9 results on '"Mariani PDSC"'
Search Results
2. Correction: Lesbon et al. Nucleocapsid (N) Gene Mutations of SARS-CoV-2 Can Affect Real-Time RT-PCR Diagnostic and Impact False-Negative Results. Viruses 2021, 13 , 2474.
- Author
-
Lesbon JCC, Poleti MD, de Mattos Oliveira EC, Patané JSL, Clemente LG, Viala VL, Ribeiro G, Giovanetti M, de Alcantara LCJ, Teixeira O, Nonato MC, de Lima LPO, Martins AJ, Dos Santos Barros CR, Marqueze EC, de Souza Todão Bernardino J, Moretti DB, Brassaloti RA, de Lello Rocha Campos Cassano R, Mariani PDSC, Slavov SN, Dos Santos RB, Rodrigues ES, Santos EV, Borges JS, de La Roque DGL, Kitajima JP, Santos B, Assato PA, da Silva da Costa FA, Banho CA, Sacchetto L, Moraes MM, Palmieri M, da Silva FEV, Grotto RMT, Souza-Neto JA, Nogueira ML, Coutinho LL, Calado RT, Neto RM, Covas DT, Kashima S, Elias MC, Sampaio SC, and Fukumasu H
- Abstract
The authors hereby request the inclusion of two authors (Olivia Teixeira and Maria Cristina Nonato) in the recently published article in Viruses entitled "Nucleocapsid (N) gene mutations of SARS-CoV-2 can affect real-time RT-PCR diagnostic and impact false-negative results" [...].
- Published
- 2022
- Full Text
- View/download PDF
3. Genomic epidemiology of the SARS-CoV-2 epidemic in Brazil.
- Author
-
Giovanetti M, Slavov SN, Fonseca V, Wilkinson E, Tegally H, Patané JSL, Viala VL, San EJ, Rodrigues ES, Santos EV, Aburjaile F, Xavier J, Fritsch H, Adelino TER, Pereira F, Leal A, Iani FCM, de Carvalho Pereira G, Vazquez C, Sanabria GME, Oliveira EC, Demarchi L, Croda J, Dos Santos Bezerra R, Paola Oliveira de Lima L, Martins AJ, Renata Dos Santos Barros C, Marqueze EC, de Souza Todao Bernardino J, Moretti DB, Brassaloti RA, de Lello Rocha Campos Cassano R, Mariani PDSC, Kitajima JP, Santos B, Proto-Siqueira R, Cantarelli VV, Tosta S, Nardy VB, Reboredo de Oliveira da Silva L, Gómez MKA, Lima JG, Ribeiro AA, Guimarães NR, Watanabe LT, Barbosa Da Silva L, da Silva Ferreira R, da Penha MPF, Ortega MJ, de la Fuente AG, Villalba S, Torales J, Gamarra ML, Aquino C, Figueredo GPM, Fava WS, Motta-Castro ARC, Venturini J, do Vale Leone de Oliveira SM, Gonçalves CCM, do Carmo Debur Rossa M, Becker GN, Giacomini MP, Marques NQ, Riediger IN, Raboni S, Mattoso G, Cataneo AD, Zanluca C, Duarte Dos Santos CN, Assato PA, Allan da Silva da Costa F, Poleti MD, Lesbon JCC, Mattos EC, Banho CA, Sacchetto L, Moraes MM, Grotto RMT, Souza-Neto JA, Nogueira ML, Fukumasu H, Coutinho LL, Calado RT, Neto RM, Bispo de Filippis AM, Venancio da Cunha R, Freitas C, Peterka CRL, de Fátima Rangel Fernandes C, Navegantes W, do Carmo Said RF, Campelo de A E Melo CF, Almiron M, Lourenço J, de Oliveira T, Holmes EC, Haddad R, Sampaio SC, Elias MC, Kashima S, Junior de Alcantara LC, and Covas DT
- Subjects
- Brazil, Genomics, Humans, COVID-19, SARS-CoV-2
- Abstract
The high numbers of COVID-19 cases and deaths in Brazil have made Latin America an epicentre of the pandemic. SARS-CoV-2 established sustained transmission in Brazil early in the pandemic, but important gaps remain in our understanding of virus transmission dynamics at a national scale. We use 17,135 near-complete genomes sampled from 27 Brazilian states and bordering country Paraguay. From March to November 2020, we detected co-circulation of multiple viral lineages that were linked to multiple importations (predominantly from Europe). After November 2020, we detected large, local transmission clusters within the country. In the absence of effective restriction measures, the epidemic progressed, and in January 2021 there was emergence and onward spread, both within and abroad, of variants of concern and variants under monitoring, including Gamma (P.1) and Zeta (P.2). We also characterized a genomic overview of the epidemic in Paraguay and detected evidence of importation of SARS-CoV-2 ancestor lineages and variants of concern from Brazil. Our findings show that genomic surveillance in Brazil enabled assessment of the real-time spread of emerging SARS-CoV-2 variants., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
4. SARS-COV-2 genomic monitoring in the state of São Paulo unveils two emerging AY.43 sublineages.
- Author
-
Lima ARJ, Ribeiro G, Viala VL, de Lima LPO, Martins AJ, Barros CRDS, Marqueze EC, Bernardino JST, Moretti DB, Rodrigues ES, Santos EV, Brassaloti RA, Cassano RLRC, Mariani PDSC, Clemente LG, Assato PA, Costa FADSD, Poleti MD, Lesbon JCC, Mattos EC, Banho CA, Sacchetto L, Moraes MM, Palmieri M, Martininghi M, Caldeira LAV, Silva FEVD, Grotto RMT, Souza-Neto JA, Giovanetti M, Junior Alcantara LC, Nogueira ML, Fukumasu H, Coutinho LL, Kashima S, Neto RM, Covas DT, Slavov SN, Sampaio SC, and Elias MC
- Subjects
- Brazil epidemiology, COVID-19 Vaccines, Genomics, Humans, COVID-19 epidemiology, SARS-CoV-2 genetics
- Abstract
Delta VOC is highly diverse with more than 120 sublineages already described as of November 30, 2021. In this study, through active monitoring of circulating severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants in the state of São Paulo, southeast Brazil, we identified two emerging sublineages from the ancestral AY.43 strain which were classified as AY.43.1 and AY.43.2. These sublineages were defined by the following characteristic nonsynonymous mutations ORF1ab:A4133V and ORF3a:T14I for the AY.43.1 and ORF1ab:G1155C for the AY.43.2 and our analysis reveals that they might have a likely-Brazilian origin. Much is still unknown regarding their dissemination in the state of São Paulo and Brazil as well as their potential impact on the ongoing vaccination process. However, the results obtained in this study reinforce the importance of genomic surveillance activity for timely identification of emerging SARS-CoV-2 variants which can impact the ongoing SARS-CoV-2 vaccination and public health policies., (© 2022 Wiley Periodicals LLC.)
- Published
- 2022
- Full Text
- View/download PDF
5. Genomic epidemiology reveals the impact of national and international restrictions measures on the SARS-CoV-2 epidemic in Brazil.
- Author
-
Giovanetti M, Slavov SN, Fonseca V, Wilkinson E, Tegally H, Patané JSL, Viala VL, San JE, Rodrigues ES, Santos EV, Aburjaile F, Xavier J, Fritsch H, Adelino TER, Pereira F, Leal A, de Melo Iani FC, de Carvalho Pereira G, Vazquez C, Mercedes Estigarribia Sanabria G, de Oliveira EC, Demarchi L, Croda J, Dos Santos Bezerra R, de Lima LPO, Martins AJ, Dos Santos Barros CR, Marqueze EC, de Souza Todao Bernardino J, Moretti DB, Brassaloti RA, de Lello Rocha Campos Cassano R, Mariani PDSC, Kitajima JP, Santos B, Proto-Siqueira R, Cantarelli VV, Tosta S, Nardy VB, de Oliveira da Silva LR, Kelly Astete Gómez M, Lima JG, Ribeiro AA, Guimarães NR, Watanabe LT, Da Silva LB, da Silva Ferreira R, da Penha MPF, Ortega MJ, de la Fuente AG, Villalba S, Torales J, Gamarra ML, Aquino C, Martínez Figueredo GP, Fava WS, Motta-Castro ARC, Venturini J, de Oliveira SMDVL, Gonçalves CCM, do Carmo Debur Rossa M, Becker GN, Presibella MM, Marques NQ, Riediger IN, Raboni S, Coelho GM, Cataneo AHD, Zanluca C, Dos Santos CND, Assato PA, da Costa FADS, Poleti MD, Lesbon JCC, Mattos EC, Banho CA, Sacchetto L, Moraes MM, Grotto RMT, Souza-Neto JA, Nogueira ML, Fukumasu H, Coutinho LL, Calado RT, Neto RM, de Filippis AMB, da Cunha RV, Freitas C, Peterka CRL, de Fátima Rangel Fernandes C, de Araújo WN, do Carmo Said RF, Almiron M, de Albuquerque E Melo CFC, Lourenço J, de Oliveira T, Holmes EC, Haddad R, Sampaio SC, Elias MC, Kashima S, de Alcantara LCJ, and Covas DT
- Abstract
Brazil has experienced some of the highest numbers of COVID-19 cases and deaths globally and from May 2021 made Latin America a pandemic epicenter. Although SARS-CoV-2 established sustained transmission in Brazil early in the pandemic, important gaps remain in our understanding of virus transmission dynamics at the national scale. Here, we describe the genomic epidemiology of SARS-CoV-2 using near-full genomes sampled from 27 Brazilian states and a bordering country - Paraguay. We show that the early stage of the pandemic in Brazil was characterised by the co-circulation of multiple viral lineages, linked to multiple importations predominantly from Europe, and subsequently characterized by large local transmission clusters. As the epidemic progressed under an absence of effective restriction measures, there was a local emergence and onward international spread of Variants of Concern (VOC) and Variants Under Monitoring (VUM), including Gamma (P.1) and Zeta (P.2). In addition, we provide a preliminary genomic overview of the epidemic in Paraguay, showing evidence of importation from Brazil. These data reinforce the usefulness and need for the implementation of widespread genomic surveillance in South America as a toolkit for pandemic monitoring that provides a means to follow the real-time spread of emerging SARS-CoV-2 variants with possible implications for public health and immunization strategies.
- Published
- 2022
- Full Text
- View/download PDF
6. Introduction of SARS-CoV-2 C.37 (WHO VOI lambda) in the Sao Paulo State, Southeast Brazil.
- Author
-
Kashima S, Slavov SN, Giovanetti M, Rodrigues ES, Patané JSL, Viala VL, Santos EV, Evaristo M, de Lima LPO, Martins AJ, Dos Santos Barros CR, Marqueze EC, Garibaldi PMM, Ferreira NN, Moraes GR, Brassaloti RA, Cassano RLRC, Mariani PDSC, Kitajima JP, Schlesinger D, Bezerra RS, Assato PA, da Costa FAS, Poleti MD, Lesbon JCC, Mattos EC, Banho CA, Sacchetto L, Grotto RMT, Souza-Neto JA, Fonseca V, de Alcantara LCJ, Nogueira ML, Fukumasu H, Coutinho LL, Borges M, Calado RT, Elias MC, Sampaio SC, and Covas DT
- Subjects
- Brazil epidemiology, Humans, World Health Organization, COVID-19 epidemiology, SARS-CoV-2 genetics
- Abstract
The Lambda variants of interest (VOI) (C37/GR/452Q.V1/21G) was initially reported in Lima, Peru but has gained rapid dissemination through other Latin American countries. Nevertheless, the dissemination and molecular epidemiology of the Lambda VOI in Brazil is unknown apart from a single case report. In this respect, we characterized the circulation of the SARS-CoV-2 Lambda VOI (C37/GR/452Q.V1/21G) in Sao Paulo State, Brazil. From March to June 2021, we identified seven Lambda isolates in a set of approximately 8000 newly sequenced genomes of the Network for Pandemic Alert of Emerging SARS-CoV-2 variants from Sao Paulo State. Interestingly, in three of the positive patients, the Lambda VOI infection was probably related to a contact transmission. These individuals were fully vaccinated to COVID-19 and presented mild symptoms. The remaining positive for Lambda VOI individuals showed different levels of COVID-19 symptoms and one of them needed hospitalization (score 5, WHO). In our study, we present a low level of Lambda VOI circulation in the Sao Paulo State. This reinforces the essential role of molecular surveillance for the effective SARS-CoV-2 pandemic response, especially in regard to circulating variants., (© 2021 Wiley Periodicals LLC.)
- Published
- 2022
- Full Text
- View/download PDF
7. Genomic monitoring of the SARS-CoV-2 B1.1.7 (WHO VOC Alpha) in the Sao Paulo state, Brazil.
- Author
-
Slavov SN, Bezerra RDS, Rodrigues ES, Santos EV, Borges JS, de la Roque DGL, Patané JSL, Lima ARJ, Ribeiro G, Viala VL, de Lima LPO, Martins AJ, Dos Santos Barros CR, Marqueze EC, Bernardino JST, Moretti DB, Brassaloti RA, Cassano RLRC, Mariani PDSC, Kitajima JP, Santos B, Assato PA, da Silva da Costa FA, Poleti MD, Lesbon JCC, Mattos EC, Banho CA, Sacchetto L, Moraes MM, Grotto RMT, Souza-Neto JA, Giovanetti M, de Alcantara LCJ, Nogueira ML, Fukumasu H, Coutinho LL, Calado RT, Neto RM, Covas DT, Coccuzzo Sampaio S, Elias MC, and Kashima S
- Subjects
- Brazil epidemiology, Genomics, Humans, World Health Organization, COVID-19 epidemiology, COVID-19 virology, Phylogeny, SARS-CoV-2 genetics
- Abstract
The SARS-CoV-2 alpha VOC (also known as lineage B.1.1.7) initially described in the autumn, 2020 in UK, rapidly became the dominant lineage across much of Europe. Despite multiple studies reporting molecular evidence suggestive of its circulation in Brazil, much is still unknown about its genomic diversity in the state of São Paulo, the main Brazilian economic and transportation hub. To get more insight regarding its transmission dynamics into the State we performed phylogenetic analysis on all alpha VOC strains obtained between February and August 2021 from the Sao Paulo state Network for Pandemic Alert of Emerging SARS-CoV-2 variants. The performed phylogenetic analysis showed that most of the alpha VOC genomes were interspersed with viral strains sampled from different Brazilian states and other countries suggesting that multiple independent Alpha VOC introductions from Brazil and overseas have occurred in the São Paulo State over time. Nevertheless, large monophyletic clusters were also observed especially from the Central-West part of the São Paulo State (the city of Bauru) and the metropolitan region of the São Paulo city. Our results highlight the Alpha VOC molecular epidemiology in the São Paulo state and reinforce the need for continued genomic surveillance strategies for the real-time monitoring of potential emerging SARS-CoV-2 variants during the ever-growing vaccination process., (Copyright © 2021 Elsevier B.V. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
8. Nucleocapsid (N) Gene Mutations of SARS-CoV-2 Can Affect Real-Time RT-PCR Diagnostic and Impact False-Negative Results.
- Author
-
Lesbon JCC, Poleti MD, de Mattos Oliveira EC, Patané JSL, Clemente LG, Viala VL, Ribeiro G, Giovanetti M, de Alcantara LCJ, Teixeira O, Nonato MC, de Lima LPO, Martins AJ, Dos Santos Barros CR, Marqueze EC, de Souza Todão Bernardino J, Moretti DB, Brassaloti RA, de Lello Rocha Campos Cassano R, Mariani PDSC, Slavov SN, Dos Santos RB, Rodrigues ES, Santos EV, Borges JS, de La Roque DGL, Kitajima JP, Santos B, Assato PA, da Silva da Costa FA, Banho CA, Sacchetto L, Moraes MM, Palmieri M, da Silva FEV, Grotto RMT, Souza-Neto JA, Nogueira ML, Coutinho LL, Calado RT, Neto RM, Covas DT, Kashima S, Elias MC, Sampaio SC, and Fukumasu H
- Subjects
- Brazil epidemiology, COVID-19 epidemiology, Coronavirus RNA-Dependent RNA Polymerase genetics, DNA Primers, False Negative Reactions, Genome, Viral genetics, Humans, Mutation, Phosphoproteins genetics, RNA, Viral genetics, SARS-CoV-2 genetics, COVID-19 diagnosis, COVID-19 Nucleic Acid Testing, Coronavirus Nucleocapsid Proteins genetics, SARS-CoV-2 isolation & purification
- Abstract
The current COVID-19 pandemic demands massive testing by Real-time RT-PCR (Reverse Transcription Polymerase Chain Reaction), which is considered the gold standard diagnostic test for the detection of the SARS-CoV-2 virus. However, the virus continues to evolve with mutations that lead to phenotypic alterations as higher transmissibility, pathogenicity or vaccine evasion. Another big issue are mutations in the annealing sites of primers and probes of RT-PCR diagnostic kits leading to false-negative results. Therefore, here we identify mutations in the N (Nucleocapsid) gene that affects the use of the GeneFinder COVID-19 Plus RealAmp Kit. We sequenced SARS-CoV-2 genomes from 17 positive samples with no N gene detection but with RDRP (RNA-dependent RNA polymerase) and E (Envelope) genes detection, and observed a set of three different mutations affecting the N detection: a deletion of 18 nucleotides (Del28877-28894), a substitution of GGG to AAC (28881-28883) and a frameshift mutation caused by deletion (Del28877-28878). The last one cause a deletion of six AAs (amino acids) located in the central intrinsic disorder region at protein level. We also found this mutation in 99 of the 14,346 sequenced samples by the Sao Paulo state Network for Pandemic Alert of Emerging SARS-CoV-2 variants, demonstrating the circulation of the mutation in Sao Paulo, Brazil. Continuous monitoring and characterization of mutations affecting the annealing sites of primers and probes by genomic surveillance programs are necessary to maintain the effectiveness of the diagnosis of COVID-19.
- Published
- 2021
- Full Text
- View/download PDF
9. Genome-wide characterization of genetic variants and putative regions under selection in meat and egg-type chicken lines.
- Author
-
Boschiero C, Moreira GCM, Gheyas AA, Godoy TF, Gasparin G, Mariani PDSC, Paduan M, Cesar ASM, Ledur MC, and Coutinho LL
- Subjects
- Animals, Brazil, Eggs, Genome, Genomics, High-Throughput Nucleotide Sequencing, INDEL Mutation, Phenotype, Quantitative Trait Loci, Avian Proteins genetics, Chickens classification, Chickens genetics, Meat analysis, Polymorphism, Single Nucleotide, Selection, Genetic
- Abstract
Background: Meat and egg-type chickens have been selected for several generations for different traits. Artificial and natural selection for different phenotypes can change frequency of genetic variants, leaving particular genomic footprints throghtout the genome. Thus, the aims of this study were to sequence 28 chickens from two Brazilian lines (meat and white egg-type) and use this information to characterize genome-wide genetic variations, identify putative regions under selection using Fst method, and find putative pathways under selection., Results: A total of 13.93 million SNPs and 1.36 million INDELs were identified, with more variants detected from the broiler (meat-type) line. Although most were located in non-coding regions, we identified 7255 intolerant non-synonymous SNPs, 512 stopgain/loss SNPs, 1381 frameshift and 1094 non-frameshift INDELs that may alter protein functions. Genes harboring intolerant non-synonymous SNPs affected metabolic pathways related mainly to reproduction and endocrine systems in the white-egg layer line, and lipid metabolism and metabolic diseases in the broiler line. Fst analysis in sliding windows, using SNPs and INDELs separately, identified over 300 putative regions of selection overlapping with more than 250 genes. For the first time in chicken, INDEL variants were considered for selection signature analysis, showing high level of correlation in results between SNP and INDEL data. The putative regions of selection signatures revealed interesting candidate genes and pathways related to important phenotypic traits in chicken, such as lipid metabolism, growth, reproduction, and cardiac development., Conclusions: In this study, Fst method was applied to identify high confidence putative regions under selection, providing novel insights into selection footprints that can help elucidate the functional mechanisms underlying different phenotypic traits relevant to meat and egg-type chicken lines. In addition, we generated a large catalog of line-specific and common genetic variants from a Brazilian broiler and a white egg layer line that can be used for genomic studies involving association analysis with phenotypes of economic interest to the poultry industry.
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.