil C and N accumulation five growing seasons after conversion of an old-field dominated by C3 grasses to a grassland dominated by C4 perennial grasses managed for biofuel production. We manipulated diversity at both the species- and cultivar level, and applied nitrogen (N) at two levels (0 and 67 kg ha−1). Establishment of C4 grass treatments on soils that supported C3 pasture grasses for 36 years enabled us to use the natural abundance C isotope ratio technique to estimate the contribution of new C4 plant-derived C to soil organic matter pools. Our study yielded three main results: 1) annual fertilization did not significantly affect soil C and N concentrations after five growing seasons; 2) increasing inter- and intra-specific diversity did not significantly increase soil C and N concentrations; 3) cultivar- and species identity influenced C4-derived C and total soil C concentrations: big bluestem dominated stands exhibited greater soil C accrual relative to stands dominated by switchgrass and mixed-species treatments. Future research is needed to further assess how big bluestem can aid in the sustainable provisioning of second generation biofuel feedstocks.
- Published
- 2019
- Full Text
- View/download PDF
22. A Synthesis of Climate and Vegetation Cover Effects on Biogeochemical Cycling in Shrub-Dominated Drylands
- Author
-
Marie-Anne de Graaff, Heather L. Throop, Xochi Campos, John A. Arnone, and Paul S. J. Verburg
- Subjects
geography ,Biogeochemical cycle ,geography.geographical_feature_category ,Ecology ,Climate change ,Vegetation ,Arid ,Shrubland ,Spatial heterogeneity ,Environmental Chemistry ,Environmental science ,Ecosystem ,Aridity index ,Ecology, Evolution, Behavior and Systematics - Abstract
Semi-arid and arid ecosystems dominated by shrubs (“dry shrublands”) are an important component of the global C cycle, but impacts of climate change and elevated atmospheric CO2 on biogeochemical cycling in these ecosystems have not been synthetically assessed. This study synthesizes data from manipulative studies and from studies contrasting ecosystem processes in different vegetation microsites (that is, shrub or herbaceous canopy versus intercanopy microsites), to assess how changes in climate and atmospheric CO2 affect biogeochemical cycles by altering plant and microbial physiology and ecosystem structure. Further, we explore how ecosystem structure impacts on biogeochemical cycles differ across a climate gradient. We found that: (1) our ability to project ecological responses to changes in climate and atmospheric CO2 is limited by a dearth of manipulative studies, and by a lack of measurements in those studies that can explain biogeochemical changes, (2) changes in ecosystem structure will impact biogeochemical cycling, with decreasing pools and fluxes of C and N if vegetation canopy microsites were to decline, and (3) differences in biogeochemical cycling between microsites are predictable with a simple aridity index (MAP/MAT), where the relative difference in pools and fluxes of C and N between vegetation canopy and intercanopy microsites is positively correlated with aridity. We conclude that if climate change alters ecosystem structure, it will strongly impact biogeochemical cycles, with increasing aridity leading to greater heterogeneity in biogeochemical cycling among microsites. Additional long-term manipulative experiments situated across dry shrublands are required to better predict climate change impacts on biogeochemical cycling in deserts.
- Published
- 2014
- Full Text
- View/download PDF
23. Differential priming of soil carbon driven by soil depth and root impacts on carbon availability
- Author
-
Stan D. Wullschleger, Marie-Anne de Graaff, Julie D. Jastrow, Shay Gillette, and Aislinn Johns
- Subjects
Exudate ,biology ,Bulk soil ,Soil Science ,Soil carbon ,biology.organism_classification ,complex mixtures ,Microbiology ,Agronomy ,Soil water ,medicine ,Panicum virgatum ,Environmental science ,Soil horizon ,medicine.symptom ,Subsoil ,Priming (psychology) - Abstract
Enhanced root-exudate inputs can stimulate decomposition of soil carbon (C) by priming soil microbial activity, but the mechanisms controlling the magnitude and direction of the priming effect remain poorly understood. With this study we evaluated how differences in soil C availability affect the impact of simulated root exudate inputs on priming. We conducted a 60-day laboratory incubation with soils collected (60 cm depth) from under six switchgrass (Panicum virgatum) cultivars. Differences in specific root length (SRL) among cultivars were expected to result in small differences in soil C inputs and thereby create small differences in the availability of recent labile soil C; whereas soil depth was expected to create large overall differences in soil C availability. Soil cores from under each cultivar (roots removed) were divided into depth increments of 0–10, 20–30, and 40–60 cm and incubated with addition of either: (1) water or (2) 13C-labeled synthetic root exudates (0.7 mg C/g soil). We measured CO2 respiration throughout the experiment. The natural difference in 13C signature between C3 soils and C4 plants was used to quantify cultivar-induced differences in soil C availability. Amendment with 13C-labeled synthetic root-exudate enabled evaluation of SOC priming. Our experiment produced three main results: (1) switchgrass cultivars differentially influenced soil C availability across the soil profile; (2) small differences in soil C availability derived from recent root C inputs did not affect the impact of exudate-C additions on priming; but (3) priming was greater in soils from shallow depths (relatively high total soil C and high ratio of labile-to-stable C) compared to soils from deep depths (relatively low total soil C and low ratio of labile-to-stable C). These findings suggest that the magnitude of the priming effect is affected, in part, by the ratio of root exudate C inputs to total soil C and that the impact of changes in exudate inputs on the priming of SOC is regulated differently in surface soil compared to subsoil.
- Published
- 2014
- Full Text
- View/download PDF
24. Variation in root architecture among switchgrass cultivars impacts root decomposition rates
- Author
-
Johan Six, Stan D. Wullschleger, Marie-Anne de Graaff, Julie D. Jastrow, and Christopher W. Schadt
- Subjects
Microbial population biology ,Agronomy ,Root (chord) ,Soil Science ,Panicum virgatum ,Root system ,Soil carbon ,Cultivar ,Biology ,biology.organism_classification ,Microbiology ,Decomposition ,Intraspecific competition - Abstract
Roots regulate soil carbon (C) input, but fine root decomposition rates and root impacts on soil organic C turnover (SOC) are uncertain. This uncertainty is, partly, caused by the heterogeneity of root systems, which vary in diameter distributions and tissue chemistry. Here, we evaluated how root diameter distributions affect root and SOC decomposition. Roots from eight Panicum virgatum (switchgrass) cultivars were analyzed for root diameter size-class distribution and C:N ratio. Roots from each cultivar were mixed with C 3 soil according to five root diameter treatments: (1) 0–0.5 mm, (2) 0.5–1 mm, (3) 1–2.5 mm, (4) a 1:1:1 mixture of roots from each diameter size class, and (5) a mixture combining diameter classes in proportions representing measured size distributions for each cultivar. All treatments were incubated for 90 days under laboratory conditions. Respired CO 2 was measured throughout and the microbial community structure was measured at termination of the experiment. Carbon-13 isotope techniques were used to partition respiration into root-derived C versus native SOC-derived C. Results indicated: (1) specific root length differed among the cultivars, (2) root decomposition rates within the three size classes varied by cultivar, but were not correlated with cultivar differences in root C:N ratios, (3) root diameter size class affected root and SOC decomposition, and (4) mixing roots of different diameters did not lead to synergistic increases in decomposition. We conclude that intraspecific variation in root architecture is significant and that fine root diameter size class distribution is an important trait for shaping decomposition processes.
- Published
- 2013
- Full Text
- View/download PDF
25. Elevated CO2 and plant species diversity interact to slow root decomposition
- Author
-
Kelly L Rula, Aimée T. Classen, Marie-Anne de Graaff, Christopher W. Schadt, Jennifer A. Schweitzer, and Johan Six
- Subjects
Lespedeza cuneata ,biology ,Festuca ,Botany ,Trifolium repens ,Soil Science ,Species diversity ,biology.organism_classification ,Microbiology ,Incubation ,Repens ,Nitrogen cycle ,Decomposition - Abstract
Changes in plant species diversity can result in synergistic increases in decomposition rates, while elevated atmospheric CO2 can slow the decomposition rates; yet it remains unclear how diversity and changes in atmospheric CO2 may interact to alter root decomposition. To investigate how elevated CO2 interacts with changes in root-litter diversity to alter decomposition rates, we conducted a 120-day laboratory incubation. Roots from three species (Trifolium repens, Lespedeza cuneata, and Festuca pratense) grown under ambient or elevated CO2 were incubated individually or in combination in soils that were exposed to ambient or elevated CO2 for five years. Our experiment resulted in two main findings: (1) Roots from T. repens and L. cuneata, both nitrogen (N) fixers, grown under elevated CO2 treatments had significantly slower decomposition rates than similar roots grown under ambient CO2 treatments; but the decomposition rate of F. pratense roots (a non-N-fixing species) was similar regardless of CO2 treatment. (2) Roots of the three species grown under ambient CO2 and decomposed in combination with each other had faster decomposition rates than when they were decomposed as single species. However, roots of the three species grown under elevated CO2 had similar decomposition rates when they were incubated alone or in combination with other species. These data suggest that if elevated CO2 reduces the root decomposition rate of even a few species in the community, it may slow root decomposition of the entire plant community.
- Published
- 2011
- Full Text
- View/download PDF
26. Labile soil carbon inputs mediate the soil microbial community composition and plant residue decomposition rates
- Author
-
Aimée T. Classen, Christopher W. Schadt, Marie-Anne de Graaff, and Hector F. Castro
- Subjects
Exudate ,Bacteria ,Physiology ,Soil organic matter ,Cell Respiration ,Fungi ,Gene Dosage ,Plant Science ,Soil carbon ,Carbon Dioxide ,Biology ,Panicum ,Decomposition ,Carbon ,Soil conditioner ,Soil ,Biodegradation, Environmental ,Microbial population biology ,Botany ,Soil water ,medicine ,Composition (visual arts) ,Food science ,medicine.symptom ,Soil Microbiology - Abstract
Summary • Root carbon (C) inputs may regulate decomposition rates in soil, and in this study we ask: how do labile C inputs regulate decomposition of plant residues, and soil microbial communities? • In a 14 d laboratory incubation, we added C compounds often found in root exudates in seven different concentrations (0, 0.7, 1.4, 3.6, 7.2, 14.4 and 21.7 mg C g )1 soil) to soils amended with and without 13 C-labeled plant residue. We measured CO2 respiration and shifts in relative fungal and bacterial rRNA gene copy numbers using quantitative polymerase chain reaction (qPCR). • Increased labile C input enhanced total C respiration, but only addition of C at low concentrations (0.7 mg C g )1 ) stimulated plant residue decomposition (+2%). Intermediate concentrations (1.4, 3.6 mg C g )1 ) had no impact on plant residue decomposition, while greater concentrations of C (> 7.2 mg C g )1 ) reduced decomposition ()50%). Concurrently, high exudate concentrations (> 3.6 mg C g )1 ) increased fungal and bacterial gene copy numbers, whereas low exudate concentrations (< 3.6 mg C g )1 ) increased metabolic activity rather than gene copy numbers. • These results underscore that labile soil C inputs can regulate decomposition of more recalcitrant soil C by controlling the activity and relative abundance of fungi and bacteria.
- Published
- 2010
- Full Text
- View/download PDF
27. Assessing the effect of elevated carbon dioxide on soil carbon: a comparison of four meta-analyses
- Author
-
Bruce A. Hungate, Chris van Kessel, Marie-Anne de Graaff, Johan Six, Julie D. Jastrow, Kees Jan van Groenigen, Craig W. Osenberg, and Yiqi Luo
- Subjects
Hydrology ,Global and Planetary Change ,Carbon dioxide in Earth's atmosphere ,Ecology ,Global warming ,Biosphere ,Soil science ,Soil carbon ,Carbon sequestration ,Statistical power ,Soil water ,Environmental Chemistry ,Environmental science ,Greenhouse effect ,General Environmental Science - Abstract
Soil is the largest reservoir of organic carbon (C) in the terrestrial biosphere and soil C has a relatively long mean residence time. Rising atmospheric carbon dioxide (CO2) concentrations generally increase plant growth and C input to soil, suggesting that soil might help mitigate atmospheric CO2 rise and global warming. But to what extent mitigation will occur is unclear. The large size of the soil C pool not only makes it a potential buffer against rising atmospheric CO2, but also makes it difficult to measure changes amid the existing background. Meta-analysis is one tool that can overcome the limited power of single studies. Four recent meta-analyses addressed this issue but reached somewhat different conclusions about the effect of elevated CO2 on soil C accumulation, especially regarding the role of nitrogen (N) inputs. Here, we assess the extent of differences between these conclusions and propose a new analysis of the data. The four meta-analyses included different studies, derived different effect size estimates from common studies, used different weighting functions and metrics of effect size, and used different approaches to address nonindependence of effect sizes. Although all factors influenced the mean effect size estimates and subsequent inferences, the approach to independence had the largest influence. We recommend that meta-analysts critically assess and report choices about effect size metrics and weighting functions, and criteria for study selection and independence. Such decisions need to be justified carefully because they affect the basis for inference. Our new analysis, with a combined data set, confirms that the effect of elevated CO2 on net soil C accumulation increases with the addition of N fertilizers. Although the effect at low N inputs was not significant, statistical power to detect biogeochemically important effect sizes at low N is limited, even with meta-analysis, suggesting the continued need for long-term experiments.
- Published
- 2009
- Full Text
- View/download PDF
28. Rhizodeposition-induced decomposition increases N availability to wild and cultivated wheat genotypes under elevated CO2
- Author
-
Marie-Anne de Graaff, Johan Six, and Chris van Kessel
- Subjects
Rhizosphere ,Nutrient ,Agronomy ,Soil organic matter ,Shoot ,Soil Science ,Poaceae ,Soil carbon ,Mineralization (soil science) ,Biology ,Microbiology ,Nitrogen cycle - Abstract
Elevated CO2 may increase nutrient availability in the rhizosphere by stimulating N release from recalcitrant soil organic matter (SOM) pools through enhanced rhizodeposition. We aimed to elucidate how CO2-induced increases in rhizodeposition affect N release from recalcitrant SOM, and how wild versus cultivated genotypes of wheat mediated differential responses in soil N cycling under elevated CO2. To quantify root-derived soil carbon (C) input and release of N from stable SOM pools, plants were grown for 1 month in microcosms, exposed to 13C labeling at ambient (392 μmol mol−1) and elevated (792 μmol mol−1) CO2 concentrations, in soil containing 15N predominantly incorporated into recalcitrant SOM pools. Decomposition of stable soil C increased by 43%, root-derived soil C increased by 59%, and microbial-13C was enhanced by 50% under elevated compared to ambient CO2. Concurrently, plant 15N uptake increased (+7%) under elevated CO2 while 15N contents in the microbial biomass and mineral N pool decreased. Wild genotypes allocated more C to their roots, while cultivated genotypes allocated more C to their shoots under ambient and elevated CO2. This led to increased stable C decomposition, but not to increased N acquisition for the wild genotypes. Data suggest that increased rhizodeposition under elevated CO2 can stimulate mineralization of N from recalcitrant SOM pools and that contrasting C allocation patterns cannot fully explain plant mediated differential responses in soil N cycling to elevated CO2.
- Published
- 2009
- Full Text
- View/download PDF
29. The impact of long-term elevated CO2 on C and N retention in stable SOM pools
- Author
-
Johan Six, Chris van Kessel, and Marie-Anne de Graaff
- Subjects
0106 biological sciences ,enrichment ,Soil Science ,Plant Science ,engineering.material ,carbon-dioxide ,01 natural sciences ,Earth System Science ,soil ,trifolium-repens l ,chemistry.chemical_compound ,Human fertilization ,Animal science ,Botany ,Leaching (agriculture) ,Nitrogen cycle ,nitrogen mineralization ,ecosystem ,2. Zero hunger ,atmospheric co2 ,Chemistry ,Soil organic matter ,dynamics ,04 agricultural and veterinary sciences ,15. Life on land ,Soil water ,Carbon dioxide ,responses ,040103 agronomy & agriculture ,engineering ,Leerstoelgroep Aardsysteemkunde ,0401 agriculture, forestry, and fisheries ,Fertilizer ,grassland ,Monoculture ,010606 plant biology & botany - Abstract
Elevated atmospheric CO2 frequently in- creases plant production and concomitant soil C inputs, which may cause additional soil C sequestra- tion. However, whether the increase in plant produc- tion and additional soil C sequestration under elevated CO2 can be sustained in the long-term is unclear. One approach to study C-N interactions under elevated CO2 is provided by a theoretical framework that centers on the concept of progressive nitrogen limitation (PNL). The PNL concept hinges on the idea that N becomes less available with time under elevated CO2. One possible mechanism underlying this reduction in N availability is that N is retained in long-lived soil organic matter (SOM), thereby limit- ing plant production and the potential for soil C sequestration. The long-term nature of the PNL concept necessitates the testing of mechanisms in field experiments exposed to elevated CO2 over long periods of time. The impact of elevated CO2 and 15 N fertilization on L. perenne and T. repens monocultures has been studied in the Swiss FACE experiment for ten consecutive years. We applied a biological fractionation technique using long-term incubations with repetitive leaching to determine how elevated CO2 affects the accumulation of N and C into more stable SOM pools. Elevated CO2 significantly stimu- lated retention of fertilizer-N in the stable pools of the soils covered with L. perenne receiving low and high N fertilization rates by 18 and 22%, respectively, and by 45% in the soils covered by T. repens receiving the low N fertilization rate. However, elevated CO2 did not significantly increase stable soil C formation. The increase in N retention under elevated CO2 provides direct evidence that elevated CO2 increases stable N formation as proposed by the PNL concept. In the Swiss FACE experiment, however, plant production increased under elevated CO2, indicating that the additional N supply through fertilization prohibited PNL for plant production at this site. Therefore, it remains unresolved why elevated CO2 did not increase labile and stable C accumulation in these systems.
- Published
- 2007
- Full Text
- View/download PDF
30. Genotypic diversity effects on biomass production in native perennial bioenergy cropping systems
- Author
-
Zhenbin Hu, Julie D. Jastrow, R. Michael Miller, Geoffrey P. Morris, Marie-Anne de Graaff, Justin O. Borevitz, and Paul P. Grabowski
- Subjects
0106 biological sciences ,Perennial plant ,ecotype ,switchgrass ,Biology ,7. Clean energy ,01 natural sciences ,polymorphism ,Bioenergy ,cultivars ,Cultivar ,Waste Management and Disposal ,Original Research ,2. Zero hunger ,Ecotype ,Renewable Energy, Sustainability and the Environment ,Agroforestry ,Forestry ,04 agricultural and veterinary sciences ,15. Life on land ,Primary Research Articles ,yield ,low‐input high‐diversity ,big bluestem ,tallgrass prairie ,biomass feedstock ,Agronomy ,fertilization ,Biomass feedstock ,040103 agronomy & agriculture ,0401 agriculture, forestry, and fisheries ,Agronomy and Crop Science ,Cropping ,010606 plant biology & botany - Abstract
The perennial grass species that are being developed as biomass feedstock crops harbor extensive genotypic diversity, but the effects of this diversity on biomass production are not well understood. We investigated the effects of genotypic diversity in switchgrass (Panicum virgatum) and big bluestem (Andropogon gerardii) on perennial biomass cropping systems in two experiments conducted over 2008–2014 at a 5.4‐ha fertile field site in northeastern Illinois, USA. We varied levels of switchgrass and big bluestem genotypic diversity using various local and nonlocal cultivars – under low or high species diversity, with or without nitrogen inputs – and quantified establishment, biomass yield, and biomass composition. In one experiment (‘agronomic trial’), we compared three switchgrass cultivars in monoculture to a switchgrass cultivar mixture and three different species mixtures, with or without N fertilization. In another experiment (‘diversity gradient’), we varied diversity levels in switchgrass and big bluestem (1, 2, 4, or 6 cultivars per plot), with one or two species per plot. In both experiments, cultivar mixtures produced yields equivalent to or greater than the best cultivars. In the agronomic trial, the three switchgrass mixture showed the highest production overall, though not significantly different than best cultivar monoculture. In the diversity gradient, genotypic mixtures had one‐third higher biomass production than the average monoculture, and none of the monocultures were significantly higher yielding than the average mixture. Year‐to‐year variation in yields was lowest in the three‐cultivar switchgrass mixtures and Cave‐In‐Rock (the southern Illinois cultivar) and also reduced in the mixture of switchgrass and big bluestem relative to the species monocultures. The effects of genotypic diversity on biomass composition were modest relative to the differences among species and genotypes. Our findings suggest that local genotypes can be included in biomass cropping systems without compromising yields and that genotypic mixtures could help provide high, stable yields of high‐quality biomass feedstocks.
- Published
- 2015
31. Interactions between plant growth and soil nutrient cycling under elevated CO2 : a meta-analysis
- Author
-
Marie-Anne de Graaff, Bruce A. Hungate, Chris van Kessel, Kees Jan van Groenigen, and Johan Six
- Subjects
chemistry.chemical_classification ,Global and Planetary Change ,Nutrient cycle ,Ecology ,Soil organic matter ,Soil carbon ,Mineralization (soil science) ,Soil respiration ,chemistry.chemical_compound ,Nutrient ,Agronomy ,chemistry ,Carbon dioxide ,Environmental Chemistry ,Organic matter ,General Environmental Science - Abstract
free air carbon dioxide enrichment (FACE) and open top chamber (OTC) studies are valuable tools for evaluating the impact of elevated atmospheric CO2 on nutrient cycling in terrestrial ecosystems. Using meta-analytic techniques, we summarized the results of 117 studies on plant biomass production, soil organic matter dynamics and biological N2 fixation in FACE and OTC experiments. The objective of the analysis was to determine whether elevated CO2 alters nutrient cycling between plants and soil and if so, what the implications are for soil carbon (C) sequestration. Elevated CO2 stimulated gross N immobilization by 22%, whereas gross and net N mineralization rates remained unaffected. In addition, the soil C:N ratio and microbial N contents increased under elevated CO2 by 3.8% and 5.8%, respectively. Microbial C contents and soil respiration increased by 7.1% and 17.7%, respectively. Despite the stimulation of microbial activity, soil C input still caused soil C contents to increase by 1.2%yr � 1 . Namely, elevated CO2 stimulated overall above- and belowground plant biomass by 21.5% and 28.3%, respectively, thereby outweighing the increase in CO2 respiration. In addition, when comparing experiments under both low and high N availability, soil C contents (12.2%yr � 1 ) and above- and belowground plant growth (120.1% and 133.7%) only increased under elevated CO2 in experiments receiving the high N treatments. Under low N availability, above- and belowground plant growth increased by only 8.8% and 14.6%, and soil C contents did not increase. Nitrogen fixation was stimulated by elevated CO2 only when additional nutrients were supplied. These results suggest that the main driver of soil C sequestration is soil C input through plant growth, which is strongly controlled by nutrient availability. In unfertilized ecosystems, microbial N immobilization enhances acclimation of plant growth to elevated CO2 in the long-term. Therefore, increased soil C input and soil C sequestration under elevated CO2 can only be sustained in the long-term when additional nutrients are supplied. Nomenclature FACE 5 free air carbon dioxide enrichment; OTC 5 open top chamber; SOM 5 soil organic matter; SOC 5 soil organic carbon
- Published
- 2006
- Full Text
- View/download PDF
32. Total soil C and N sequestration in a grassland following 10 years of free air CO2enrichment
- Author
-
Herbert Blum, Marie-Anne de Graaff, David J. Harris, Bas Boots, Johan Six, and Chris van Kessel
- Subjects
Global and Planetary Change ,Ecology ,Soil test ,biology ,Chemistry ,Soil organic matter ,engineering.material ,biology.organism_classification ,complex mixtures ,Repens ,Lolium perenne ,Agronomy ,Soil water ,engineering ,Trifolium repens ,Environmental Chemistry ,Soil horizon ,Fertilizer ,General Environmental Science - Abstract
Soil C sequestration may mitigate rising levels of atmospheric CO2. However, it has yet to be determined whether net soil C sequestration occurs in N-rich grasslands exposed to long-term elevated CO2. This study examined whether N-fertilized grasslands exposed to elevated CO2 sequestered additional C. For 10 years, Lolium perenne, Trifolium repens, and the mixture of L. perenne/T. repens grasslands were exposed to ambient and elevated CO2 concentrations (35 and 60Pa pCO2). The applied CO2 was depleted in d 13 C and the grasslands received low (140kgha � 1 ) and high (560kgha � 1 ) rates of 15 N-labeled fertilizer. Annually collected soil samples from the top 10cm of the grassland soils allowed us to follow the sequestration of new C in the surface soil layer. For the first time, we were able to collect dual-labeled soil samples to a depth of 75cm after 10 years of elevated CO2 and determine the total amount of new soil C and N sequestered in the whole soil profile. Elevated CO2, N-fertilization rate, and species had no significant effect on total soil C. On average 9.4Mg new Cha � 1 was sequestered, which corresponds to 26.5% of the total C. The mean residence time of the C present in the 0‐10cm soil depth was calculated at 4.6 � 1.5 and 3.1 � 1.1 years for L. perenne and T. repens soil, respectively. After 10 years, total soil N and C in the 0‐75cm soil depth was unaffected by CO2 concentration, Nfertilization rate and plant species. The total amount of 15 N-fertilizer sequestered in the 0‐75cm soil depth was also unaffected by CO2 concentration, but significantly more 15 N was sequestered in the L. perenne compared with the T. repens swards: 620 vs. 452kgha � 1 at the high rate and 234 vs. 133kgha � 1 at the low rate of N fertilization. Intermediate values of 15 N recovery were found in the mixture. The fertilizer derived N amounted to 2.8% of total N for the low rate and increased to 8.6% for the high rate of N application. On average, 13.9% of the applied 15 N-fertilizer was recovered in the 0‐75cm soil depth in soil organic matter in the L. perenne sward, whereas 8.8% was recovered under the T. repens swards, indicating that the N2-fixing T. repens system was less effective in sequestering applied N than the non-N2-fixing L. perenne system. Prolonged elevated CO2 did not lead to an increase in whole soil profile C and N in these fertilized pastures. The potential use of fertilized and regular cut pastures as a net soil C sink under longterm elevated CO2 appears to be limited and will likely not significantly contribute to the mitigation of anthropogenic C emissions.
- Published
- 2006
- Full Text
- View/download PDF
33. Element interactions limit soil carbon storage
- Author
-
Marie-Anne de Graaff, Nico van Breemen, Johan Six, Kees Jan van Groenigen, Bruce A. Hungate, and Chris van Kessel
- Subjects
Greenhouse Effect ,Nitrogen ,Plant Development ,chemistry.chemical_element ,cycles ,fine roots ,Soil science ,Earth System Science ,Soil ,chemistry.chemical_compound ,forest ,Nutrient ,Nitrogen Fixation ,Ecosystem ,elevated atmospheric co2 ,Multidisciplinary ,WIMEK ,model ,Laboratorium voor Bodemkunde en geologie ,Soil organic matter ,Phosphorus ,biological nitrogen-fixation ,Soil carbon ,Laboratory of Soil Science and Geology ,Carbon Dioxide ,Plants ,Biological Sciences ,Carbon ,chemistry ,Environmental chemistry ,Carbon dioxide ,climate-change ,Nitrogen fixation ,Environmental science ,Leerstoelgroep Aardsysteemkunde ,Terrestrial ecosystem ,grassland ,ecosystem responses ,metaanalysis - Abstract
Rising levels of atmospheric CO 2 are thought to increase C sinks in terrestrial ecosystems. The potential of these sinks to mitigate CO 2 emissions, however, may be constrained by nutrients. By using metaanalysis, we found that elevated CO 2 only causes accumulation of soil C when N is added at rates well above typical atmospheric N inputs. Similarly, elevated CO 2 only enhances N 2 fixation, the major natural process providing soil N input, when other nutrients (e.g., phosphorus, molybdenum, and potassium) are added. Hence, soil C sequestration under elevated CO 2 is constrained both directly by N availability and indirectly by nutrients needed to support N 2 fixation.
- Published
- 2006
- Full Text
- View/download PDF
34. Decomposition of soil and plant carbon from pasture systems after 9 years of exposure to elevated CO2 : impact on C cycling and modeling
- Author
-
Marie-Anne de Graaff, Herbert Blum, Johan Six, David J. Harris, and Chris van Kessel
- Subjects
chemistry.chemical_classification ,Global and Planetary Change ,Ecology ,biology ,food and beverages ,Plant litter ,biology.organism_classification ,Lolium perenne ,Soil respiration ,chemistry.chemical_compound ,chemistry ,Agronomy ,Soil water ,Carbon dioxide ,Trifolium repens ,Environmental Chemistry ,Organic matter ,Cycling ,General Environmental Science - Abstract
Elevated atmospheric CO2 may alter decomposition rates through changes in plant material quality and through its impact on soil microbial activity. This study examines whether plant material produced under elevated CO2 decomposes differently from plant material produced under ambient CO2. Moreover, a long-term experiment offered a unique opportunity to evaluate assumptions about C cycling under elevated CO2 made in coupled climate–soil organic matter (SOM) models. Trifolium repens and Lolium perenne plant materials, produced under elevated (60 Pa) and ambient CO2 at two levels of N fertilizer (140 vs. 560 kg ha � 1 yr � 1 ), were incubated in soil for 90 days. Soils and plant materials used for the incubation had been exposed to ambient and elevated CO2 under free air carbon dioxide enrichment conditions and had received the N fertilizer for 9 years. The rate of decomposition of L. perenne and T. repens plant materials was unaffected by elevated atmospheric CO2 and rate of N fertilization. Increases in L. perenne plant material C : N ratio under elevated CO2 did not affect decomposition rates of the plant material. If under prolonged elevated CO2 changes in soil microbial dynamics had occurred, they were not reflected in the rate of decomposition of the plant material. Only soil respiration under L. perenne, with or without incorporation of plant material, from the low-N fertilization treatment was enhanced after exposure to elevated CO2. This increase in soil respiration was not reflected in an increase in the microbial biomass of the L. perenne soil. The contribution of old and newly sequestered C to soil respiration, as revealed by the 13 C-CO2 signature, reflected the turnover times of SOM–C pools as described by multipool SOM models. The results do not confirm the assumption of a negative feedback induced in the C cycle following an increase in CO2, as used in coupled climate–SOM models. Moreover, this study showed no evidence for a positive feedback in the C cycle following additional N fertilization.
- Published
- 2004
- Full Text
- View/download PDF
35. Erratum to: Enhanced precipitation promotes decomposition and soil C stabilization in semiarid ecosystems, but seasonal timing of wetting matters
- Author
-
Xochi Campos, Matthew J. Germino, and Marie-Anne de Graaff
- Subjects
Soil Science ,Plant Science - Published
- 2017
- Full Text
- View/download PDF
36. Elevated CO2 increases nitrogen rhizodeposition and microbial immobilization of root-derived nitrogen
- Author
-
Marie-Anne de Graaff, Johan Six, and Chris van Kessel
- Subjects
Physiology ,Nitrogen ,growth ,Biomass ,chemistry.chemical_element ,fine roots ,plant ,Plant Science ,Biology ,carbon-dioxide ,Plant Roots ,Zea mays ,Earth System Science ,soil ,chemistry.chemical_compound ,Nitrogen cycle ,Triticum turgidum ,ecosystem processes ,Soil Microbiology ,Triticum ,Rhizosphere ,atmospheric co2 ,Nitrogen Isotopes ,Atmosphere ,food and beverages ,Carbon Dioxide ,Agronomy ,chemistry ,Carbon dioxide ,responses ,systems ,Leerstoelgroep Aardsysteemkunde ,Cycling ,rhizosphere - Abstract
Summary • With this study, we aimed to determine how elevated CO2 affects rhizodeposition and the cycling of rhizodeposited nitrogen (N) in the soil under C3 and C4 plants. In addition, we examined how cultivated genotypes of wheat (Triticum turgidum) and maize (Zea mays) responded to elevated CO2 in comparison with their wild relatives. • By constructing an N-transfer experiment we could directly assess cycling of the rhizodeposited N and trace the fate of rhizodeposited N in the soil and in receiver plants. • Biomass production, rhizodeposition and cycling of root-borne N in maize genotypes were not affected by elevated CO2. Elevated CO2 stimulated above- and below-ground biomass production of the wheat genotypes on average by 38%, and increased rhizodeposition and immobilization of root-derived N on average by 30%. Concurrently, elevated CO2 reduced mineral 15N and re-uptake of the root-derived N by 50% in wheat. • This study shows that elevated CO2 may enhance N limitation by increasing N rhizodeposition and subsequent immobilization of the root-derived N.
- Published
- 2007
37. Prolonged elevated atmospheric CO(2)does not affect decomposition of plant material
- Author
-
Herbert Blum, Chris van Kessel, Marie-Anne de Graaff, and Johan Six
- Subjects
Soil Science ,chemistry.chemical_element ,litter decomposition ,engineering.material ,carbon-dioxide ,Microbiology ,Lolium perenne ,Earth System Science ,nitrogen ,pco(2) ,chemistry.chemical_compound ,Animal science ,populus-tremuloides ,Nitrogen cycle ,Incubation ,WIMEK ,biology ,food and beverages ,n-15 ,sequestration ,Mineralization (soil science) ,biology.organism_classification ,Nitrogen ,Agronomy ,chemistry ,quality ,Carbon dioxide ,Trifolium repens ,engineering ,co2 ,Leerstoelgroep Aardsysteemkunde ,Fertilizer ,grassland - Abstract
Prolonged elevated atmospheric CO2 might alter decomposition. In a 90-day incubation study, we determined the long-term (9 years) impact of elevated CO2 on N mineralization of Lolium perenne and Trifolium repens plant material grown at ambient and elevated CO2 and low- and high-15N fertilizer additions. No significant differences were observed in N 15 – NO 3 − recovery rates between any of the treatments, except an N addition effect was observed for L. perenne (0.4 versus 0.5% N 15 – NO 3 − day−1 in high versus low N). The results suggest that elevated CO2 did not change plant N mineralization in any of the soils, because of a surplus of available N in the fertilized and leguminous systems, and because of insignificant plant responses to elevated CO2 in the low soil N availability systems.
- Published
- 2006
38. Invasion of perennial sagebrush steppe by shallow-rooted exotic cheatgrass reduces stable forms of soil carbon in a warmer but not cooler ecoregion
- Author
-
Sydney Katz, Toby Maxwell, Marie Anne de Graaff, and Matthew J Germino
- Subjects
invasion ,perennial ,sagebrush ,steppe ,shallow-rooted exotic ,cheatgrass ,Environmental sciences ,GE1-350 ,Meteorology. Climatology ,QC851-999 - Abstract
Soil organic carbon (‘SOC’) in drylands comprises nearly a third of the global SOC pool and has relatively rapid turnover and thus is a key driver of variability in the global carbon cycle. SOC is also a sensitive indicator of longer-term directional change and disturbance-responses of ecosystem C storage. Biome-scale disruption of the dryland carbon cycle by exotic annual grass invasions (mainly Bromus tectorum, ‘Cheatgrass’) threatens carbon storage and corresponding benefits to soil hydrology and nutrient retention. Past studies on cheatgrass impacts mainly focused on total C, and of the few that evaluated SOC, none compared the very different fractions of SOC, such as relatively unstable particulate organic carbon (POC) or relatively stable, mineral-associated organic carbon (MAOC). We measured SOC and its POC and MAOC constituents in the surface soils of sites that had sagebrush canopies but differed in whether their understories had been invaded by cheatgrass or not, in both warm and relatively colder ecoregions of the western USA. MAOC stocks were 36.1% less in the 0–10 cm depth and 46.1% less in the 10–20 cm depth in the cheatgrass-invaded stands compared to the uninvaded stands of the warmer Colorado Plateau, but not in the cooler and more carbon-rich Wyoming Basin ecoregion. In plots where cheatgrass increased SOC, it was via unstable POC. These findings indicate that cheatgrass effects on the distribution of soil carbon among POC and MAOC fractions may vary among ecoregions, and that cheatgrass can reduce forms of carbon that are otherwise considered stable and ‘secure’, i.e. sequestered.
- Published
- 2025
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.