14 results on '"Marcolino-Gomes J"'
Search Results
2. Subtractive libraries for prospecting differentially expressed genes in the soybean under water deficit
- Author
-
RODRIGUES, F. A., MARCOLINO-GOMES, J., CARVALHO, J. de F. C., NASCIMENTO, L. C. do, NEUMAIER, N., FARIAS, J. R. B., CARAZZOLLE, M. F., MARCELINO, F. C., NEPOMUCENO, A. L., FABIANA APARECIDA RODRIGUES, CNPSo, JULIANA MARCOLINO-GOMES, CNPSo, JOSIRLEI DE FÁTIMA CORRÊA CARVALHO, CARVALHO , J. de F. C., LEANDRO COSTA DO NASCIMENTO, UNICAMP, NORMAN NEUMAIER, CNPSO, JOSE RENATO BOUCAS FARIAS, CNPSO, MARCELO FALSARELLA CARAZZOLLE, UNICAMP, FRANCISMAR CORREA MARCELINO GUIMARÃES, CNPSO, and ALEXANDRE LIMA NEPOMUCENO, SRI.
- Subjects
Seca ,Drought ,Deficiência hídrica ,Soja ,Soybeans ,Gene expression ,Relação água-planta ,Estiagem ,Gene ,Genoma - Abstract
Soybean has a wide range of applications in the industry and, due to its crop potential, its improvement is widely desirable. During drought conditions, soybean crops suffer significant losses in productivity. Therefore, understanding the responses of the soybean under this stress is an effective way of targeting crop improvement techniques. In this study, we employed the Suppressive Subtractive Hybridization (SSH) technique to investigate differentially expressed genes under water deficit conditions. Embrapa 48 and BR 16 soybean lines, known as drought-tolerant and -sensitive, respectively, were grown hydroponically and subjected to different short-term periods of stress by withholding the nutrient solution. Using this approach, we have identified genes expressed during the early response to water deficit in roots and leaves. These genes were compared among the lines to assess probable differences in the plant transcriptomes. In general, similar biochemical processes were predominant in both cultivars; however, there were more considerable differences between roots and leaves of Embrapa 48. Moreover, we present here a fast, clean and straightforward method to obtain drought-stressed root tissues and a large enriched collection of transcripts expressed by soybean plants under water deficit that can be useful for further studies towards the understanding of plant responses to stress.
- Published
- 2012
3. Overexpression of AtNCED3 gene improved drought tolerance in soybean in greenhouse and field conditions.
- Author
-
Molinari MDC, Fuganti-Pagliarini R, Marin SRR, Ferreira LC, Barbosa DA, Marcolino-Gomes J, Oliveira MCN, Mertz-Henning LM, Kanamori N, Takasaki H, Urano K, Shinozaki K, Nakashima K, Yamaguchi-Shinozaki K, and Nepomuceno AL
- Abstract
Water deficit is an important climatic problem that can impair agriculture yield and economy. Genetically modified soybean plants containing the AtNCED3 gene were obtained aiming drought-tolerance improvement. The NCED3 gene encodes a 9-cis-epoxycarotenoid dioxygenase (NCED, EC 1.13.11.51), an important enzyme in abscisic acid biosynthesis. ABA activates the expression of drought-responsive genes, in water-deficit conditions, targeting defense mechanisms and enabling plants to survive under low water availability. Results from greenhouse experiments showed that the transgene AtNCED3 and the endogenous genes GmAREB1, GmPP2C, GmSnRK2 and GmAAO3 presented higher expression under water deficit (WD) in the event 2Ha11 than in WT-plants. No significant correlation was observed between the plant materials and WD conditions for growth parameters; however, gas exchange measurements decreased in the GM event, which also showed 80% higher intrinsic water use when compared to WT plants. In crop season 2015/16, event 2Ha11 showed higher total number of pods, higher number of pods with seeds and yield than WT plants. ABA concentration was also higher in GM plants under WD. These results obtained in field screenings suggest that AtNCED3 soybean plants might outperform under drought, reducing economic and yield losses, thus being a good candidate line to be incorporated in the soybean-breeding program to develop drought-tolerant cultivars.
- Published
- 2020
- Full Text
- View/download PDF
4. Differential gene expression in response to water deficit in leaf and root tissues of soybean genotypes with contrasting tolerance profiles.
- Author
-
Reis RR, Mertz-Henning LM, Marcolino-Gomes J, Rodrigues FA, Rockenbach-Marin S, Fuganti-Pagliarini R, Koltun A, Gonçalves LSA, and Nepomuceno AL
- Abstract
Water deficit is one of the major limitations to soybean production worldwide, yet the genetic basis of drought-responsive mechanisms in crops remains poorly understood. In order to study the gene expression patterns in leaves and roots of soybean, two contrasting genotypes, Embrapa 48 (drought-tolerant) and BR 16 (drought-sensitive), were evaluated under moderate and severe water deficit. Transcription factors from the AP2/EREBP and WRKY families were investigated. Embrapa 48 showed 770 more up-regulated genes than BR 16, in eight categories. In general, leaves presented more differentially expressed genes (DEGs) than roots. Embrapa 48 responded to water deficit faster than BR 16, presenting a greater number of DEGs since the first signs of drought. Embrapa 48 exhibited initial modulation of genes associated with stress, while maintaining the level of the ones related to basic functions. The genes expressed exclusively in the drought-tolerant cultivar, belonging to the category of dehydration responsive genes, and the ones with a contrasting expression pattern between the genotypes are examples of important candidates to confer tolerance to plants. Finally, this study identified genes of the AP2/EREBP and WRKY families related to drought tolerance.
- Published
- 2020
- Full Text
- View/download PDF
5. Identification of primary and secondary metabolites and transcriptome profile of soybean tissues during different stages of hypoxia.
- Author
-
Coutinho ID, Henning LMM, Döpp SA, Nepomuceno A, Moraes LAC, Marcolino-Gomes J, Richter C, Schwalbe H, and Colnago LA
- Abstract
NMR and chromatography methods combined with mass spectrometry are the most important analytical techniques employed for plant metabolomics screening. Metabolomic analysis integrated to transcriptome screening add an important extra dimension to the information flow from DNA to RNA to protein. The most useful NMR experiment in metabolomics analysis is the proton spectra due the high receptivity of
1 H and important structural information, through proton-proton scalar coupling. Routinely, databases have been used in identification of primary metabolites, however, there is currently no comparable data for identification of secondary metabolites, mainly, due to signal overlap in normal1 H NMR spectra and natural variation of plant. Related to spectra overlap, alternatively, better resolution can be find using1 H pure shift and 2D NMR pulse sequence in complex samples due to spreading the resonances in a second dimension. Thus, in data brief we provide a catalogue of metabolites and expression levels of genes identified in soy leaves and roots under flooding stress.- Published
- 2018
- Full Text
- View/download PDF
6. Insights into soybean transcriptome reconfiguration under hypoxic stress: Functional, regulatory, structural, and compositional characterization.
- Author
-
Nakayama TJ, Rodrigues FA, Neumaier N, Marcolino-Gomes J, Molinari HBC, Santiago TR, Formighieri EF, Basso MF, Farias JRB, Emygdio BM, de Oliveira ACB, Campos ÂD, Borém A, Harmon FG, Mertz-Henning LM, and Nepomuceno AL
- Subjects
- Gene Expression Regulation, Plant, Glycine max physiology, Genes, Plant, Oxygen metabolism, Glycine max genetics, Stress, Physiological, Transcriptome
- Abstract
Soybean (Glycine max) is one of the major crops worldwide and flooding stress affects the production and expansion of cultivated areas. Oxygen is essential for mitochondrial aerobic respiration to supply the energy demand of plant cells. Because oxygen diffusion in water is 10,000 times lower than in air, partial (hypoxic) or total (anoxic) oxygen deficiency is important component of flooding. Even when oxygen is externally available, oxygen deficiency frequently occurs in bulky, dense or metabolically active tissues such as phloem, meristems, seeds, and fruits. In this study, we analyzed conserved and divergent root transcriptional responses between flood-tolerant Embrapa 45 and flood-sensitive BR 4 soybean cultivars under hypoxic stress conditions with RNA-seq. To understand how soybean genes evolve and respond to hypoxia, stable and differentially expressed genes were characterized structurally and compositionally comparing its mechanistic relationship. Between cultivars, Embrapa 45 showed less up- and more down-regulated genes, and stronger induction of phosphoglucomutase (Glyma05g34790), unknown protein related to N-terminal protein myristoylation (Glyma06g03430), protein suppressor of phyA-105 (Glyma06g37080), and fibrillin (Glyma10g32620). RNA-seq and qRT-PCR analysis of non-symbiotic hemoglobin (Glyma11g12980) indicated divergence in gene structure between cultivars. Transcriptional changes for genes in amino acids and derivative metabolic process suggest involvement of amino acids metabolism in tRNA modifications, translation accuracy/efficiency, and endoplasmic reticulum stress in both cultivars under hypoxia. Gene groups differed in promoter TATA box, ABREs (ABA-responsive elements), and CRT/DREs (C-repeat/dehydration-responsive elements) frequency. Gene groups also differed in structure, composition, and codon usage, indicating biological significances. Additional data suggests that cis-acting ABRE elements can mediate gene expression independent of ABA in soybean roots under hypoxia.
- Published
- 2017
- Full Text
- View/download PDF
7. Integrating High-Resolution and Solid-State Magic Angle Spinning NMR Spectroscopy and a Transcriptomic Analysis of Soybean Tissues in Response to Water Deficiency.
- Author
-
Coutinho ID, Moraes TB, Mertz-Henning LM, Nepomuceno AL, Giordani W, Marcolino-Gomes J, Santagneli S, and Colnago LA
- Subjects
- Plant Proteins genetics, Plant Proteins metabolism, Glycine max genetics, Gene Expression Regulation, Plant physiology, Magnetic Resonance Spectroscopy methods, Glycine max chemistry, Glycine max metabolism, Transcriptome, Water metabolism
- Abstract
Introduction: Solid-state NMR (SSNMR) spectroscopy methods provide chemical environment and ultrastructural details that are not easily accessible by other non-destructive, high-resolution spectral techniques. High-resolution magic angle spinning (HR-MAS) has been widely used to obtain the metabolic profile of a heterogeneous sample, combining the resolution enhancement provided by MAS in SSNMR with the shimming and locking procedures in liquid-state NMR., Objective: In this work, we explored the feasibility of using the HR-MAS and SSNMR techniques to identify metabolic changes in soybean leaves subjected to water-deficient conditions., Methodology: Control and water-deficient soybean leaves were analysed using one-dimensional (1D) HR-MAS and SSNMR. Total RNA was extracted from the leaves for the transcriptomic analysis., Results: The
1 H HR-MAS and CP-MAS13 C{1 H} spectra of soybean leaves grown with and without water deficiency stress revealed striking differences in metabolites. A total of 30 metabolites were identified, and the impact of water deficiency on the metabolite profile of soybean leaves was to induce amino acid synthesis. High expression levels of genes required for amino acid biosynthesis were highly correlated with the compounds identified by1 H HR-MAS., Conclusions: The integration of the1 H HR-MAS and SSNMR spectra with the transcriptomic data provided a complete picture of the major changes in the metabolic profile of soybeans in response to water deficiency. Copyright © 2017 John Wiley & Sons, Ltd., (Copyright © 2017 John Wiley & Sons, Ltd.)- Published
- 2017
- Full Text
- View/download PDF
8. Functional Characterization of a Putative Glycine max ELF4 in Transgenic Arabidopsis and Its Role during Flowering Control.
- Author
-
Marcolino-Gomes J, Nakayama TJ, Molinari HBC, Basso MF, Henning LMM, Fuganti-Pagliarini R, Harmon FG, and Nepomuceno AL
- Abstract
Flowering is an important trait in major crops like soybean due to its direct relation to grain production. The circadian clock mediates the perception of seasonal changes in day length and temperature to modulate flowering time. The circadian clock gene EARLY FLOWERING 4 ( ELF4 ) was identified in Arabidopsis thaliana and is believed to play a key role in the integration of photoperiod, circadian regulation, and flowering. The molecular circuitry that comprises the circadian clock and flowering control in soybeans is just beginning to be understood. To date, insufficient information regarding the soybean negative flowering regulators exist, and the biological function of the soybean ELF4 ( GmELF4 ) remains unknown. Here, we investigate the ELF4 family members in soybean and functionally characterize a GmELF4 homologous gene. The constitutive overexpression of GmELF4 delayed flowering in Arabidopsis, showing the ELF4 functional conservation among plants as part of the flowering control machinery. We also show that GmELF4 alters the expression of Arabidopsis key flowering time genes ( AtCO and AtFT ), and this down-regulation is the likely cause of flowering delay phenotypes. Furthermore, we identified the GmELF4 network genes to infer the participation of GmELF4 in soybeans. The data generated in this study provide original insights for comprehending the role of the soybean circadian clock ELF4 gene as a negative flowering controller.
- Published
- 2017
- Full Text
- View/download PDF
9. Characterization of Soybean Genetically Modified for Drought Tolerance in Field Conditions.
- Author
-
Fuganti-Pagliarini R, Ferreira LC, Rodrigues FA, Molinari HBC, Marin SRR, Molinari MDC, Marcolino-Gomes J, Mertz-Henning LM, Farias JRB, de Oliveira MCN, Neumaier N, Kanamori N, Fujita Y, Mizoi J, Nakashima K, Yamaguchi-Shinozaki K, and Nepomuceno AL
- Abstract
Drought is one of the most stressful environmental factor causing yield and economic losses in many soybean-producing regions. In the last decades, transcription factors (TFs) are being used to develop genetically modified plants more tolerant to abiotic stresses. Dehydration responsive element binding (DREB) and ABA-responsive element-binding (AREB) TFs were introduced in soybean showing improved drought tolerance, under controlled conditions. However, these results may not be representative of the way in which plants behave over the entire season in the real field situation. Thus, the objectives of this study were to analyze agronomical traits and physiological parameters of AtDREB1A (1Ab58), AtDREB2CA (1Bb2193), and AtAREB1 (1Ea2939) GM lines under irrigated (IRR) and non-irrigated (NIRR) conditions in a field experiment, over two crop seasons and quantify transgene and drought-responsive genes expression. Results from season 2013/2014 revealed that line 1Ea2939 showed higher intrinsic water use and leaf area index. Lines 1Ab58 and 1Bb2193 showed a similar behavior to wild-type plants in relation to chlorophyll content. Oil and protein contents were not affected in transgenic lines in NIRR conditions. Lodging, due to plentiful rain, impaired yield from the 1Ea2939 line in IRR conditions. qPCR results confirmed the expression of the inserted TFs and drought-responsive endogenous genes. No differences were identified in the field experiment performed in crop season 2014/2015, probably due to the optimum rainfall volume during the cycle. These field screenings showed promising results for drought tolerance. However, additional studies are needed in further crop seasons and other sites to better characterize how these plants may outperform the WT under field water deficit.
- Published
- 2017
- Full Text
- View/download PDF
10. Transcriptome-Wide Identification of Reference Genes for Expression Analysis of Soybean Responses to Drought Stress along the Day.
- Author
-
Marcolino-Gomes J, Rodrigues FA, Fuganti-Pagliarini R, Nakayama TJ, Ribeiro Reis R, Bouças Farias JR, Harmon FG, Correa Molinari HB, Correa Molinari MD, and Nepomuceno A
- Subjects
- Dehydration genetics, Gene Expression Profiling methods, Gene Expression Regulation, Plant physiology, Gene Library, Genes, Plant physiology, Polymerase Chain Reaction, RNA, Plant genetics, RNA, Plant physiology, Glycine max physiology, Transcriptome genetics, Transcriptome physiology, Gene Expression Regulation, Plant genetics, Genes, Plant genetics, Glycine max genetics
- Abstract
The soybean transcriptome displays strong variation along the day in optimal growth conditions and also in response to adverse circumstances, like drought stress. However, no study conducted to date has presented suitable reference genes, with stable expression along the day, for relative gene expression quantification in combined studies on drought stress and diurnal oscillations. Recently, water deficit responses have been associated with circadian clock oscillations at the transcription level, revealing the existence of hitherto unknown processes and increasing the demand for studies on plant responses to drought stress and its oscillation during the day. We performed data mining from a transcriptome-wide background using microarrays and RNA-seq databases to select an unpublished set of candidate reference genes, specifically chosen for the normalization of gene expression in studies on soybean under both drought stress and diurnal oscillations. Experimental validation and stability analysis in soybean plants submitted to drought stress and sampled during a 24 h timecourse showed that four of these newer reference genes (FYVE, NUDIX, Golgin-84 and CYST) indeed exhibited greater expression stability than the conventionally used housekeeping genes (ELF1-β and β-actin) under these conditions. We also demonstrated the effect of using reference candidate genes with different stability values to normalize the relative expression data from a drought-inducible soybean gene (DREB5) evaluated in different periods of the day.
- Published
- 2015
- Full Text
- View/download PDF
11. Daytime soybean transcriptome fluctuations during water deficit stress.
- Author
-
Rodrigues FA, Fuganti-Pagliarini R, Marcolino-Gomes J, Nakayama TJ, Molinari HB, Lobo FP, Harmon FG, and Nepomuceno AL
- Subjects
- Darkness, Down-Regulation genetics, Droughts, Gene Expression Profiling methods, Gene Library, Genes, Plant genetics, Light, Plant Leaves genetics, Plant Proteins genetics, Up-Regulation genetics, Water, Dehydration genetics, Gene Expression Regulation, Plant genetics, Glycine max genetics, Stress, Physiological genetics, Transcriptome genetics
- Abstract
Background: Since drought can seriously affect plant growth and development and little is known about how the oscillations of gene expression during the drought stress-acclimation response in soybean is affected, we applied Illumina technology to sequence 36 cDNA libraries synthesized from control and drought-stressed soybean plants to verify the dynamic changes in gene expression during a 24-h time course. Cycling variables were measured from the expression data to determine the putative circadian rhythm regulation of gene expression., Results: We identified 4866 genes differentially expressed in soybean plants in response to water deficit. Of these genes, 3715 were differentially expressed during the light period, from which approximately 9.55% were observed in both light and darkness. We found 887 genes that were either up- or down-regulated in different periods of the day. Of 54,175 predicted soybean genes, 35.52% exhibited expression oscillations in a 24 h period. This number increased to 39.23% when plants were submitted to water deficit. Major differences in gene expression were observed in the control plants from late day (ZT16) until predawn (ZT20) periods, indicating that gene expression oscillates during the course of 24 h in normal development. Under water deficit, dissimilarity increased in all time-periods, indicating that the applied stress influenced gene expression. Such differences in plants under stress were primarily observed in ZT0 (early morning) to ZT8 (late day) and also from ZT4 to ZT12. Stress-related pathways were triggered in response to water deficit primarily during midday, when more genes were up-regulated compared to early morning. Additionally, genes known to be involved in secondary metabolism and hormone signaling were also expressed in the dark period., Conclusions: Gene expression networks can be dynamically shaped to acclimate plant metabolism under environmental stressful conditions. We have identified putative cycling genes that are expressed in soybean leaves under normal developmental conditions and genes whose expression oscillates under conditions of water deficit. These results suggest that time of day, as well as light and temperature oscillations that occur considerably affect the regulation of water deficit stress response in soybean plants.
- Published
- 2015
- Full Text
- View/download PDF
12. Diurnal oscillations of soybean circadian clock and drought responsive genes.
- Author
-
Marcolino-Gomes J, Rodrigues FA, Fuganti-Pagliarini R, Bendix C, Nakayama TJ, Celaya B, Molinari HB, de Oliveira MC, Harmon FG, and Nepomuceno A
- Subjects
- Abscisic Acid, Analysis of Variance, Arabidopsis genetics, Gene Expression Regulation, Plant genetics, Real-Time Polymerase Chain Reaction, Sequence Analysis, RNA, Adaptation, Physiological genetics, Circadian Clocks genetics, Circadian Rhythm physiology, Droughts, Gene Expression Regulation, Plant physiology, Glycine max genetics, Glycine max physiology
- Abstract
Rhythms produced by the endogenous circadian clock play a critical role in allowing plants to respond and adapt to the environment. While there is a well-established regulatory link between the circadian clock and responses to abiotic stress in model plants, little is known of the circadian system in crop species like soybean. This study examines how drought impacts diurnal oscillation of both drought responsive and circadian clock genes in soybean. Drought stress induced marked changes in gene expression of several circadian clock-like components, such as LCL1-, GmELF4- and PRR-like genes, which had reduced expression in stressed plants. The same conditions produced a phase advance of expression for the GmTOC1-like, GmLUX-like and GmPRR7-like genes. Similarly, the rhythmic expression pattern of the soybean drought-responsive genes DREB-, bZIP-, GOLS-, RAB18- and Remorin-like changed significantly after plant exposure to drought. In silico analysis of promoter regions of these genes revealed the presence of cis-elements associated both with stress and circadian clock regulation. Furthermore, some soybean genes with upstream ABRE elements were responsive to abscisic acid treatment. Our results indicate that some connection between the drought response and the circadian clock may exist in soybean since (i) drought stress affects gene expression of circadian clock components and (ii) several stress responsive genes display diurnal oscillation in soybeans.
- Published
- 2014
- Full Text
- View/download PDF
13. Expression patterns of GmAP2/EREB-like transcription factors involved in soybean responses to water deficit.
- Author
-
Marcolino-Gomes J, Rodrigues FA, Oliveira MC, Farias JR, Neumaier N, Abdelnoor RV, Marcelino-Guimarães FC, and Nepomuceno AL
- Subjects
- Amino Acid Sequence, Droughts, Evolution, Molecular, Genotype, Molecular Sequence Data, Phylogeny, Plant Proteins chemistry, Protein Structure, Tertiary, Glycine max physiology, Transcription Factors chemistry, Gene Expression Regulation, Plant, Plant Proteins genetics, Glycine max genetics, Transcription Factors genetics, Water metabolism
- Abstract
Soybean farming has faced several losses in productivity due to drought events in the last few decades. However, plants have molecular mechanisms to prevent and protect against water deficit injuries, and transcription factors play an important role in triggering different defense mechanisms. Understanding the expression patterns of transcription factors in response to water deficit and to environmental diurnal changes is very important for unveiling water deficit stress tolerance mechanisms. Here, we analyzed the expression patterns of ten APETALA2/Ethylene Responsive Element Binding-like (AP2/EREB-like) transcription factors in two soybean genotypes (BR16: drought-sensitive; and Embrapa 48: drought-tolerant). According to phylogenetic and domain analyses, these genes can be included in the DREB and ERF subfamilies. We also analyzed a GmDRIP-like gene that encodes a DREB negative regulator. We detected the up-regulation of 9 GmAP2/EREB-like genes and identified transcriptional differences that were dependent on the levels of the stress applied and the tissue type analyzed (the expression of the GmDREB1F-like gene, for example, was four times higher in roots than in leaves). The GmDRIP-like gene was not induced by water deficit in BR16 during the longest periods of stress, but was significantly induced in Embrapa 48; this suggests a possible genetic/molecular difference between the responses of these cultivars to water deficit stress. Additionally, RNAseq gene expression analysis over a 24-h time course indicates that the expression patterns of several GmDREB-like genes are subject to oscillation over the course of the day, indicating a possible circadian regulation.
- Published
- 2013
- Full Text
- View/download PDF
14. Subtractive libraries for prospecting differentially expressed genes in the soybean under water deficit.
- Author
-
Rodrigues FA, Marcolino-Gomes J, de Fátima Corrêa Carvalho J, do Nascimento LC, Neumaier N, Farias JR, Carazzolle MF, Marcelino FC, and Nepomuceno AL
- Abstract
Soybean has a wide range of applications in the industry and, due to its crop potential, its improvement is widely desirable. During drought conditions, soybean crops suffer significant losses in productivity. Therefore, understanding the responses of the soybean under this stress is an effective way of targeting crop improvement techniques. In this study, we employed the Suppressive Subtractive Hybridization (SSH) technique to investigate differentially expressed genes under water deficit conditions. Embrapa 48 and BR 16 soybean lines, known as drought-tolerant and -sensitive, respectively, were grown hydroponically and subjected to different short-term periods of stress by withholding the nutrient solution. Using this approach, we have identified genes expressed during the early response to water deficit in roots and leaves. These genes were compared among the lines to assess probable differences in the plant transcriptomes. In general, similar biochemical processes were predominant in both cultivars; however, there were more considerable differences between roots and leaves of Embrapa 48. Moreover, we present here a fast, clean and straightforward method to obtain drought-stressed root tissues and a large enriched collection of transcripts expressed by soybean plants under water deficit that can be useful for further studies towards the understanding of plant responses to stress.
- Published
- 2012
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.