94 results on '"Marcello Fulchignoni"'
Search Results
2. Methods for Studying the Solar System
- Author
-
Thérèse Encrenaz, Marcello Fulchignoni, Laurent Lamy, Françoise Roques, and James Lequeux
- Published
- 2021
3. Comets, Asteroids, and Dwarf Planets
- Author
-
Marcello Fulchignoni and Jacques Crovisier
- Subjects
Asteroid ,Dwarf planet ,Astrobiology - Published
- 2021
4. Satellites and Rings of the Giant Planets
- Author
-
Marcello Fulchignoni, Françoise Roques, and Athena Coustenis
- Subjects
Planet ,Astrobiology - Published
- 2021
5. Statistical clustering analysis of NEOs to find correlations with spectral classes
- Author
-
J. D. Prasanna Deshapriya, Davide Perna, Nicolas Bott, Pedro Henrique Hasselmann, Mikael Granvik, Elisabetta Dotto, Marcello Fulchignoni, Alessio Giunta, Ettore Perozzi, Simone Ieva, Vasiliki Petropoulou, and Elena Mazzotta-Epifani
- Abstract
Introduction: Study of near-Earth objects (NEOs) is crucial to better understand the origin, formation and the evolution of the solar system. In particular, compositional, morphological and orbital characterisation of NEOs sheds light on the delivery of water and organics [1,2,3] to the prebiotic Earth, while ironically, some NEOs could be potential hazards for life on Earth [4]. In this context, we apply the G-mode multivariate statistical clustering method [5,6,7] on the orbital parameters of the currently available NEOs population, to probe potential associations with their spectral classification [8,9,10]. Data and Methods: G-mode method leads to an automatic statistical clustering of a sample containing N objects (NEOs in this case), described by M variables with the only control imposed by the user being the confidence level q1, expressed in terms of σ. The objects that cannot be associated to a cluster are separated and considered as outliers. We apply G-mode multivariate statistical clustering analysis to variables defining NEOs to determine clustering of objects. Our sample consists of 14132 NEOs, filtered based on their orbital uncertainty. Our input parameters to the G-mode method are twofold. First, in approach 1 (A1) we used three variables and their uncertainties as inputs: inclination (i), eccentricity (e) and semi-major axis (a) of the orbit. In approach 2 (A2) we used six inputs by including the argument of perihelion (ω), Tisserand parameter with respect to Jupiter (TJ) and the absolute magnitude (H) and their respective uncertainties in addition to those used in A1. Results: In A1, we obtained only one cluster at q1=3σ (accurate classification probability of 99.7%), which meant that the NEOs in this cluster are homogeneous in terms of the three orbital elements used. As we gradually lowered the value of q1, hence the confidence level, we noticed that more clusters got seeded and populated. We report in Table 1, mean parameter values with the median absolute deviation for 8 clusters obtained at q1=1.78σ. In addition to reporting the statistics of obtained clusters, we have also reported the outlier group of NEOs in the row indexed by 0. Among the reported clusters, cluster 1 (C1) corresponds to the background population of NEOs as their statistics are comparable to those of all hitherto discovered NEOs. C2 represents NEOs with relatively moderate inclination. C3, despite having relatively small number of NEOs, is constrained by well-behaved low-inclined, quasi-circular Earth-like orbits owing to their very low median absolute deviations. The very low mean H implies that these NEOs are relatively smaller with a distribution peak in the range of 5-15 meters of diameter. C5, C6 and C7 are of particular interest, for they could be associated with Jupiter-family cometary nuclei (2 < TJ < 3) as per their mean TJ. As such, the objects in these three clusters could potentially be extinct cometary nuclei. These clusters also have relatively higher eccentricities, akin to cometary orbits. We have checked available taxonomic classifications of NEOs [11,12,13] in the literature to get an insight into the composition of the objects. Although taxonomic classifications are not available for the majority of members in the clusters, we find that (i) C5 contains 3 C-types, 2 D-types and 0 S-types (ii) C6 contains 3 D-types and 4 S-types (iii) C7 contains 2 B-types, 3 C-types, 2 D-types and 1 S-type. Therefore we argue that C5 and C7 can be associated to primitive carbonaceous compositions while C6 can be associated to both carbonaceous and silicate-dominated compositions. To get more insights about the obtained G-mode clusters and further test these results, we applied a dynamic model to find their potential escape regions in the main belt [14]. This dynamical model, the Granvik model hereafter, traces with scrutiny the escape paths of objects from the main-belt to near-Earth space and the model accounts for the Yarkovsky effect [15]. Given the orbital elements and absolute magnitude of an NEO, it resolves a probability distribution function, built up of seven discrete values for seven escape regions. The results obtained with the Granvik model are shown in Fig. 1 for the clusters obtained for the G-mode run at q1=1.78σ in A1. Fig. 1. Probability distributions for the G-mode clusters obtained at 1.78σ for A1 to emanate from any of the seven escape regions. These results imply that most of the clusters have higher probability to emanate via ν6 secular resonance, known to be the most dominant escape path from the main-belt to the near-Earth space [16]. We observe that C5 and C7 have significant probabilities to emanate from outer-belt sources such as 2:1 mean motion resonance of Jupiter and JFCs. Thus, our dynamic modelling reinforces and corroborates existing results, pointing towards a primitive origin for the NEOs in these two clusters. Similiary, we will present the results of A2 and discuss their implications. Acknowledgements: We acknowledge the financial support from Agenzia Spaziale Italiana (ASI, contract No. 2017-37-H.0 CUP F82F17000630005) and funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 870403. References: [1] Marty, B., Guillaume, A. et al. 2016, Earth and Planetary Science Letters, Volume 441,Pages 91-102 [2] Altwegg, K, Balsiger, H, Bar-Nun, A. et al. 2015, Science, Vol. 347,6220,1261952 [3] Ehrenfreund, P. & Sephton 2006, Faraday Discuss., The Royal Society of Chemistry,133,277-288 [4]Perna, D., Barucci M.A., Fulchignoni M. 2013, Astronomy and Astrophysics Review,Vol.21,65 [5] Barucci, M.A., Capria, M.T., Coradini, A. et al. 1987,Icarus,72,304 [6] Gavrishin, A.I., et al. 1992, Earth, Moon and Planets,59,141-152 [7] Barucci, M.A., Belskaya, I., Fulchignoni, M. et al. 2005,AJ130,1291 [8] Bus, S.J., & Binzel, R.P. 2002, Icarus,158,146 [9] DeMeo, F.E., Binzel, R. P., Slivan, S.M. & Bus, S. J. 2009,Icarus,202,160-180 [10] DeMeo, F.E., Alexander, C.M.O., Walsh, K.J.et al. 2015, Asteroids IV,13-41 [11] Perna, D., Barucci,M.A. et al. 2018, Planetary and Space Science,157,82-95 [12] Devogèle, M., Moskovitz, N. et al. 2019, The Astronomical Journal, American Astronomical Society,158,196 [13] Ieva, S., Dotto, E. et al. 2020,A&A,644,A23 [14] Granvik, M., Morbidelli, A., Jedicke, R., et al. 2018,Icarus,312,181 [15] Vokrouhlický, D., Bottke, W. F., Chesley, S.R., Scheeres, D.J., & Statler, T.S. 2015, in Asteroids IV,509–531 [16] Bottke, W.F., Morbidelli,A., Jedicke,R., et al. 2002,Icarus,156,399
- Published
- 2022
6. Clustering the properties of near-Earth objects: physico-dynamical links among NEOs
- Author
-
Jasinghege Don Prasanna Deshapriya, Davide Perna, Nicolas Bott, Pedro Henrique Hasselmann, Mikael Granvik, Elisabetta Dotto, Marcello Fulchignoni, Alessio Giunta, Ettore Perozzi, Simone Ieva, Vasiliki Petropoulou, and Elena Mazzotta Epifani
- Subjects
Space and Planetary Science ,Astronomy and Astrophysics - Abstract
Context. At present, near-Earth objects (NEOs) are being discovered at an ever-increasing rate. However, their physical characterisation is still significantly lagging behind. In particular, the taxonomic classification of newly discovered NEOs is of great importance with regard to improving our understanding of the population of NEOs. Aims. In this context, our goal is to probe potential links between orbital properties of NEOs and their composition. We investigate whether we can make a reasonable guess about the taxonomic class of an NEO upon its discovery with a decent orbital accuracy. Methods. We used a G-mode multivariate statistical clustering method to find homogeneous clusters in a dataset composed of orbital elements of NEOs. We adopted two approaches, using two sets of variables as inputs to the G-mode method. In each approach, we analysed the available taxonomic distribution of resulting clusters to find potential correlations with several unique parameters that distinctively characterise NEOs. We then applied a dynamical model on the same clusters to trace their escape regions. Results. Approach 1 (A1) led us to obtain NEO clusters that can be linked to a primitive composition. This result was further strengthened by the dynamical model, which mapped outer-belt sources as escape regions for these clusters. We remark on the finding of a cluster akin to S-type NEOs in highly eccentric orbits during the same approach (A1). Two clusters, one with small NEOs in terrestriallike orbits and one with relatively high inclinations, were found to be common to both approaches. Approach 2 (A2) revealed three clusters that are only separable by their arguments of perihelion. Taken altogether, they make up the majority of known Atira asteroids. Conclusions. For an NEO whose orbit is relatively well determined, we propose a model to determine whether the taxonomy of an NEO is siliceous or primitive if the orbital elements of the NEO fall within the presented combinations of inclination, eccentricity, and semi-major axis ranges.
- Published
- 2023
7. Multivariate statistical analysis of high spatial resolution spectra of asteroid (162173) Ryugu obtained by the Hayabusa2 spacecraft
- Author
-
Nicolas Bott, Davide Perna, J. D. Prasanna Deshapriya, Pedro H. Hasselmann, M. Antonietta Barucci, Deborah L. Domingue, Elisabetta Dotto, Kohei Kitazato, Moe Matsuoka, Ernesto Palomba, Tomohiro Usui, and Marcello Fulchignoni
- Abstract
1. Introduction The JAXA Hayabusa2 mission probed the surface of the C-type asteroid (162173) Ryugu both with two touchdown operations to collect samples and return them to Earth, and with remote sensing instruments to characterize it at global scale. Among the payload of the spacecraft, the Near InfraRed Spectrometer (NIRS3) [1] is a point-spectrometer which acquired spectra in the 1.8-3.2 µm range of the asteroid surface to analyse its composition and detect possible heterogeneities. The surface of Ryugu has been shown to be uniformly dark (reflectance factor of 0.017 at 2.0 µm), slightly red-sloped and hydrated due to the presence of a weak, narrow absorption band at 2.72 µm attributed to Mg-phyllosilicates [2]. However, recent studies [3,4] using independent methods of analyses identified minor heterogeneities in the composition on Ryugu. 2. Data and methods Here we continue and expand such studies by selecting NIRS3 datasets that complement the investigated regions of the surface of Ryugu and/or improve the used spatial resolution. The dates corresponding to the datasets retained are the following (sorted by chronological order): July 19th 2018, October 30th 2018, February 28th 2019, July 25th 2019, July 26th 2019, July 27th 2019, October 8th 2019 and October 24th 2019. The coverage of each dataset on Ryugu is displayed in Figure 1. The data used for the analyses have been thermally corrected [2] and photometrically corrected [5]. The selected datasets are analysed using the G-mode multivariate statistical approach, using the same technique as in [3]. From a sample of N objects, each expressed by M variables, the code classifies each object in an homogeneous group with no other intervention from the user than the choice of the confidence level (labeled q and expressed in term of σ). The errors on each variable are taken into account in the classification. Further details on the method are available in [3,6]. 3. Preliminary results Preliminary results are shown from the analysis of the October 24th 2019 dataset only, which has the highest spatial resolution among the datasets we selected (7.66-9.67 m/footprint) and which covers the majority (~10°-~80°N) of the Northern hemisphere of Ryugu. Applying the G-mode with a confidence level of 2σ, and only on twenty-four selected wavelengths representative of the asteroid spectral properties, as in [3], we obtain four spectral groups. The mean spectra of each cluster are shown in Figure 2. The distribution of the four groups at the surface of Ryugu is presented in Figure 3. Group #1 contains almost 85% of the spectra, thus corresponding to the average spectral properties of Ryugu. Groups #2 to #4 can be attributed to the compositional heterogeneities. The mean spectra (Figure 2) are mainly separated according to their spectral slope between 2.05 and 2.61 µm. Groups #2 and #4 are the reddest (highest spectral slope), while group #3 is bluer (lower slope) than group #1. We also noted a slight variation for the 2.72 µm absorption band by computing its depth, groups #2 and #4 having the strongest band and group #3 the weakest. The distribution of the four groups on Ryugu (Figure 3) highlights interesting trends. Groups #2 and #4 seem to be concentrated around large craters (e.g. Cendrillon) and large depressions, such as the one located between 230° and 300° in longitude. On the contrary, group #3 appears inside this depression and in the region gathering large boulders between 200° and 230° in longitude. 4. Conclusion and perspectives We continue and expand previous clustering analyses of NIRS3 data by applying the G-mode algorithm to new datasets, which improve the spatial resolution and/or surface coverage of Ryugu. The preliminary results obtained for the Northern hemisphere of Ryugu are in overall good agreement with the previous findings for the equatorial region [3], confirming the presence of small heterogeneities on the surface. Moreover, they suggest that the material surrounding craters and depressions could present a redder spectral behaviour and a deeper band at 2.7 µm. The G-mode will be applied to all of the selected datasets (Figure 1). Selected regions of interest will also be investigated, notably the second Hayabusa2 touch-down region on which was dropped the Small Carry-on Impactor (SCI) to collect fresh material under the weathered surface [7], by analysing and comparing spectra of the area before and after the impact. Acknowledgements We thank the Haybusa2 JAXA team for their efforts in making the mission successful. Hayabusa2 was developed and built under the leadership of JAXA, with contributions from the DLR and the CNES, and in collaboration with NASA, Nagoya University, University of Tokyo, National Astronomical Observatory of Japan, Aizu University, Kobe University, and other universities, institutes, and companies in Japan. We would also wish to thank all the engineers who contributed to the success of the Hayabusa2 mission, especially T. Masuda, S. Yasuda, K. Matsushima, and T. Ohshima. We acknowledge financial support from ASI contract No. 2018-27-HH.0 “Partecipazione alla fase E della Missione Hayabusa2”. We also acknowledge funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 870403. ED and JDPD thanks the financial support of the Agenzia Spaziale Italiana (ASI, contract No. 2017-37-H.0 CUP F82F17000630005). MA Barucci and M Fulchignoni acknowledge financial support by CNES. References [1] Iwata, T, et al.: NIRS3: The Near Infrared Spectrometer on Hayabusa2, Space Sci. Rev., 208, 317-337, 2017.[2] Kitazato, K, et al.: The surface composition of asteroid 162173 Ryugu from Hayabusa2 near-infrared spectroscopy, Science, 364, 272-275, 2019.[3] Barucci, M. A., et al.: Multivariable statistical analysis of spectrophotometry and spectra of (162173) Ryugu as observed by JAXA Hayabusa2 mission, A&A, 629, 2019.[4] Matsuoka, M, et al.: Clustering analysis of NIRS3 infrared spectral data of Ryugu, 51st LPSC, LPI Contribution No. 2326, 2020.[5] Matsuoka, M, et al. (in preparation)[6] Gavrishin, A. I., et al.: Multivariate classification methods in planetary sciences, Earth, Moon and Planets, 59, 141-152, 1992.[7] Arakawa, M, et al.: An artificial impact on the asteroid (162173) Ryugu formed a crater in the gravity-dominated regime, Science, 368, 67-71, 2020.
- Published
- 2021
8. Méthodes d’étude du Système solaire
- Author
-
Therese Encrenaz, Marcello Fulchignoni, Laurent Lamy, James Lequeux, and Francoise Roques
- Abstract
Ce chapitre passe en revue les différentes techniques observationnelles utilisées en planétologie (sondage à distance et instrumentation spatiale in situ à toutes les longueurs d’onde), ainsi que l’Observatoire virtuel et les bases de données. Il présente ensuite les perspectives d’observation au sol et dans l’espace et conclut sur l’apport des simulations numériques.
- Published
- 2021
9. Comètes, astéroïdes et planètes naines
- Author
-
Jacques CROVISIER and Marcello FULCHIGNONI
- Abstract
Cette étude commence par une étude des comètes (définition, orbite, exploration spatiale, propriétés du noyau, de l’atmosphère et des poussières, interaction avec le vent solaire). Puis elle présente les astéroïdes « historiques » et les astéroïdes « nouveaux » (Centaures et objets transneptuniens). Elle se termine par une description des planètes naines actuellement répertoriées (Cérès, Pluton, Eris, Hauméa et Makemake).
- Published
- 2021
10. Les planètes telluriques
- Author
-
Thérèse ENCRENAZ, Marcello FULCHIGNONI, and Laurent LAMY
- Abstract
Après une introduction historique, cette étude décrit les objets dénués d’atmosphère, Mercure et la Lune (paramètres orbitaux, exosphère, structure interne, surface, origine et, dans le cas de Mercure, magnétosphère). Puis elle présente une étude globale des trois planètes telluriques dotées d’une atmosphère (Vénus, la Terre et Mars) en traitant successivement l’intérieur, la surface, l’atmosphère et, dans le cas de Mars, les satellites.
- Published
- 2021
11. Satellites et anneaux des planètes géantes
- Author
-
Françoise Roques, Athena Coustenis, Marcello Fulchignoni, Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] - Abstract
International audience; Ce chapitre présente successivement les satellites des quatre planètes géantes (Jupiter, Saturne, Uranus et Neptune) en insistant particulièrement sur les lunes potentiellement intéressantes pour l’exobiologie (Europe, Ganymède, Callisto, Titan et Encelade). Il décrit ensuite les anneaux des planètes géantes, puis des petits corps (Chariklo, Haumea) en analysant leurs mécanismes de formation et de destruction.
- Published
- 2021
12. SIMBIO-SYS: Scientific Cameras and Spectrometer for the BepiColombo Mission
- Author
-
Marilena Amoroso, Francesca Esposito, Giancarlo Bellucci, Y. Langevin, Marco Baroni, Océane Barraud, Francesca Altieri, Giacomo Colombatti, Michael Mendillo, M. I. Blecka, M. T. Capria, Romolo Politi, Ernesto Palomba, Pasquale Palumbo, Olivier Forni, Gianfranco Forlani, E. Flamini, Francesca Ferri, P. Borin, Lionel Wilson, Andrea Cicchetti, Vito Mennella, Carlo Bettanini, Riccardo Paolinetti, Alice Lucchetti, Davide Perna, Nicolas Thomas, Marcello Fulchignoni, V. Della Corte, Maria Sgavetti, Daniela Fantinel, M. El yazidi, A. Doressoundiram, Luigi Ferranti, Simone Marchi, John Robert Brucato, T. Van Hoolst, Cedric Leyrat, Sebastien Besse, Stéphane Erard, Elena Martellato, Y. Li, Diego Turrini, Francesco Marzari, W-H. Ip, Maurizio Pajola, Cristian Carli, Raffaella Noschese, Matteo Massironi, Sabrina Ferrari, Alessio Aboudan, Giuseppe Salemi, I. Ficai Veltroni, Lorenza Giacomini, Karri Muinonen, Emanuele Simioni, Jessica Flahaut, Priscilla Cerroni, Mathieu Vincendon, V. Da Deppo, Alessandra Slemer, L. M. Lara, M. C. De Sanctis, Raffaele Mugnuolo, M. Dami, Francesca Zambon, G. Piccioni, L. Guzzetta, Fabrizio Capaccioni, Giampiero Naletto, E. Mazzotta Epifani, G. Aroldi, Andrea Turella, Michele Zusi, Maurizio Rossi, Stefano Debei, Gabriele Cremonese, A. Barucci, Johannes Benkhoff, Gloria Tognon, Cristina Re, François Poulet, Donato Borrelli, Sonia Fornasier, Valentina Galluzzi, Gianrico Filacchione, Leonardo Tommasi, François Leblanc, Laurent Jorda, Lucia Marinangeli, Roberto Ragazzoni, V. Carlier, Alessandra Rotundi, N. Bott, Luigi Colangeli, Klaus Gwinner, Cremonese, G., Capaccioni, F., Capria, M. T., Doressoundiram, A., Palumbo, P., Vincendon, M., Massironi, M., Debei, S., Zusi, M., Altieri, F., Amoroso, M., Aroldi, G., Baroni, M., Barucci, A., Bellucci, G., Benkhoff, J., Besse, S., Bettanini, C., Blecka, M., Borrelli, D., Brucato, J. R., Carli, C., Carlier, V., Cerroni, P., Cicchetti, A., Colangeli, L., Dami, M., Da Deppo, V., Della Corte, V., De Sanctis, M. C., Erard, S., Esposito, F., Fantinel, D., Ferranti, L., Ferri, F., Ficaiveltroni, I., Filacchione, G., Flamini, E., Forlani, G., Fornasier, S., Forni, O., Fulchignoni, M., Galluzzi, V., Gwinner, K., Ip, W., Jorda, L., Langevin, Y., Lara, L., Leblanc, F., Leyrat, C., Li, Y., Marchi, S., Marinangeli, L., Marzari, F., Mazzottaepifani, E., Mendillo, M., Mennella, V., Mugnuolo, R., Muinonen, K., Naletto, G., Noschese, R., Palomba, E., Paolinetti, R., Perna, D., Piccioni, G., Politi, R., Poulet, F., Ragazzoni, R., Re, C., Rossi, M., Rotundi, A., Salemi, G., Sgavetti, M., Simioni, E., Thomas, N., Tommasi, L., Turella, A., Van Hoolst, T., Wilson, L., Zambon, F., Aboudan, A., Barraud, O., Bott, N., Borin, P., Colombatti, G., Elyazidi, M., Ferrari, S., Flahaut, J., Giacomini, L., Guzzetta, L., Lucchetti, A., Martellato, E., Pajola, M., Slemer, A., Tognon, G., Turrini, D., INAF - Osservatorio Astronomico di Padova (OAPD), Istituto Nazionale di Astrofisica (INAF), Istituto di Astrofisica e Planetologia Spaziali - INAF (IAPS), Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Dipartimento di Fisica 'Ettore Pancini', University of Naples Federico II = Università degli studi di Napoli Federico II, Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Dipartimento di Geoscienze [Padova], Università degli Studi di Padova = University of Padua (Unipd), Centro di Ateneo di Studi e Attività Spaziali 'Giuseppe Colombo' (CISAS), Agenzia Spaziale Italiana (ASI), Leonardo SpA, European Space Research and Technology Centre (ESTEC), Agence Spatiale Européenne = European Space Agency (ESA), European Space Astronomy Centre (ESAC), Space Research Centre of Polish Academy of Sciences (CBK), Polska Akademia Nauk = Polish Academy of Sciences (PAN), INAF - Osservatorio Astrofisico di Arcetri (OAA), Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), CNR Institute for Photonics and Nanotechnologies (IFN), National Research Council of Italy | Consiglio Nazionale delle Ricerche (CNR), INAF - Osservatorio Astronomico di Capodimonte (OAC), Università degli studi 'G. d'Annunzio' Chieti-Pescara [Chieti-Pescara] (Ud'A), Department og Engineering and Architecture [Parma] (DIA), Università degli studi di Parma = University of Parma (UNIPR), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), DLR Institute of Planetary Research, German Aerospace Center (DLR), DLR Institut für Planetenforschung, Deutsches Zentrum für Luft- und Raumfahrt [Berlin] (DLR), Institute of Space Science [Taiwan], National Central University [Taiwan] (NCU), Laboratoire d'Astrophysique de Marseille (LAM), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Instituto de Astrofísica de Andalucía (IAA), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), HELIOS - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Suzhou Vocational University, Southwest Research Institute [Boulder] (SwRI), International Research School of Planetary Sciences [Pescara] (IRSPS), Dipartimento di Fisica e Astronomia 'Galileo Galilei', INAF - Osservatorio Astronomico di Roma (OAR), Center for Space Physics [Boston] (CSP), Boston University [Boston] (BU), Department of Physics [Helsinki], Falculty of Science [Helsinki], Helsingin yliopisto = Helsingfors universitet = University of Helsinki-Helsingin yliopisto = Helsingfors universitet = University of Helsinki, Finnish Geospatial Research Institute (FGI), Università degli Studi di Napoli 'Parthenope' = University of Naples (PARTHENOPE), Department of Cultural Heritage [Padova], Dipartimento di Scienze della Terra [Parma], Physikalisches Institut [Bern], Universität Bern [Bern] (UNIBE), Royal Observatory of Belgium [Brussels] (ROB), Environmental Sciences [Lancaster], Lancaster University, Centre de Recherches Pétrographiques et Géochimiques (CRPG), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), CNR Istituto di Fotonica e Nanotecnologie [Padova] (IFN), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Università degli studi di Napoli Federico II, Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Universita degli Studi di Padova, European Space Agency (ESA), Consiglio Nazionale delle Ricerche [Roma] (CNR), University of Parma = Università degli studi di Parma [Parme, Italie], Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), University of Helsinki-University of Helsinki, Universita degli studi di Napoli 'Parthenope' [Napoli], Universität Bern [Bern], and Agenzia Spaziale Italiana
- Subjects
010504 meteorology & atmospheric sciences ,Computer science ,BepiColombo ,MPO ,Astronomy & Astrophysics ,INFRARED REFLECTANCE SPECTRA ,01 natural sciences ,7. Clean energy ,Spectrometer ,MECHANISMS ,law.invention ,Orbiter ,EXPLOSIVE VOLCANISM ,law ,0103 physical sciences ,instrument ,Spectral resolution ,010303 astronomy & astrophysics ,Image resolution ,BASIN ,0105 earth and related environmental sciences ,Remote sensing ,SIMBIO-SYS ,ONBOARD ,Science & Technology ,SPECTROSCOPY ,GRAVITY-FIELD ,520 Astronomy ,Hyperspectral imaging ,MERCURYS SURFACE ,Astronomy and Astrophysics ,Spectral bands ,Mercury ,620 Engineering ,HOLLOWS ,Imageur ,Stereo imaging ,13. Climate action ,Space and Planetary Science ,[SDU]Sciences of the Universe [physics] ,Physical Sciences ,MESSENGER ,Stereo camera - Abstract
Full list of authors: Cremonese, G.; Capaccioni, F.; Capria, M. T.; Doressoundiram, A.; Palumbo, P.; Vincendon, M.; Massironi, M.; Debei, S.; Zusi, M.; Altieri, F.; Amoroso, M.; Aroldi, G.; Baroni, M.; Barucci, A.; Bellucci, G.; Benkhoff, J.; Besse, S.; Bettanini, C.; Blecka, M.; Borrelli, D.; Brucato, J. R.; Carli, C.; Carlier, V.; Cerroni, P.; Cicchetti, A.; Colangeli, L.; Dami, M.; Da Deppo, V.; Della Corte, V.; De Sanctis, M. C.; Erard, S.; Esposito, F.; Fantinel, D.; Ferranti, L.; Ferri, F.; Ficai Veltroni, I.; Filacchione, G.; Flamini, E.; Forlani, G.; Fornasier, S.; Forni, O.; Fulchignoni, M.; Galluzzi, V.; Gwinner, K.; Ip, W.; Jorda, L.; Langevin, Y.; Lara, L.; Leblanc, F.; Leyrat, C.; Li, Y.; Marchi, S.; Marinangeli, L.; Marzari, F.; Mazzotta Epifani, E.; Mendillo, M.; Mennella, V.; Mugnuolo, R.; Muinonen, K.; Naletto, G.; Noschese, R.; Palomba, E.; Paolinetti, R.; Perna, D.; Piccioni, G.; Politi, R.; Poulet, F.; Ragazzoni, R.; Re, C.; Rossi, M.; Rotundi, A.; Salemi, G.; Sgavetti, M.; Simioni, E.; Thomas, N.; Tommasi, L.; Turella, A.; Van Hoolst, T.; Wilson, L.; Zambon, F.; Aboudan, A.; Barraud, O.; Bott, N.; Borin, P.; Colombatti, G.; El Yazidi, M.; Ferrari, S.; Flahaut, J.; Giacomini, L.; Guzzetta, L.; Lucchetti, A.; Martellato, E.; Pajola, M.; Slemer, A.; Tognon, G.; Turrini, D. -- This is an open access article, The SIMBIO-SYS (Spectrometer and Imaging for MPO BepiColombo Integrated Observatory SYStem) is a complex instrument suite part of the scientific payload of the Mercury Planetary Orbiter for the BepiColombo mission, the last of the cornerstone missions of the European Space Agency (ESA) Horizon + science program. The SIMBIO-SYS instrument will provide all the science imaging capability of the BepiColombo MPO spacecraft. It consists of three channels: the STereo imaging Channel (STC), with a broad spectral band in the 400-950 nm range and medium spatial resolution (at best 58 m/px), that will provide Digital Terrain Model of the entire surface of the planet with an accuracy better than 80 m; the High Resolution Imaging Channel (HRIC), with broad spectral bands in the 400-900 nm range and high spatial resolution (at best 6 m/px), that will provide high-resolution images of about 20% of the surface, and the Visible and near-Infrared Hyperspectral Imaging channel (VIHI), with high spectral resolution (6 nm at finest) in the 400-2000 nm range and spatial resolution reaching 120 m/px, it will provide global coverage at 480 m/px with the spectral information, assuming the first orbit around Mercury with periherm at 480 km from the surface. SIMBIO-SYS will provide high-resolution images, the Digital Terrain Model of the entire surface, and the surface composition using a wide spectral range, as for instance detecting sulphides or material derived by sulphur and carbon oxidation, at resolutions and coverage higher than the MESSENGER mission with a full co-alignment of the three channels. All the data that will be acquired will allow to cover a wide range of scientific objectives, from the surface processes and cartography up to the internal structure, contributing to the libration experiment, and the surface-exosphere interaction. The global 3D and spectral mapping will allow to study the morphology and the composition of any surface feature. In this work, we describe the on-ground calibrations and the results obtained, providing an important overview of the instrument performances. The calibrations have been performed at channel and at system levels, utilizing specific setup in most of the cases realized for SIMBIO-SYS. In the case of the stereo camera (STC), it has been necessary to have a validation of the new stereo concept adopted, based on the push-frame. This work describes also the results of the Near-Earth Commissioning Phase performed few weeks after the Launch (20 October 2018). According to the calibration results and the first commissioning the three channels are working very well. © 2020, The Author(s)., We gratefully acknowledge funding from the Italian Space Agency (ASI) under ASI-INAF agreement 2017-47-H.0. The SIMBIO-SYS instrument has been developed by Leonardo under ASI contract I/054/10/0.
- Published
- 2020
13. Seasonal exposure of carbon dioxide ice on the nucleus of comet 67P/Churyumov-Gerasimenko
- Author
-
Luigi Colangeli, Vito Mennella, Federico Tosi, M. Combes, D. Despan, Patrick G. J. Irwin, Andrea Cicchetti, Lydie Bonal, Bernard Schmitt, Nicolas Biver, M. Cartacci, Florence Henry, Th. Encrenaz, Romolo Politi, Michelangelo Formisano, M. A. Barucci, David Kappel, Eric Quirico, Mauro Ciarniello, Roberto Orosei, Ralf Jaumann, Andrea Longobardo, Katrin Stephan, E. Kuehrt, Fabrizio Capaccioni, Yves Langevin, Wing-Huen Ip, Gianrico Filacchione, Michael R. Combi, Gabriele Arnold, Ernesto Palomba, Giovanna Rinaldi, D. Tiphene, Y. Hello, Robert W. Carlson, Ulrich Schade, Gianfranco Magni, Alessandra Migliorini, G. P. Tozzi, Sonia Fornasier, J. Crovisier, Andrea Raponi, Pierre Beck, U. Fink, Pierre Drossart, Stefano Mottola, Enrico Flamini, M. C. De Sanctis, D. Bockelee-Morvan, Marcello Fulchignoni, Kathrin Markus, Giancarlo Bellucci, M. T. Capria, G. Peter, Davide Grassi, F. Merlin, Sergio Fonti, Costanzo Federico, Eleonora Ammannito, M. I. Blecka, Armando Blanco, Raffaella Noschese, Jean-Michel Reess, T. B. McCord, Alessandro Frigeri, C. Leyrat, Giuseppe Piccioni, Priscilla Cerroni, U. Carsenty, F. Mancarella, L. Moroz, Fredric W. Taylor, Jean-Pierre Bibring, Stéphane Erard, Johannes Benkhoff, S. Jacquinod, J. Ph. Combe, M. S. Gudipati, Istituto di Astrofisica e Planetologia Spaziali - INAF (IAPS), Istituto Nazionale di Astrofisica (INAF), Istituto di Astrofisica Spaziale e Fisica cosmica - Roma (IASF-Roma), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Istituto di Fisica dello Spazio Interplanetario (IFSI), National Research Council of Italy | Consiglio Nazionale delle Ricerche (CNR), European Space Research and Technology Centre (ESTEC), Agence Spatiale Européenne = European Space Agency (ESA), Polska Akademia Nauk = Polish Academy of Sciences (PAN), German Aerospace Center (DLR), INAF - Osservatorio Astronomico di Capodimonte (OAC), Department of Physics [Imperial College London], Imperial College London, Instituto de Estudos Avançados (IEAV), Institut, Lunar and Planetary Laboratory [Tucson] (LPL), University of Arizona, Dipartimento di Fisica, Università degli studi di Lecce, Institute of Space Science [Taiwan], National Central University [Taiwan] (NCU), Department of Physics [Oxford], University of Oxford, Max-Planck-Institut für Sonnensystemforschung = Max Planck Institute for Solar System Research (MPS), Max-Planck-Gesellschaft, Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Department of Earth and Space Sciences [Seattle], University of Washington [Seattle], INAF - Osservatorio Astrofisico di Arcetri (OAA), Laboratoire de Sciences de la Terre, Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Alenia Aerospazio, Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), DLR Institut für Planetenforschung, Deutsches Zentrum für Luft- und Raumfahrt [Berlin] (DLR), Department of Physics [Lecce], Università del Salento [Lecce], JDS Uniphase/Cronos, USA, JDS Uniphase/Cronos, IASI (IASI), Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Consiglio Nazionale delle Ricerche (CNR), European Space Agency (ESA), University of Oxford [Oxford], Max-Planck-Institut für Sonnensystemforschung (MPS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), ITA, USA, GBR, FRA, DEU, TWN, and NLD
- Subjects
[PHYS]Physics [physics] ,Multidisciplinary ,010504 meteorology & atmospheric sciences ,Infrared ,Atmospheric sciences ,01 natural sciences ,Astrobiology ,chemistry.chemical_compound ,medicine.anatomical_structure ,chemistry ,13. Climate action ,Comet nucleus ,Rosetta ,0103 physical sciences ,Carbon dioxide ,medicine ,Environmental science ,Surface layer ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,010303 astronomy & astrophysics ,Nucleus ,Volatility (chemistry) ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences - Abstract
Rosetta observes sublimating surface icesComets are “dirty snowballs” made of ice and dust, but they are dark because the ice sublimates away, leaving some of the dust behind on the surface. The Rosetta spacecraft has provided a close-up view of the comet 67P/Churyumov-Gerasimenko as it passes through its closest point to the Sun (see the Perspective by Dello Russo). Filacchioneet al.detected the spectral signature of solid CO2(dry ice) in small patches on the surface of the nucleus as they emerged from local winter. By modeling how the CO2sublimates, they constrain the composition of comets and how ices generate the gaseous coma and tail. Fornasieret al.studied images of the comet and discovered bright patches on the surface where ice was exposed, which disappeared as the ice sublimated. They also saw frost emerging from receding shadows. The surface of the comet was noticeably less red just after local dawn, indicating that icy material is removed by sunlight during the local day.Science, this issue p.1563, p.1566; see also p.1536
- Published
- 2016
14. Basaltic material in the main belt: a tale of two (or more) parent bodies?
- Author
-
Marcello Fulchignoni, Simone Ieva, Hissa Medeiros, Daniela Lazzaro, E. Dotto, D. Perna, Daniele Fulvio, E. Mazzotta Epifani, Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), and PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Basalt ,Orbital elements ,Physics ,Earth and Planetary Astrophysics (astro-ph.EP) ,[PHYS]Physics [physics] ,Solar System ,010504 meteorology & atmospheric sciences ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics ,01 natural sciences ,Jupiter ,Mean motion ,Space and Planetary Science ,Asteroid ,0103 physical sciences ,Visible range ,Statistical analysis ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,010303 astronomy & astrophysics ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,Astrophysics - Earth and Planetary Astrophysics - Abstract
The majority of basaltic objects in the main belt are dynamically connected to Vesta, the largest differentiated asteroid known. Others, due to their current orbital parameters, cannot be easily dynamically linked to Vesta. This is particularly true for all the basaltic asteroids located beyond 2.5 au, where lies the 3:1 mean motion resonance with Jupiter. In order to investigate the presence of other V-type asteroids in the middle and outer main belt (MOVs) we started an observational campaign to spectroscopically characterize in the visible range MOV candidates. We observed 18 basaltic candidates from TNG and ESO - NTT between 2015 and 2016. We derived spectral parameters using the same approach adopted in our recent statistical analysis and we compared our data with orbital parameters to look for possible clusters of MOVs in the main belt, symptomatic for a new basaltic family. Our analysis seemed to point out that MOVs show different spectral parameters respect to other basaltic bodies in the main belt, which could account for a diverse mineralogy than Vesta; moreover, some of them belong to the Eos family, suggesting the possibility of another basaltic progenitor. This could have strong repercussions on the temperature gradient present in the early Solar System, and on our current understanding of differentiation processes., 15 pages, 4 figures, accepted for pubblication to MNRAS
- Published
- 2018
15. Olivine-rich asteroids in the near-Earth space
- Author
-
F. Merlin, C. Lantz, D. Perna, Alain Doressoundiram, M. A. Barucci, Marcel Popescu, Sonia Fornasier, Irina Belskaya, Marcello Fulchignoni, Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institute of Astronomy [Kharkiv], V.N. Karazin Kharkiv National University (KhNU), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
010504 meteorology & atmospheric sciences ,Population ,FOS: Physical sciences ,Astrophysics ,engineering.material ,01 natural sciences ,Spectral line ,Mantle (geology) ,law.invention ,Telescope ,law ,0103 physical sciences ,education ,010303 astronomy & astrophysics ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,Earth and Planetary Astrophysics (astro-ph.EP) ,[PHYS]Physics [physics] ,Physics ,Basalt ,education.field_of_study ,Olivine ,Astronomy and Astrophysics ,Space and Planetary Science ,Asteroid ,Near earth space ,engineering ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Astrophysics - Earth and Planetary Astrophysics - Abstract
In the framework of a 30-night spectroscopic survey of small near-Earth asteroids (NEAs) we present new results regarding the identification of olivine-rich objects. The following NEAs were classified as A-type using visible spectra obtained with 3.6 m NTT telescope: (293726) 2007 RQ17, (444584) 2006 UK, 2012 NP, 2014 YS34, 2015 HB117, 2015 LH, 2015 TB179, 2015 TW144. We determined a relative abundance of $5.4\% $ (8 out of 147 observed targets) A-types at hundred meter size range of NEAs population. The ratio is at least five times larger compared with the previously known A-types, which represent less than $\sim1\%$ of NEAs taxonomically classified. By taking into account that part of our targets may not be confirmed as olivine-rich asteroids by their near-infrared spectra, or they can have a nebular origin, our result provides an upper-limit estimation of mantle fragments at size ranges bellow 300m. Our findings are compared with the "battered-to-bits" scenario, claiming that at small sizes the olivine-rich objects should be more abundant when compared with basaltic and iron ones., 10 pages, 4 figures, accepted for publication
- Published
- 2018
16. Small D-type asteroids in the NEO population: new targets for space missions
- Author
-
S. Kanuchova, Sonia Fornasier, C. Lantz, Marcel Popescu, D. Perna, Alain Doressoundiram, F. Merlin, Marcello Fulchignoni, E. Dotto, M. A. Barucci, Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut de Mécanique Céleste et de Calcul des Ephémérides (IMCCE), Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Observatoire de Paris - Site de Meudon (OBSPM), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), INAF - Osservatorio Astronomico di Roma (OAR), Istituto Nazionale di Astrofisica (INAF), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Astronomical Institute of the Slovak Academy of Sciences, Slovak Academy of Science [Bratislava] (SAS), PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), PSL Research University (PSL)-PSL Research University (PSL)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), and PSL Research University (PSL)-PSL Research University (PSL)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,[PHYS]Physics [physics] ,education.field_of_study ,010504 meteorology & atmospheric sciences ,Population ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,Astronomy and Astrophysics ,Type (model theory) ,01 natural sciences ,Space exploration ,Astrobiology ,Space and Planetary Science ,Asteroid ,0103 physical sciences ,education ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,010303 astronomy & astrophysics ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences - Abstract
International audience; In the framework of the Near Earth Objects (NEOs) observational campaign carried out within the NEOShield-2 project, we identify nine new small D-type asteroids with estimated diameter less than 600 m. The link with meteorites for this class of asteroids is weak and the best fit obtained is with the Tagish Lake meteorite for seven of them. D-type asteroids are believed to contain the most pristine material of the Solar system and could have delivered the pre-biotic material to the Earth. Our results double the known sample of the D-types in the NEO population and triple the candidates of this class for a sample-return mission (at very low ΔV). Our finding increases considerably the number of targets for sample-return mission. A sample-return mission to a D-type asteroid will provide a major progress in understanding the early history of the Solar system and to investigate the origin of life on the Earth.
- Published
- 2018
- Full Text
- View/download PDF
17. A Brief History of Spacecraft Missions to Asteroids and Protoplanets
- Author
-
Linda T. Elkins-Tanton, Beth E. Clark, Andrew S. Rivkin, Makoto Yoshikawa, X. D. Zou, Hal Levison, Marcello Fulchignoni, Carol A. Raymond, and M. A. Barucci
- Subjects
History ,010504 meteorology & atmospheric sciences ,Spacecraft ,business.industry ,NASA Deep Space Network ,01 natural sciences ,Astrobiology ,Chemical evolution ,Meteorite ,Asteroid ,0103 physical sciences ,business ,Protoplanet ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences - Abstract
There are hundreds of thousands of known asteroids, yet only 14 have been visited by spacecraft thus far, and 9 of those were targets of opportunity. The remaining five asteroids (Braille, Eros, Itokawa, Vesta, and Ceres) were visited by four missions dedicated to asteroid research (Deep Space 1, NEAR-Shoemaker, Hayabusa, and Dawn, respectively). In fact, of these five asteroids, Vesta and Ceres are perhaps better defined as protoplanets because of their sizes and the emerging evidence for their physical and chemical evolution. Two more near-Earth asteroids will be visited in 2018, followed by even more visits in 2023 and 2030. This asteroid mission chronology is listed in Table 1.1. This chapter will tell the story of these asteroid missions and visit each of them in turn to briefly review some of the exciting science results. The story begins with asteroid 951 Gaspra and continues down the list in Table 1.1, according to the target asteroid name presented in chronological order.
- Published
- 2018
18. Contributors
- Author
-
Neyda M. Abreu, Conel M.O'D. Alexander, Victor Ali-Lagoa, José C. Aponte, Maria A. Barucci, Pierre Beck, Edward B. Bierhaus, Daniel T. Britt, Humberto Campins, Noel Chaumard, Beth E. Clark, Benton Clark, Edward A. Cloutis, Christopher Dreyer, Jason P. Dworkin, Linda T. Elkins-Tanton, Jamie E. Elsila, Joshua Emery, Marcello Fulchignoni, Leslie Gertsch, Daniel P. Glavin, Christine M. Hartzell, Amanda Hendrix, Charles Hibbitts, Kieren Howard, Matthew R.M. Izawa, Robert Jedicke, Natasha Johnson, Jerome B. Johnson, Anton V. Kulchitsky, Julia de León, Hal Levison, Javier Licandro, Stanley G. Love, Maggie McAdam, Timothy McCoy, Phil Metzger, Tatsuhiro Michikami, Takaaki Noguchi, Joseph A. Nuth, Craig E. Peterson, Carol Raymond, David M. Reeves, Andrew Rivkin, Alan Rubin, Paul Sanchez, Juan A. Sánchez, Daniel J. Scheeres, Joel C. Sercel, Driss Takir, Michael A. Velbel, Otis Walton, Hikaru Yabuta, Makoto Yoshikawa, Kris Zacny, Michael E. Zolensky, and Xiao-Duan Zou
- Published
- 2018
19. Multivariate statistical analysis of OSIRIS/Rosetta spectrophotometric data of comet 67P/Churyumov-Gerasimenko
- Author
-
J. Knollenberg, H. U. Keller, Francesco Marzari, M. De Cecco, M. Hofmann, Sonia Fornasier, Detlef Koschny, Olivier Groussin, Nicolas Thomas, Jean-Loup Bertaux, J. J. Lopez Moreno, D. Perna, M. Küppers, J. D. P. Deshapriya, Cesare Barbieri, Stefano Debei, Marcello Fulchignoni, Jakob Deller, Rafael Rodrigo, Philippe Lamy, Holger Sierks, Wing-Huen Ip, Giampiero Naletto, Laurent Jorda, C. Güttler, M. A. Barucci, Ivano Bertini, Gabriele Cremonese, Marco Fulle, Michael F. A'Hearn, Pedro Hasselmann, L. M. Lara, Monica Lazzarin, Clement Feller, Jean-Baptiste Vincent, E. Kührt, Björn Davidsson, Stubbe F. Hviid, Cecilia Tubiana, R. Kramm, Nilda Oklay, V. Da Deppo, Mohamed Ramy El-Maarry, Hans Rickman, Pedro J. Gutiérrez, National Aeronautics and Space Administration (US), Ministry of Science and Technology (Taiwan), ITA, Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Max-Planck-Institut für Sonnensystemforschung (MPS), Max-Planck-Gesellschaft, Dipartimento di Fisica e Astronomia 'Galileo Galilei', Universita degli Studi di Padova, Laboratoire d'Astrophysique de Marseille (LAM), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Centre National d'Études Spatiales [Toulouse] (CNES), Centro de Astrobiologia [Madrid] (CAB), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC)-Instituto Nacional de Técnica Aeroespacial (INTA), International Space Science Institute [Bern] (ISSI), Research and Scientific Support Department, ESTEC (RSSD), European Space Research and Technology Centre (ESTEC), European Space Agency (ESA)-European Space Agency (ESA), Space Research Centre of Polish Academy of Sciences (CBK), Polska Akademia Nauk = Polish Academy of Sciences (PAN), Department of Physics and Astronomy [Uppsala], Uppsala University, Department of Astronomy [College Park], University of Maryland [College Park], University of Maryland System-University of Maryland System, PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), INAF - Osservatorio Astronomico di Padova (OAPD), Istituto Nazionale di Astrofisica (INAF), CNR Institute for Photonics and Nanotechnologies (IFN), Consiglio Nazionale delle Ricerche [Roma] (CNR), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Department of Industrial Engineering [Padova], University of Trento [Trento], Physikalisches Institut [Bern], Universität Bern [Bern], INAF - Osservatorio Astronomico di Trieste (OAT), Instituto de Astrofísica de Andalucía (IAA), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Institute of Astronomy [Taiwan] (IANCU), National Central University [Taiwan] (NCU), Institut für Geophysik und Extraterrestrische Physik [Braunschweig] (IGEP), Technische Universität Braunschweig = Technical University of Braunschweig [Braunschweig], DLR Institute of Planetary Research, German Aerospace Center (DLR), European Space Astronomy Centre (ESAC), European Space Agency (ESA), Department of Information Engineering [Padova] (DEI), Max-Planck-Institut für Sonnensystemforschung = Max Planck Institute for Solar System Research (MPS), Università degli Studi di Padova = University of Padua (Unipd), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Instituto Nacional de Técnica Aeroespacial (INTA)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Agence Spatiale Européenne = European Space Agency (ESA)-Agence Spatiale Européenne = European Space Agency (ESA), National Research Council of Italy | Consiglio Nazionale delle Ricerche (CNR), Universität Bern [Bern] (UNIBE), Agence Spatiale Européenne = European Space Agency (ESA), and California Institute of Technology (CALTECH)-NASA
- Subjects
Asteroiden und Kometen ,010504 meteorology & atmospheric sciences ,Comet ,Flux ,Astrophysics ,01 natural sciences ,7. Clean energy ,individual: 67P/Churyumov-Gerasimenko [Comets] ,Methods: data analysis ,Comets: individual: 67P/Churyumov-Gerasimenko ,Techniques: photometric ,Rosetta ,0103 physical sciences ,medicine ,OSIRIS ,data analysis [Methods] ,010303 astronomy & astrophysics ,Southern Hemisphere ,0105 earth and related environmental sciences ,Physics ,biology ,[SDU.ASTR.SR]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,photometric [Techniques] ,Northern Hemisphere ,Astronomy ,Astronomy and Astrophysics ,biology.organism_classification ,medicine.anatomical_structure ,13. Climate action ,Space and Planetary Science ,Homogeneous ,Multivariate statistical ,Osiris ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Nucleus - Abstract
Full list of authors: Perna, D.; Fulchignoni, M.; Barucci, M. A.; Fornasier, S.; Feller, C.; Deshapriya, J. D. P.; Hasselmann, P. H.; Sierks, H.; Barbieri, C.; Lamy, P. L.; Rodrigo, R.; Koschny, D.; Rickman, H.; A'Hearn, M.; Bertaux, J. -L.; Bertini, I.; Cremonese, G.; Da Deppo, V.; Davidsson, B.; Debei, S. Deller, J.; De Cecco, M.; El-Maarry, M. R.; Fulle, M.; Groussin, O.; Gutierrez, P. J.; Güttler, C.; Hofmann, M.; Hviid, S. F.; Ip, W. -H.; Jorda, L.; Keller, H. U.; Knollenberg, J.; Kramm, R.; Kührt, E.; Küppers, M.; Lara, L. M.; Lazzarin, M.; Lopez Moreno, J. J.; Marzari, F.; Naletto, G.; Oklay, N.; Thomas, N.; Tubiana, C.; Vincent, J. -B., Context. The ESA Rosetta mission explored comet 67P/Churyumov-Gerasimenko in 2014-2016, following its target before and after the perihelion passage on 13 August 2015. The NAC camera of the OSIRIS imaging system allowed to map the nucleus surface acquiring images with different filters in the visible wavelength range. Aims. Here we study the spectrophotometric behaviour of the nucleus by a multivariate statistical analysis, aiming to distinguish homogeneous groups and to constrain the bulk composition. Methods. We applied the G-mode clustering algorithm to 16 OSIRIS data cubes acquired on 5-6 August 2014 (mostly covering the northern hemisphere) and 2 May 2015 (mostly covering the southern hemisphere), selected to have complete coverage of the comet's surface with similar observing conditions. Results. We found four similar homogeneous groups for each of the analysed cubes. The first group corresponds to the average spectrophotometric behaviour of the nucleus. The second (spectrally redder) and the third (spectrally bluer) groups are found in regions that were already found to deviate from the average terrain of the comet by previous studies. A fourth group (characterised by enhancements of the flux at 700-750 nm and 989 nm, possibly due to HO and/or NH emissions) seems connected with the cometary activity rather than with the bulk composition. Conclusions. While our aim in this work was to study the spectrophotometric behaviour of the nucleus of 67P/Churyumov-Gerasimenko as a whole, we found that a follow-up application of the G-mode to smaller regions of the surface could be useful in particular to identify and study the temporal evolution of ice patches, as well as to constrain the composition and physical processes behind the emission of dust jets. © ESO, 2017., OSIRIS was built by a consortium of the Max-Planck-Institut fur Sonnensystemforschung, Gottingen, Germany, CISAS-University of Padova, Italy, the Laboratoire d'Astrophysique de Marseille, France, the Instituto de Astrofisica de Andalucia, CSIC, Granada, Spain, the Research and Scientific Support Department of the European Space Agency, Noordwijk, The Netherlands, the Instituto Nacional de Tecnica Aeroespacial, Madrid, Spain, the Universidad Politechnica de Madrid, Spain, the Department of Physics and Astronomy of Uppsala University, Sweden, and the Institut fur Datentech-nik und Kommunikationsnetze der Technischen Universitat Braunschweig, Germany. The support of the national funding agencies of Germany (DLR), France (CNES), Italy (ASI), Spain (MEC), Sweden (SNSB), and the ESA Technical Directorate is gratefully acknowledged. M.A. acknowledges NASA funding through Jet Propulsion Laboratory contract No. 1267923 and from the Akademie der Wissenschaften zu Gottingen. W.-H.Ip acknowledges the Ministry of Science and Technology, Taiwan (grant No. NSC 102-2112-M-008) and Macau University of Science and Technology (grant No. FDCT 017/2014/A1). We thank the ESA teams at European Space Astronomy Centre, European Space Operations Centre, and European Space Research and Technology Centre for their work in support of the Rosetta mission. Rosetta/OSIRIS data are available through the ESA's Planetary Science Archive (PSA, http://www.cosmos.esa.int/web/psa/rosetta).
- Published
- 2017
20. The opposition effect of 67P/Churyumov–Gerasimenko on post-perihelion Rosetta images
- Author
-
Nilda Oklay, Cesare Barbieri, Stefano Mottola, V. Da Deppo, J.-B. Vincent, Jakob Deller, M. A. Barucci, Ekkehard Kührt, Francesco Marzari, M. De Cecco, G. Naletto, H. U. Keller, Bernhard Jost, R. Rodrigo, Jörg Knollenberg, J. L. Bertaux, Laurent Jorda, Marcello Fulchignoni, Michael Küppers, Michael F. A'Hearn, Carsten Güttler, J. D. P. Deshapriya, Stefano Debei, Marco Fulle, G. Cremonese, Marc Hofmann, Robert Gaskell, Sonia Fornasier, W-H. Ip, Holger Sierks, J. J. López-Moreno, M. L. Lara, Clement Feller, Géza Kovács, Philippe Lamy, P. J. Gutierrez, Pedro Hasselmann, Olivier Groussin, Monica Lazzarin, Björn Davidsson, Cecilia Tubiana, Stubbe F. Hviid, Ivano Bertini, R. Kramm, Detlef Koschny, Nicolas Thomas, Antoine Pommerol, Hans Rickman, Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Physikalisches Institut [Bern], Universität Bern [Bern] (UNIBE), Max-Planck-Institut für Sonnensystemforschung = Max Planck Institute for Solar System Research (MPS), Max-Planck-Gesellschaft, Dipartimento di Fisica e Astronomia 'Galileo Galilei', Università degli Studi di Padova = University of Padua (Unipd), Laboratoire d'Astrophysique de Marseille (LAM), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Centro de Astrobiologia [Madrid] (CAB), Instituto Nacional de Técnica Aeroespacial (INTA)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), European Space Research and Technology Centre (ESTEC), Agence Spatiale Européenne = European Space Agency (ESA), Department of Physics and Astronomy [Uppsala], Uppsala University, Space Research Centre of Polish Academy of Sciences (CBK), Polska Akademia Nauk = Polish Academy of Sciences (PAN), Department of Astronomy [College Park], University of Maryland [College Park], University of Maryland System-University of Maryland System, PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), INAF - Osservatorio Astronomico di Padova (OAPD), Istituto Nazionale di Astrofisica (INAF), CNR Institute for Photonics and Nanotechnologies (IFN), National Research Council of Italy | Consiglio Nazionale delle Ricerche (CNR), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Department of Industrial Engineering [Padova], University of Trento [Trento], INAF - Osservatorio Astronomico di Trieste (OAT), Planetary Science Institute [Tucson] (PSI), Instituto de Astrofísica de Andalucía (IAA), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), DLR Institut für Planetenforschung, Deutsches Zentrum für Luft- und Raumfahrt [Berlin] (DLR), Institute of Astronomy [Taiwan] (IANCU), National Central University [Taiwan] (NCU), Space Science Institute [Macau] (SSI), Macau University of Science and Technology (MUST), Aix Marseille Université (AMU), Institut für Geophysik und Extraterrestrische Physik [Braunschweig] (IGEP), Technische Universität Braunschweig = Technical University of Braunschweig [Braunschweig], Budapest University of Technology and Economics [Budapest] (BME), European Space Astronomy Centre (ESAC), Centro di Ateneo di Studi e Attività Spaziali 'Giuseppe Colombo' (CISAS), Department of Information Engineering [Padova] (DEI), Universität Bern [Bern], Max-Planck-Institut für Sonnensystemforschung (MPS), Universita degli Studi di Padova, Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Centre National d'Études Spatiales [Toulouse] (CNES), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC)-Instituto Nacional de Técnica Aeroespacial (INTA), European Space Agency (ESA), Consiglio Nazionale delle Ricerche [Roma] (CNR), ITA, USA, GBR, FRA, DEU, and California Institute of Technology (CALTECH)-NASA
- Subjects
67P/Churyumov-Gerasimenko ,010504 meteorology & atmospheric sciences ,Rosetta: 67P/Churyumov-Gerasimenko ,Opposition (planets) ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,01 natural sciences ,Photometry ,0103 physical sciences ,Rosetta ,OSIRIS ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences ,Remote sensing ,Physics ,biology ,[SDU.ASTR.SR]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,520 Astronomy ,Astronomy ,Astronomy and Astrophysics ,biology.organism_classification ,620 Engineering ,Opposition Effect ,Space and Planetary Science ,Rosetta:67P/Churyumov-Gerasimenko ,Osiris - Abstract
International audience; High-resolution OSIRIS/Rosetta images of 67P/Churyumov-Gerasimenko acquired on the night run of April 9th to 10th 2016 shows, at large scale, an Opposition Effect (OE) spot swooping across Imhotep as the phase angle ranges from 0° to 17°. In this work, we fitted the phase curve of the whole surface imaged as well as three particular features using both linear-exponential and Hapke (2012) model. Those features encompass different types of spectral behaviour: a circular mesa, one venous structure and an assemble of bright spots, going from red to blue colours. Both Hapke and linear-exponential parameters indicate a stepwise sharpening of the OE from bright spots to circular mesa. Yet, a very broad non-linear phase curve is verified and no sign of sharp OE associated to coherent-backscattering mechanism observed. We estimate that 67P surface is dominated by opaque, desiccated and larger-than-wavelength irregular grains. Veins and bright spots display photometric properties consistent to surfaces becoming slightly brighter as it is enriched by high albedo ice grains. We also report the estimation of normal albedo for all cometary regions observed throughout the image sequence. Comparison to pre-perihelion results (Fornasier et al., 2015) indicates that far better insolation of northern brighter regions, i.e. Hapi, Hathor and Seth, is sufficient to explain mismatches on the photometric parameters. However, metre-scale photometric analysis of Imhotep-Ash boundary area (Feller et al., 2016) advocates for mild darkening (< 7%) of the surface at local scale.
- Published
- 2017
21. SURFACE COMPOSITION OF CERES QUADRANGLE AC-4 INVESTIGATED BY THE DAWN MISSION
- Author
-
Carol A. Raymond, Simone Ieva, Thomas B. McCord, Federico Tosi, Mauro Ciarniello, Francesca Zambon, Eleonora Ammannito, Jennifer E.C. Scully, S. Singh, Andrea Raponi, Filippo Giacomo Carrozzo, Jean-Philippe Combe, Maria Cristina De Sanctis, Alessandro Frigeri, Marcello Fulchignoni, and Christopher T. Russell
- Subjects
Surface (mathematics) ,Quadrangle ,Geography ,Astrobiology - Published
- 2016
22. Exposed water ice on the nucleus of comet 67P/Churyumov-Gerasimenko
- Author
-
Giancarlo Bellucci, Katrin Stephan, Yves Langevin, Sergio Fonti, G. Peter, Gianrico Filacchione, Ulrich Schade, G. P. Tozzi, Jacques Crovisier, Costanzo Federico, Eleonora Ammannito, M. I. Blecka, S. Jacquinod, Jean-Michel Reess, M. Cartacci, Michael R. Combi, Vito Mennella, Federico Tosi, Marcello Fulchignoni, Armando Blanco, Giuseppe Piccioni, Roberto Orosei, Bernard Schmitt, Andrea Longobardo, Giovanna Rinaldi, Ralf Jaumann, Vincenzo Orofino, Alessandra Migliorini, Andrea Raponi, Pierre Drossart, M. Combes, David Kappel, Mauro Ciarniello, D. Despan, Murthy S. Gudipati, C. Leyrat, T. Encrenaz, Ernesto Palomba, Andrea Cicchetti, Fabrizio Capaccioni, Michelangelo Formisano, Maria Teresa Capria, Romolo Politi, Dominique Bockelée-Morvan, Stefano Mottola, Enrico Flamini, Pierre Beck, L. Moroz, Gianfranco Magni, U. Fink, Eric Quirico, Fredric W. Taylor, Sonia Fornasier, J-Ph. Combe, F. Merlin, Jean-Pierre Bibring, N. Biver, M. C. De Sanctis, Florence Henry, Uri Carsenty, M. A. Barucci, Gabriele Arnold, Y. Hello, Patrick G. J. Irwin, R. W. Carlson, Wing-Huen Ip, E. Kuehrt, Kathrin Markus, Davide Grassi, S. Giuppi, Raffaella Noschese, Alessandro Frigeri, F. Mancarella, Stéphane Erard, Luigi Colangeli, Lydie Bonal, T. B. McCord, J. Benkhoff, D. Tiphene, Priscilla Cerroni, G., Filacchione, M. C., De Sancti, F., Capaccioni, A., Raponi, F., Tosi, M., Ciarniello, P., Cerroni, G., Piccioni, M. T., Capria, E., Palomba, G., Bellucci, S., Erard, D., Bockelee Morvan, C., Leyrat, G., Arnold, M. A., Barucci, M., Fulchignoni, B., Schmitt, E., Quirico, R., Jaumann, K., Stephan, A., Longobardo, V., Mennella, A., Migliorini, E., Ammannito, J., Benkhoff, J. P., Bibring, Blanco, Armando, M. I., Blecka, R., Carlson, U., Carsenty, L., Colangeli, M., Combe, M., Combi, J., Crovisier, P., Drossart, T., Encrenaz, C., Federico, U., Fink, Fonti, Sergio, W. H., Ip, P., Irwin, E., Kuehrt, Y., Langevin, G., Magni, T., Mccord, L., Moroz, S., Mottola, Orofino, Vincenzo, U., Schade, F., Taylor, D., Tiphene, G. P., Tozzi, P., Beck, N., Biver, L., Bonal, Combe, J. P. h., D., Despan, E., Flamini, M., Formisano, S., Fornasier, A., Frigeri, D., Grassi, M. S., Gudipati, D., Kappel, Mancarella, Francesca, K., Marku, F., Merlin, R., Orosei, G., Rinaldi, M., Cartacci, A., Cicchetti, S., Giuppi, Y., Hello, F., Henry, S., Jacquinod, J. M., Ree, R., Noschese, R., Politi, G., Peter, Istituto di Astrofisica e Planetologia Spaziali - INAF (IAPS), Istituto Nazionale di Astrofisica (INAF), Max-Planck-Institut für Kernphysik (MPIK), Max-Planck-Gesellschaft, Istituto di Astrofisica Spaziale e Fisica cosmica - Roma (IASF-Roma), Istituto di Fisica dello Spazio Interplanetario (IFSI), National Research Council of Italy | Consiglio Nazionale delle Ricerche (CNR), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique et Mécanique Textiles (LPMT), Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), German Aerospace Center (DLR), Deutsches Zentrum für Luft- und Raumfahrt (DLR), European Space Research and Technology Centre (ESTEC), Agence Spatiale Européenne = European Space Agency (ESA), Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Polska Akademia Nauk = Polish Academy of Sciences (PAN), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), INAF - Osservatorio Astronomico di Capodimonte (OAC), Department of Atmospheric, Oceanic, and Space Sciences [Ann Arbor] (AOSS), University of Michigan [Ann Arbor], University of Michigan System-University of Michigan System, Instituto de Estudos Avançados (IEAV), Institut, Lunar and Planetary Laboratory [Tucson] (LPL), University of Arizona, Dipartimento di Fisica, Università degli studi di Lecce, Institute of Space Science [Taiwan], National Central University [Taiwan] (NCU), Department of Physics [Oxford], University of Oxford, Department of Earth and Space Sciences [Seattle], University of Washington [Seattle], DLR Institute of Planetary Research, Department of Physics [Lecce], Università del Salento [Lecce], INAF - Osservatorio Astrofisico di Arcetri (OAA), Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Alenia Aerospazio, DLR Institut für Planetenforschung, Deutsches Zentrum für Luft- und Raumfahrt [Berlin] (DLR), JDS Uniphase/Cronos, USA, JDS Uniphase/Cronos, CNR-IASF, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Observatoire de la Côte d'Azur (OCA), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d’Océanologie et de Géosciences (LOG) - UMR 8187 (LOG), Institut national des sciences de l'Univers (INSU - CNRS)-Université du Littoral Côte d'Opale (ULCO)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Nord]), Consiglio Nazionale delle Ricerche (CNR), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-ENSITM-Matériaux et nanosciences d'Alsace, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Centre National d'Études Spatiales [Toulouse] (CNES)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), European Space Agency (ESA), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Polska Akademia Nauk (PAN), University of Oxford [Oxford], Laboratoire de Planétologie et Géodynamique UMR6112 (LPG), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Nantes - Faculté des Sciences et des Techniques, Université de Nantes (UN)-Université de Nantes (UN)-Université d'Angers (UA), Centre National de la Recherche Scientifique (CNRS), Université de Lille-Université du Littoral Côte d'Opale-Centre National de la Recherche Scientifique (CNRS), ENSITM-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), and Institut national des sciences de l'Univers (INSU - CNRS)-Université du Littoral Côte d'Opale (ULCO)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,010504 meteorology & atmospheric sciences ,Extraterrestrial Environment ,Comet ,Mineralogy ,comet 67P ,01 natural sciences ,water ice ,Astrobiology ,Diffusion ,0103 physical sciences ,Rosetta ,medicine ,Diffusion (business) ,010303 astronomy & astrophysics ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,[PHYS]Physics [physics] ,Multidisciplinary ,Meteoroid ,Spectrum Analysis ,Ice ,food and beverages ,Meteoroids ,VIRTIS ,Debris ,Asteroids ,Grain growth ,medicine.anatomical_structure ,13. Climate action ,comets and Kuiper belt Early solar system ,Gases ,Layering ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Nucleus ,Water vapor - Abstract
Although water vapour is the main species observed in the coma of comet 67P/Churyumov–Gerasimenko1, 2 and water is the major constituent of cometary nuclei3, 4, limited evidence for exposed water-ice regions on the surface of the nucleus has been found so far5, 6. The absence of large regions of exposed water ice seems a common finding on the surfaces of many of the comets observed so far7, 8, 9. The nucleus of 67P/Churyumov–Gerasimenko appears to be fairly uniformly coated with dark, dehydrated, refractory and organic-rich material10. Here we report the identification at infrared wavelengths of water ice on two debris falls in the Imhotep region of the nucleus. The ice has been exposed on the walls of elevated structures and at the base of the walls. A quantitative derivation of the abundance of ice in these regions indicates the presence of millimetre-sized pure water-ice grains, considerably larger than in all previous observations6, 7, 8, 9. Although micrometre-sized water-ice grains are the usual result of vapour recondensation in ice-free layers6, the occurrence of millimetre-sized grains of pure ice as observed in the Imhotep debris falls is best explained by grain growth by vapour diffusion in ice-rich layers, or by sintering. As a consequence of these processes, the nucleus can develop an extended and complex coating in which the outer dehydrated crust10 is superimposed on layers enriched in water ice. The stratigraphy observed on 67P/Churyumov–Gerasimenko11, 12 is therefore the result of evolutionary processes affecting the uppermost metres of the nucleus and does not necessarily require a global layering to have occurred at the time of the comet’s formation.
- Published
- 2016
23. Rotational variation of the spectral slope of (21) Lutetia, the second asteroid target of ESA Rosetta mission
- Author
-
Marcello Fulchignoni, Maria Antonietta Barucci, E. Dotto, Monica Lazzarin, Simone Marchi, Cesare Barbieri, D. Perna, and Sara Magrin
- Subjects
Rotation period ,Physics ,Impact crater ,Space and Planetary Science ,Asteroid ,Planet ,Spectral slope ,Astronomy ,Astronomy and Astrophysics ,Context (language use) ,Variation (astronomy) ,Reflectivity ,Astrobiology - Abstract
The ESA Rosetta mission, launched in 2004 March, will flyby the second asteroid target (21) Lutetia in 2010 July. This asteroid is quite different from (2867) Steins, encountered by Rosetta in 2008 September. Lutetia is in fact a much larger asteroid, approximately 100 km of diameter, as compared to the 5 km of Steins and also its surface composition seems fairly different. A wide international ground-based observational campaign has been carried out and is still going on to obtain information on the object. In this context, we observed Lutetia four times spectroscopically in the visible region totally covering its rotational period. In this paper we have compared all our observations, in order to try to shed more light on its nature. Moreover, an analysis of the geometric configuration of Lutetia during the several observations has also been performed. Our paper points out small variations of reflectance over the surface, possibly due to a large crater. However, the nature of Lutetia remains still elusive, probably because it could be a transition object between X and C taxonomic classes, pointing out to the crucial values of the forthcoming flyby to clarify the situation. Therefore, all the information we have gathered and here discussed have been very useful also to better define the observational strategy of the asteroid by Rosetta.
- Published
- 2010
24. TandEM: Titan and Enceladus mission
- Author
-
J. E. Blamont, Tobias Owen, Michael Küppers, Xenophon Moussas, Robert H. Brown, Nicole Schmitz, Sascha Kempf, C. Menor Salvan, T. W. Haltigin, Olivier Grasset, Roger V. Yelle, Wayne H. Pollard, Daniel Gautier, Paul R. Mahaffy, Joe Pitman, Iannis Dandouras, Daphne Stam, John C. Zarnecki, Bruno Sicardy, Georges Durry, Jesús Martínez-Frías, Norbert Krupp, S. Le Mouélic, Matthias Grott, Sébastien Lebonnois, T. Krimigis, Elizabeth P. Turtle, Alain Herique, Linda Spilker, Ralph D. Lorenz, Maria Teresa Capria, M. Combes, John F. Cooper, O. Mousis, Joachim Saur, Wlodek Kofman, J. Bouman, M. Paetzold, Hojatollah Vali, C. Dunford, Sushil K. Atreya, Eric Chassefière, I. de Pater, T. B. McCord, Bruno Bézard, Gabriel Tobie, Catherine D. Neish, M. Ruiz Bermejo, Sergei Pogrebenko, Kim Reh, Athena Coustenis, Ralf Jaumann, Angioletta Coradini, Leonid I. Gurvits, Andrew J. Coates, Tibor S. Balint, H. Hussmann, E. Choi, Ioannis A. Daglis, Edward C. Sittler, Emmanuel Lellouch, Robert A. West, L. Boireau, E.F. Young, Timothy A. Livengood, Cesar Bertucci, Martin G. Tomasko, M. Fujimoto, Ingo Müller-Wodarg, Yves Bénilan, Wing-Huen Ip, Marina Galand, Darrell F. Strobel, Cyril Szopa, Pascal Rannou, D. G. Mitchell, Mark Leese, Véronique Vuitton, P. Annan, Tetsuya Tokano, Caitlin A. Griffith, Conor A. Nixon, Stephen A. Ledvina, Karoly Szego, Andrew Morse, Panayotis Lavvas, Luisa Lara, C. de Bergh, Jonathan I. Lunine, R. A. Gowen, Katrin Stephan, Jianping Li, Glenn S. Orton, Michel Blanc, Esa Kallio, Ronan Modolo, M. Hirtzig, Helmut Lammer, Nicholas Achilleos, D. Nna Mvondo, Frank Sohl, M. Nakamura, Andrew Steele, C. C. Porco, Marcello Fulchignoni, Gordon L. Bjoraker, Olga Prieto-Ballesteros, J. J. López-Moreno, Andrew Dominic Fortes, Rafael Rodrigo, Patrice Coll, Francesca Ferri, François Raulin, Tom Spilker, F. J. Crary, J. H. Waite, Dirk Schulze-Makuch, Thomas E. Cravens, Kevin H. Baines, C. P. McKay, L. Richter, D. Luz, David H. Atkinson, Martin Knapmeyer, Robert E. Johnson, D. Fairbrother, F. M. Flasar, Roland Thissen, Paul N. Romani, Sebastien Rodriguez, Urs Mall, Paul M. Schenk, Franck Hersant, R. Koop, Odile Dutuit, I. Vardavas, T. Kostiuk, Ricardo Amils, Konrad Schwingenschuh, Robert V. Frampton, Fritz M. Neubauer, Jan-Erik Wahlund, L. A. Soderblom, Michele K. Dougherty, Anna Milillo, Frank T. Robb, Bernard Schmitt, Christophe Sotin, Michel Cabane, A. Selig, Bernard Marty, Yves Langevin, Rosaly M. C. Lopes, Emmanuel T. Sarris, E. De Angelis, D. Toublanc, Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Department of Atmospheric, Oceanic, and Space Sciences [Ann Arbor] (AOSS), University of Michigan [Ann Arbor], University of Michigan System-University of Michigan System, Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Lunar and Planetary Laboratory [Tucson] (LPL), University of Arizona, Space and Atmospheric Physics Group [London], Blackett Laboratory, Imperial College London-Imperial College London, Centro di Ateneo di Studi e Attività Spaziali 'Giuseppe Colombo' (CISAS), Università degli Studi di Padova = University of Padua (Unipd), Mullard Space Science Laboratory (MSSL), University College of London [London] (UCL), Joint Institute for VLBI in Europe (JIVE ERIC), Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), The Open University [Milton Keynes] (OU), NASA Ames Research Center (ARC), Department of Physics [Athens], National and Kapodistrian University of Athens (NKUA), University of Cologne, Institute for Astronomy [Honolulu], University of Hawai‘i [Mānoa] (UHM), Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), NASA Goddard Space Flight Center (GSFC), Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL), Swedish Institute of Space Physics [Uppsala] (IRF), Space Science Division [San Antonio], Southwest Research Institute [San Antonio] (SwRI), Centre National d'Études Spatiales [Toulouse] (CNES), Centre d'étude spatiale des rayonnements (CESR), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Academy of Athens, Observatoire de Paris - Site de Paris (OP), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Space Science Institute [Boulder] (SSI), Bombardier Aerospace, Centro de Astrobiologia [Madrid] (CAB), Instituto Nacional de Técnica Aeroespacial (INTA)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Sensors and Software, University of Idaho [Moscow, USA], SRON Netherlands Institute for Space Research (SRON), PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Istituto Nazionale di Astrofisica (INAF), University of Kansas [Lawrence] (KU), National Observatory of Athens (NOA), Department of Astronomy [Berkeley], University of California [Berkeley] (UC Berkeley), University of California (UC)-University of California (UC), Service d'aéronomie (SA), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Planétologie de Grenoble (LPG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency [Sagamihara] (JAXA), McGill University = Université McGill [Montréal, Canada], FORMATION STELLAIRE 2009, Laboratoire d'astrodynamique, d'astrophysique et d'aéronomie de bordeaux (L3AB), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire aquitain des sciences de l'univers (OASU), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB), Institute of Astronomy [Taiwan] (IANCU), National Central University [Taiwan] (NCU), University of Virginia [Charlottesville], Finnish Meteorological Institute (FMI), Max-Planck-Institut für Sonnensystemforschung (MPS), Max-Planck-Gesellschaft, DLR Institut für Planetenforschung, Deutsches Zentrum für Luft- und Raumfahrt [Berlin] (DLR), Space Research Institute of Austrian Academy of Sciences (IWF), Austrian Academy of Sciences (OeAW), Instituto de Astrofísica de Andalucía (IAA), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics [Beijing] (IAP), Chinese Academy of Sciences [Beijing] (CAS)-Chinese Academy of Sciences [Beijing] (CAS), National Center for Earth and Space Science Education (NCESSE), Observatório Astronómico de Lisboa, Centre de Recherches Pétrographiques et Géochimiques (CRPG), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Bear Fight Center, Univers, Transport, Interfaces, Nanostructures, Atmosphère et environnement, Molécules (UMR 6213) (UTINAM), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC), Lockheed Martin Space, Groupe de spectrométrie moléculaire et atmosphérique (GSMA), Université de Reims Champagne-Ardenne (URCA)-Centre National de la Recherche Scientifique (CNRS), University of Maryland Biotechnology Institute Baltimore, University of Maryland [Baltimore], Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Democritus University of Thrace (DUTH), Lunar and Planetary Institute [Houston] (LPI), School of Earth and Environmental Sciences [Pullman], Washington State University (WSU), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Universita degli Studi di Padova, National and Kapodistrian University of Athens = University of Athens (NKUA | UoA), Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Planétologie et Géodynamique UMR6112 (LPG), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Nantes - Faculté des Sciences et des Techniques, Université de Nantes (UN)-Université de Nantes (UN)-Université d'Angers (UA), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Institut national des sciences de l'Univers (INSU - CNRS), Instituto Nacional de Técnica Aeroespacial (INTA)-Consejo Superior de Investigaciones Científicas [Spain] (CSIC), IMPEC - LATMOS, University of California [Berkeley], University of California-University of California, Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), McGill University, École normale supérieure - Paris (ENS Paris)-École normale supérieure - Paris (ENS Paris), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Université de Franche-Comté (UFC)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire aquitain des sciences de l'univers (OASU), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), University of Virginia, Max-Planck-Institut für Sonnensystemforschung = Max Planck Institute for Solar System Research (MPS), Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS), Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École des Ponts ParisTech (ENPC)-École polytechnique (X)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
- Subjects
Exploration of Saturn ,Solar System ,Cosmic Vision ,010504 meteorology & atmospheric sciences ,[PHYS.ASTR.EP]Physics [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,Computer science ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,TandEM ,01 natural sciences ,law.invention ,Astrobiology ,Enceladus ,Orbiter ,symbols.namesake ,law ,Saturnian system ,0103 physical sciences ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences ,Spacecraft ,Tandem ,business.industry ,Astronomy and Astrophysics ,Landing probes ,Space and Planetary Science ,symbols ,Titan ,business ,Titan (rocket family) - Abstract
著者人数:156名, Accepted: 2008-05-27, 資料番号: SA1000998000
- Published
- 2009
25. MARCO POLO: near earth object sample return mission
- Author
-
Patrick Michel, Makoto Yoshikawa, Ian A. Franchi, E. Dotto, John Robert Brucato, Stephan Ulamec, M. A. Barucci, Marcello Fulchignoni, Hajime Yano, J. Kawagushi, Laboratoire de Cosmologie, Astrophysique Stellaire & Solaire, de Planétologie et de Mécanique des Fluides (CASSIOPEE), Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, and COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Earth's orbit ,Solar System ,Near-Earth object ,010504 meteorology & atmospheric sciences ,Spacecraft ,Soft landing ,business.industry ,Computer science ,Rendezvous ,Astronomy and Astrophysics ,7. Clean energy ,01 natural sciences ,Sample return mission ,13. Climate action ,Space and Planetary Science ,0103 physical sciences ,Sample collection ,Aerospace engineering ,business ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences ,Remote sensing - Abstract
MARCO POLO is a joint European–Japanese sample return mission to a Near-Earth Object. This Euro-Asian mission will go to a primitive Near-Earth Object (NEO), which we anticipate will contain primitive materials without any known meteorite analogue, scientifically characterize it at multiple scales, and bring samples back to Earth for detailed scientific investigation. Small bodies, as primitive leftover building blocks of the Solar System formation process, offer important clues to the chemical mixture from which the planets formed some 4.6 billion years ago. Current exobiological scenarios for the origin of Life invoke an exogenous delivery of organic matter to the early Earth: it has been proposed that primitive bodies could have brought these complex organic molecules capable of triggering the pre-biotic synthesis of biochemical compounds. Moreover, collisions of NEOs with the Earth pose a finite hazard to life. For all these reasons, the exploration of such objects is particularly interesting and urgent. The scientific objectives of MARCO POLO will therefore contribute to a better understanding of the origin and evolution of the Solar System, the Earth, and possibly Life itself. Moreover, MARCO POLO provides important information on the volatile-rich (e.g. water) nature of primitive NEOs, which may be particularly important for future space resource utilization as well as providing critical information for the security of Earth. MARCO POLO is a proposal offering several options, leading to great flexibility in the actual implementation. The baseline mission scenario is based on a launch with a Soyuz-type launcher and consists of a Mother Spacecraft (MSC) carrying a possible Lander named SIFNOS, small hoppers, sampling devices, a re-entry capsule and scientific payloads. The MSC leaves Earth orbit, cruises toward the target with ion engines, rendezvous with the target, conducts a global characterization of the target to select a sampling site, and delivers small hoppers (MINERVA type, JAXA) and SIFNOS. The latter, if added, will perform a soft landing, anchor to the target surface, and make various in situ measurements of surface/subsurface materials near the sampling site. Two surface samples will be collected by the MSC using “touch and go” manoeuvres. Two complementary sample collection devices will be used in this phase: one developed by ESA and another provided by JAXA, mounted on a retractable extension arm. After the completion of the sampling and ascent of the MSC, the arm will be retracted to transfer the sample containers into the MSC. The MSC will then make its journey back to Earth and release the re-entry capsule into the Earth’s atmosphere.
- Published
- 2008
26. A new numerical model for the simulation of ELF wave propagation and the computation of eigenmodes in the atmosphere of Titan: Did Huygens observe any Schumann resonance?
- Author
-
V. Brown, Peter Falkner, Fernando Simões, Bruno P. Besser, Marcello Fulchignoni, Rafael Rodrigo, Michel Hamelin, R. Trautner, R. Grard, Konrad Schwingenschuh, Francesca Ferri, Jean-Jacques Berthelier, R. Hofe, Håkan Svedhem, Irmgard Jernej, M. Chabassiere, C. Beghin, Tetsuya Tokano, Gregorio J. Molina-Cuberos, J. J. López-Moreno, and J. M. Jeronimo
- Subjects
Physics ,Schumann resonances ,Wave propagation ,Astronomy and Astrophysics ,Geophysics ,Electromagnetic radiation ,symbols.namesake ,Space and Planetary Science ,Physics::Space Physics ,symbols ,Extremely low frequency ,Astrophysics::Earth and Planetary Astrophysics ,Atmospheric electricity ,Ionosphere ,Atmosphere of Titan ,Titan (rocket family) - Abstract
The propagation of extremely low frequency (ELF) electromagnetic waves in the Earth's ionospheric cavity and the associated resonance phenomena have been extensively studied, in relation with lightning activity. We perform a similar investigation for Titan, the largest moon of Saturn. There are important differences between Earth and Titan, as far as the cavity geometry, the atmospheric electron density profile, and the surface conductivity are concerned. We present an improved 3D finite element model that provides an estimate of the lowest eigenfrequencies, associated quality factors (Q-factors), and ELF electric field spectra. The data collected by the electric antenna of the Permittivity, Waves, and Altimetry (PWA) instrument reveals the existence of a narrow-band signal at about 36 Hz during the entire descent of Huygens upon Titan. We assess the significance of these measurements against the model predictions, with due consideration to the experimental uncertainties.
- Published
- 2007
27. Spectral characterization of V-type asteroids – II. A statistical analysis
- Author
-
Daniele Fulvio, Daniela Lazzaro, E. Dotto, Marcello Fulchignoni, Simone Ieva, D. Perna, INAF - Osservatorio Astronomico di Roma (OAR), Istituto Nazionale di Astrofisica (INAF), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), and Pontifical Catholic University of Rio de Janeiro (PUC)
- Subjects
Physics ,Basalt ,Earth and Planetary Astrophysics (astro-ph.EP) ,[PHYS]Physics [physics] ,010504 meteorology & atmospheric sciences ,Astronomy ,FOS: Physical sciences ,Astronomy and Astrophysics ,Type (model theory) ,01 natural sciences ,Spectral line ,Characterization (materials science) ,On board ,Meteorite ,Space and Planetary Science ,Asteroid ,0103 physical sciences ,Statistical analysis ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,010303 astronomy & astrophysics ,ComputingMilieux_MISCELLANEOUS ,Astrophysics - Earth and Planetary Astrophysics ,0105 earth and related environmental sciences - Abstract
In recent years several small basaltic V-type asteroids have been identified all around the main belt. Most of them are members of the Vesta dynamical family, but an increasingly large number appear to have no link with it. The question that arises is whether all these basaltic objects do indeed come from Vesta. To find the answer to the above questioning, we decided to perform a statistical analysis of the spectroscopic and mineralogical properties of a large sample of V-types, with the objective to highlight similarities and differences among them, and shed light on their unique, or not, origin. The analysis was performed using 190 visible and near-infrared spectra from the literature for 117 V-type asteroids. The asteroids were grouped according to their dynamical properties and their computed spectral parameters compared. Comparison was also performed with spectral parameters of a sample of HED meteorites and data of the surface of Vesta taken by the VIR instrument on board of the Dawn spacecraft. Our analysis shows that although most of the V-type asteroids in the inner main belt do have a surface composition compatible with an origin from Vesta, this seem not to be the case for V-types in the middle and outer main belt., Comment: 18 pages, 4 figures, tables in appendix A
- Published
- 2015
28. Composition of the northern regions of Vesta analyzed by the Dawn mission
- Author
-
Federico Tosi, Lucy A. McFadden, Andrea Longobardo, Carol A. Raymond, Ottaviano Ruesch, Thomas B. McCord, Maria Cristina De Sanctis, Eleonora Ammannito, Jean-Philippe Combe, Ernesto Palomba, Simone Ieva, Marcello Fulchignoni, Christopher T. Russell, Alessandro Frigeri, Bear Fight Institute, Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Istituto di Astrofisica e Planetologia Spaziali - INAF (IAPS), Istituto Nazionale di Astrofisica (INAF), Dipartimento di Scienze della Terra, Università degli Studi di Perugia = University of Perugia (UNIPG), Istituto di Astrofisica Spaziale e Fisica cosmica - Roma (IASF-Roma), Department of Earth, Planetary and Space Sciences [Los Angeles] (EPSS), University of California [Los Angeles] (UCLA), University of California (UC)-University of California (UC), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), ITA, USA, Università degli Studi di Perugia (UNIPG), University of California-University of California, and California Institute of Technology (CALTECH)-NASA
- Subjects
Diogenite ,Eucrite ,[PHYS]Physics [physics] ,Howardite ,Hypersthene ,Astronomy and Astrophysics ,engineering.material ,Astrobiology ,Meteorite ,Impact crater ,13. Climate action ,Space and Planetary Science ,Asteroid ,engineering ,Ejecta ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Geology ,ComputingMilieux_MISCELLANEOUS - Abstract
The surface composition of the northern regions of Vesta, observed by the Dawn spacecraft, offers the possibility to test several hypotheses related to impact-related processes. We used mostly imaging spectrometry in the visible and near infrared to assess the distribution of mafic lithologies, hydrated components and albedo properties, and use the link with howardite, eucrite and diogenite meteorites (HEDs) to investigate the origin of those materials. We established that Rheasilvia ejecta reached part of the northern regions, and have a diogenitic-rich composition characteristic of the lower crust. Investigations of the antipodes of the two major impact basins (Rheasilvia and Veneneia) did not reveal any correlation between geographic location, geological features and the surface composition. The northern wall of Mamilia crater, which is one of the freshest craters above 22°N, contains relatively pure eucritic-rich, diogenitic-rich and dark, hydrated materials, which are representative of the rest of the northern regions (and most of Vesta), with the exception of an olivine-like component found in Bellicia crater by Ammannito et al. (Ammannito, E. et al. [2013a]. Nature 504(7478), 122–125). We determined that similar types of materials are found in various proportions over a large region, including Bellicia, Arruntia and Pomponia craters, and their origin does not seem to be related to Rheasilvia ejecta. These materials are hydrated, which could indicate an exogenous origin, and not as dark as expected for carbonaceous chondrites, which likely compose the majority of dark hydrated materials on Vesta. Spectral mixture analysis reveals that mixtures of pyroxenes (hypersthene, pigeonite and diopside) could offer an alternative interpretation to olivine in this area.
- Published
- 2015
29. Characterizing spectral continuity in SDSS u ′ g ′ r ′ i ′ z ′ asteroid photometry
- Author
-
Marcello Fulchignoni, Pedro Hasselmann, Daniela Lazzaro, M. A. Barucci, Jorge Márcio Carvano, Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,Earth and Planetary Astrophysics (astro-ph.EP) ,[PHYS]Physics [physics] ,010504 meteorology & atmospheric sciences ,FOS: Physical sciences ,Astronomy and Astrophysics ,Classification scheme ,Single parameter ,Astrophysics ,01 natural sciences ,Spectral line ,Photometry (optics) ,Methods statistical ,Space and Planetary Science ,Asteroid ,0103 physical sciences ,Spectral slope ,Principal component analysis ,Astrophysics - Instrumentation and Methods for Astrophysics ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,010303 astronomy & astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,Astrophysics - Earth and Planetary Astrophysics - Abstract
Context. The 4th release of the SDSS Moving Object Catalog (SDSSMOC) is presently the largest photometric dataset of asteroids. Up to this point, the release of large asteroid datasets has always been followed by a redefinition of asteroid taxonomy. In the years that followed the release of the first SDSSMOC, several classification schemes using its data were proposed, all using the taxonomic classes from previous taxonomies. However, no successful attempt has been made to derive a new taxonomic system directly from the SDSS dataset. Aims. The scope of the work is to propose a different interpretation scheme for gauging u0g0r0i0z0 asteroid observations based on the continuity of spectral features. The scheme is integrated into previous taxonomic labeling, but is not dependent on them. Methods. We analyzed the behavior of asteroid sampling through principal components analysis to understand the role of uncertainties in the SDSSMOC. We identified that asteroids in this space follow two separate linear trends using reflectances in the visible, which is characteristic of their spectrophotometric features. Results. Introducing taxonomic classes, we are able to interpret both trends as representative of featured and featureless spectra. The evolution within the trend is connected mainly to the band depth for featured asteroids and to the spectral slope for featureless ones. We defined a different taxonomic system that allowed us to only classify asteroids by two labels. Conclusions. We have classified 69% of all SDSSMOC sample, which is a robustness higher than reached by previous SDSS classifications. Furthermore, as an example, we present the behavior of asteroid (5129) Groom, whose taxonomic labeling changes according to one of the trends owing to phase reddening. Now, such behavior can be characterized by the variation of one single parameter, its position in the trend., 14 pages, 6 figures
- Published
- 2015
30. Updated taxonomy of trans-neptunian objects and centaurs: Influence of albedo
- Author
-
Irina Belskaya, Marcello Fulchignoni, M. A. Barucci, A.N. Dovgopol, V.N. Karazin Kharkiv National University (KhNU), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Orbital elements ,[PHYS]Physics [physics] ,education.field_of_study ,010504 meteorology & atmospheric sciences ,Group (mathematics) ,Population ,Astronomy ,Astronomy and Astrophysics ,Centaur ,Albedo ,01 natural sciences ,Space and Planetary Science ,Taxonomy (general) ,0103 physical sciences ,Trans-Neptunian object ,education ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,010303 astronomy & astrophysics ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,Mathematics - Abstract
We present updated classification of 258 trans-neptunian objects (TNOs) and centaurs based on their visible and near-infrared colors. With increasing quality and quantity of color measurements we distinguished again four classes of objects confirming the previous classification into the BB, BR, IR, and RR taxonomic groups. Increasing accuracy of color measurements results in smaller scatter on color–color plots and better separation of classes. Albedos do not have any noticeable impact on the classification except for the separation of a sub-group of the brightest bodies inside the BB group. On the other side, all the BR objects for which albedo estimations are available have dark surfaces, while the IR and RR groups contain objects both with dark and moderate albedos. Analysis of the distribution of the groups with respect to their orbital parameters confirmed previous findings. The BB and RR groups are populated mainly with classical objects having generally high or low orbital inclinations, respectively. Any centaur belongs to the IR group and only one centaur is classified as BB: this is a confirmation of the existence of two separate classes in this population.
- Published
- 2015
31. Rosetta begins its Comet Tale
- Author
-
Marco Fulle, Matthew Taylor, Eberhard Grün, C. Alexander, Paul R. Weissman, Nicolas Altobelli, Marcello Fulchignoni, European Space Astronomy Centre (ESAC), Agence Spatiale Européenne = European Space Agency (ESA), INAF - Osservatorio Astronomico di Trieste (OAT), Istituto Nazionale di Astrofisica (INAF), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Max-Planck-Institut für Kernphysik (MPIK), Max-Planck-Gesellschaft, Planetary Science Institute [Tucson] (PSI), and European Space Agency (ESA)
- Subjects
Physics ,[PHYS]Physics [physics] ,Multidisciplinary ,010504 meteorology & atmospheric sciences ,Comet ,Astronomical unit ,Astronomy ,01 natural sciences ,Astrobiology ,law.invention ,Orbiter ,Solar wind ,13. Climate action ,law ,Comet nucleus ,0103 physical sciences ,Ice nucleus ,Formation and evolution of the Solar System ,Interplanetary spaceflight ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,010303 astronomy & astrophysics ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences - Abstract
Comets are the best sample of primitive solar nebula material presently available to us, dating back 4.57 billion years to the origin of our planetary system. Past missions to comets have all been “fast flybys”: They provided only a snapshot view of the dust and ice nucleus, the nebulous coma surrounding it, and how the solar wind interacts with both of these components. Such space-based investigations of comets began in the 1980s with a flotilla of spacecraft: the European Space Agency's (ESA's) first deep space mission, Giotto, which pursued comet 1P/Halley; Deep Space 1 at 19P/Borrelly; Stardust at 81P/Wild 2; Deep Impact and Stardust NeXT at 9P/Tempel; and EPOXI at 103P/Hartley 2. ![Figure][1] PHOTO: ESA/ROSETTA/PHILAE/CIVA Rosetta is now taking a more prolonged look. The spacecraft is an ESA mission, with contributions from member states and from NASA, and it currently orbits the Jupiter family comet 67P/Churyumov-Gerasimenko (67P). Rosetta met the comet nucleus on 6 August 2014, at 3.7 astronomical units (AU) from the Sun, and delivered the Philae lander to the nucleus surface on 12 November 2014, when the comet was 3.0 AU from the Sun. Rosetta is uniquely positioned to further the understanding of these primitive bodies, having revealed an unusual and fascinating object. After rendezvous, the Rosetta spacecraft moved from 100 km above the comet to a bound orbit only ~10 km away. This early period of the mission has revealed previously unseen details of a comet nucleus, as Rosetta's instruments recorded measurements that were once impossible. This issue of Science contains the first published scientific results from Rosetta at comet 67P. The surface of the comet shows evidence of many active processes and is highly complex. The solid nucleus is an object for which neither horizontal nor vertical variations are modest (Thomas et al. , this issue). The current comet shape model suggests that the mass is 1013 kg (about 100 million times the mass of the international space station), with a bulk density of ~470 kg/m3 (similar to cork, wood, or aerogel). The low mass and density values strongly constrain the composition and internal structure of the nucleus, implying a relatively fluffy nature, with a porosity of 70 to 80% (Sierks et al. , this issue). The nucleus surface itself appears rich in organic materials, with little sign of water ice (Capaccioni et al. , this issue). The coma produced by ices sublimating from the nucleus is highly variable, displaying large diurnal and possibly seasonal changes. For example, both atomic H and O have been detected close to the nucleus and vary with time, probably stemming from electron impact dissociation of venting H2O vapor. The total H2O gas production rates varied from 1 × 1025 molecules per second in early June 2014 to 4 × 1025 molecules per second in early August, broadly consistent with predictions. In August, water outflow from the surface varied by a factor of at least 5, owing to the effects of terrain, comet shape, and daily illumination changes and possibly other factors (Gulkis et al. , this issue). The science team reports the detection of several molecules, including H2 17O, H2 18O, CO, and CO2, and assessed their time variability and heterogeneous distribution (Hassig et al. , this issue). A high D/H ratio in water, 5.3 × 10−4, was measured, which precludes the idea that Jupiter family comets contain solely Earth ocean–like water (Altwegg et al. , this issue). As observed at 3.6 AU from the Sun, a cloud of about 105 grains (larger than 5 cm) surrounds the nucleus in bound orbits, likely from the previous perihelion passage. The nucleus currently emits dust grains up to 2 cm in size, giving a dust/gas mass ratio of 4 ± 2 averaged over the sunlit nucleus surface (Rotundi et al. , this issue). This is higher than generally accepted for comets. In a progressive series of observations, Rosetta observed the emergence of an energetic ion environment from a low-activity comet nucleus under the influence of the solar wind (Nilsson et al. , this issue). The data presented here allow us to build a detailed portrait of comet 67P. These initial observations provide a reference description of the global shape, the surface morphology and composition, and the bulk physical properties of the nucleus. Subsequent measurements with the orbiter and with the Philae lander will further describe the comet over time. Rosetta will follow the comet at close range through its closest approach to the Sun, perihelion, in August 2015, and then as the comet moves away from the Sun. The spacecraft will perform many flybys that will allow the onboard instruments to measure the evolution of the nucleus and coma with respect to the comet's initial state, defined by the data presented here. The Rosetta mission has begun to explore our origins, thanks to the efforts of thousands of people at ESA, NASA, industrial partners, and space agencies and to engineers and scientists from around the world. For more than 25 years, they dreamed of these moments when they designed, developed, and launched the Rosetta spacecraft and then followed its interplanetary journey, watched over its long sleep, and woke it from hibernation. These first papers are dedicated to all of them. [1]: pending:yes
- Published
- 2015
32. Titan's methane cycle
- Author
-
Hasso B. Niemann, E. Y. Adams, Francesca Ferri, Tobias Owen, Sushil K. Atreya, Marcello Fulchignoni, Jaime E. Demick-Montelara, Eric Wilson, Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Goddard Space Flight Center, NASA, Astrophysics Science Division, Institute for Astronomy, University of Hawaii, Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Pôle Planétologie du LESIA, Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Università degli Studi di Padova = University of Padua (Unipd), and Jet Propulsion Laboratory, California Institute of Technology (JPL)
- Subjects
chemistry.chemical_classification ,Life on Titan ,Astronomy and Astrophysics ,Atmospheric sciences ,Methane ,Astrobiology ,Troposphere ,chemistry.chemical_compound ,symbols.namesake ,Hydrocarbon ,chemistry ,Space and Planetary Science ,Carbon dioxide ,symbols ,Environmental science ,Atmosphere of Titan ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Titan (rocket family) ,Stratosphere - Abstract
International audience; Methane is key to sustaining Titan's thick nitrogen atmosphere. However, methane is destroyed and converted to heavier hydrocarbons irreversibly on a relatively short timescale of approximately 10-100 million years. Without the warming provided by CH 4-generated hydrocarbon hazes in the stratosphere and the pressure induced opacity in the infrared, particularly by CH 4-N 2 and H 2-N 2 collisions in the troposphere, the atmosphere could be gradually reduced to as low as tens of millibar pressure. An understanding of the source-sink cycle of methane is thus crucial to the evolutionary history of Titan and its atmosphere. In this paper we propose that a complex photochemical-meteorological-hydrogeochemical cycle of methane operates on Titan. We further suggest that although photochemistry leads to the loss of methane from the atmosphere, conversion to a global ocean of ethane is unlikely. The behavior of methane in the troposphere and the surface, as measured by the Cassini-Huygens gas chromatograph mass spectrometer, together with evidence of cryovolcanism reported by the Cassini visual and infrared mapping spectrometer, represents a "methalogical" cycle on Titan, somewhat akin to the hydrological cycle on Earth. In the absence of net loss to the interior, it would represent a closed cycle. However, a source is still needed to replenish the methane lost to photolysis. A hydrogeochemical source deep in the interior of Titan holds promise. It is well known that in serpentinization, hydration of ultramafic silicates in terrestrial oceans produces H 2(aq), whose reaction with carbon grains or carbon dioxide in the crustal pores produces methane gas. Appropriate geological, thermal, and pressure conditions could have existed in and below Titan's purported water-ammonia ocean for "low-temperature" serpentinization to occur in Titan's accretionary heating phase. On the other hand, impacts could trigger the process at high temperatures. In either instance, storage of methane as a stable clathrate-hydrate in Titan's interior for later release to the atmosphere is quite plausible. There is also some likelihood that the production of methane on Titan by serpentinization is a gradual and continuous on-going process.
- Published
- 2006
33. Methane drizzle on Titan
- Author
-
Francesca Ferri, Hasso B. Niemann, Christopher P. McKay, Sushil K. Atreya, Tetsuya Tokano, Marcello Fulchignoni, Fritz M. Neubauer, Institut für Geophysik und Meteorologie, Universität zu Köln (IGM), National Aeronautics and Space Administration, Ames Research Center, Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Università degli Studi di Padova = University of Padua (Unipd), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Pôle Planétologie du LESIA, Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), and NASA/Goddard Space Flight Center (NASA/GSFC)
- Subjects
Ice cloud ,Solar System ,Multidisciplinary ,Atmospheric sciences ,Methane ,Troposphere ,symbols.namesake ,chemistry.chemical_compound ,chemistry ,Convective storm detection ,symbols ,Environmental science ,Drizzle ,Precipitation ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Titan (rocket family) - Abstract
Saturn's moon Titan and the Earth are the only Solar System worlds where rain reaches the surface. Titan's rain may not be much like ours, as it's methane rain, and the atmospheric cycles of water and methane are very different. Two papers this week offer clues as to what a rainy day on Titan might be like. Hueso and Sanchez-Lavega use a numerical model to show that severe methane convective storms accompanied by intense precipitation may occur in certain conditions. These storms would be comparable to flash flood events on Earth. Tokano et al. present methane distribution and temperature data from instruments on board the Huygens probe. Huygens recently took images of landscapes suggestive of rivers or lake-beds, but the camera did not show any liquid. The new data point to the presence of weak drizzle-like rain. In contrast to clouds observed by telescopes or the Cassini spacecraft, the barely visible clouds encountered by Huygens are widespread, suggesting that rainfall occurs globally and may affect Titan's surface structures. In situ data from Saturn's moon Titan indicates an upper methane ice cloud and a lower, barely visible, liquid methane–nitrogen cloud, with a gap in between. The lower liquid cloud produces drizzle that reaches Titan's surface. Saturn's moon Titan shows landscapes with fluvial features1 suggestive of hydrology based on liquid methane. Recent efforts in understanding Titan's methane hydrological cycle have focused on occasional cloud outbursts near the south pole2,3,4 or cloud streaks at southern mid-latitudes5,6 and the mechanisms of their formation. It is not known, however, if the clouds produce rain or if there are also non-convective clouds, as predicted by several models7,8,9,10,11. Here we show that the in situ data on the methane concentration and temperature profile in Titan's troposphere point to the presence of layered optically thin stratiform clouds. The data indicate an upper methane ice cloud and a lower, barely visible, liquid methane-nitrogen cloud, with a gap in between. The lower, liquid, cloud produces drizzle that reaches the surface. These non-convective methane clouds are quasi-permanent features supported by the global atmospheric circulation, indicating that methane precipitation occurs wherever there is slow upward motion. This drizzle is a persistent component of Titan's methane hydrological cycle and, by wetting the surface on a global scale, plays an active role in the surface geology of Titan.
- Published
- 2006
34. Taxonomy of Centaurs and Trans-Neptunian Objects
- Author
-
Irina Belskaya, Marcello Fulchignoni, Mirel Birlan, M. A. Barucci, Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Institute of Astronomy [Kharkiv], V.N. Karazin Kharkiv National University (KhNU), Institut de Mécanique Céleste et de Calcul des Ephémérides (IMCCE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Observatoire de Paris, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)
- Subjects
Physics ,methods: statistical ,Solar System ,010504 meteorology & atmospheric sciences ,[PHYS.ASTR.EP]Physics [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,business.industry ,Group (mathematics) ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,Astronomy and Astrophysics ,Centaur ,Astrophysics ,01 natural sciences ,Red Color ,Interpretation (model theory) ,Set (abstract data type) ,techniques: photometric ,Optics ,Space and Planetary Science ,Taxonomy (general) ,0103 physical sciences ,Kuiper Belt ,Trans-Neptunian object ,business ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences - Abstract
The original publication is available at http://iopscience.iop.org/1538-3881/.; International audience; Trans-Neptunian objects (TNOs) and Centaurs display thewidest color diversity in comparison to other small solar system bodies. The investigation of their properties can help in understanding the evolution of these objects. In this paper we propose a classification scheme based on multivariate statistical analysis of a homogeneous, high-quality set of B - V, V - R, V - I , and V - J color indices. Analyzing a sample of 51 objects and using a high confidence level, four groups have been identified and named: BB, BR, IR, and RR. The group BB contains objects with neutral color and RR those with very red color, while the others have intermediate behavior. We extend the analysis to 84 other objects for which three colors are available, obtaining a preliminary classification. A tentative interpretation of these groups in terms of surface characteristics is given.
- Published
- 2005
35. NEO sizes, shapes and surface physical properties
- Author
-
Richard P. Binzel, A. Chantal Levasseur-Regourd, Marcello Fulchignoni, Marco Delbo, Service d'aéronomie (SA), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Department of Earth, Atmospheric and Planetary Sciences [MIT, Cambridge] (EAPS), and Massachusetts Institute of Technology (MIT)
- Subjects
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,Near-Earth object ,010504 meteorology & atmospheric sciences ,business.industry ,Comet ,General Engineering ,Energy Engineering and Power Technology ,Surface finish ,Albedo ,01 natural sciences ,Regolith ,Texture (geology) ,Astrobiology ,Optics ,Impact crater ,Asteroid ,0103 physical sciences ,business ,010303 astronomy & astrophysics ,Geology ,0105 earth and related environmental sciences - Abstract
The sizes, shapes, and surface or subsurface properties of Near Earth Objects (mostly asteroids, also inactive comet nuclei) are still poorly known, since any accurate determination requires in situ missions. It may nevertheless be estimated that the sizes of these irregular bodies range from a few tens of kilometres to a few tens of meters, with possibly about 1000 NEOs with sizes greater than 1 km. Their surfaces are estimated to be quite rough, and at least partially covered with regolith. To cite this article: A.C. Levasseur-Regourd et al., C. R. Physique 6 (2005).
- Published
- 2005
36. NEO Impact Consequences and Hazards
- Author
-
Marcello Fulchignoni, M. Antonietta Barucci, Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Pôle Planétologie du LESIA, Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), and Université Paris Cité (UPCité)
- Subjects
education.field_of_study ,business.industry ,Environmental resource management ,Population ,General Engineering ,Potentially hazardous object ,Energy Engineering and Power Technology ,Collision ,Geography ,Asteroid ,Impact energy ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Scale (map) ,business ,education - Abstract
International audience; A short overview of main characteristics of the impactor population from which major terrestrial impacts originated is given. This population includes the objects that may hit the Earth in the future (potentially hazardous asteroids, PHAs). An impact frequency (a way of measuring the probability of a given collision) versus impact energy (an index of the impact consequences) relationship is described on the basis of this analysis. The current state of actions started planetwide by the most developed countries to face the threat represented by an asteroid collision with the Earth is summarized. The `Torino scale', which assesses the risks connected with a discovery of a PHA in a simple and clear way is finally described. To cite this article: M. Fulchignoni, M.A. Barucci, C. R. Physique 6 (2005).
- Published
- 2005
37. A stratospheric balloon experiment to test the Huygens atmospheric structure instrument (HASI)
- Author
-
Francesca Ferri, Alessio Aboudan, P. F. Lion Stoppato, Manish R. Patel, Francesco Angrilli, G. Bianchini, Ari-Matti Harri, N. Ghafoor, Marcello Fulchignoni, A. Lehto, Giacomo Colombatti, V. Gaborit, Enrico Flamini, Carlo Bettanini, John C. Zarnecki, S. Bastianello, B. Hathi, Marco Antonello, Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Pôle Astronomie du LESIA, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Pôle Planétologie du LESIA, Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Université Paris Cité (UPCité), Università degli Studi di Padova = University of Padua (Unipd), Agenzia Spaziale Italiana (ASI), Planetary and Space Sciences Research Institute, The Open University, Walton Hall, and Finnish Meteorological Institute (FMI)
- Subjects
Instrument control ,Astronomy and Astrophysics ,Aerodynamics ,Atmosphere ,symbols.namesake ,Data acquisition ,Tilt sensor ,Space and Planetary Science ,Telemetry ,Parachuting ,symbols ,Environmental science ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Titan (rocket family) ,Remote sensing - Abstract
We developed a series of balloon experiments parachuting a 1:1 scale mock-up of the Huygens probe from an altitude just over 30 km to simulate at planetary scale the final part of the descent of the probe through Titan's lower atmosphere. The terrestrial atmosphere represents a natural laboratory where most of the physical parameters meet quite well the bulk condition of Titan's environment, in terms of atmosphere composition, pressure and mean density ranges, though the temperature range will be far higher. The probe mock-up consists of spares of the HASI sensor packages, housekeeping sensors and other dedicated sensors, and also incorporates the Huygens Surface Science Package (SSP) Tilt sensor and a modified version of the Beagle 2 UV sensor, for a total of 77 acquired sensor channels, sampled during ascent, drift and descent phase. An integrated data acquisition and instrument control system, simulating the HASI data-processing unit (DPU), has been developed, based on PC architecture and soft-real-time application. Sensor channels were sampled at the nominal HASI data rates, with a maximum rate of 1 kHz . Software has been developed for data acquisition, onboard storage and telemetry transmission satisfying all requests for real-time monitoring, diagnostic and redundancy. The mock-up of the Huygens probe mission was successfully launched for the second time (first launch in summer 2001, see Gaborit et al., 2001) with a stratospheric balloon from the Italian Space Agency Base “Luigi Broglio” in Sicily on May 30, 2002, and recovered with all sensors still operational. The probe was lifted to an altitude of 32 km and released to perform a parachuted descent lasting 53 min , to simulate the Huygens mission at Titan. Preliminary aerodynamic study of the probe has focused upon the achievement of a descent velocity profile reproducing the expected profile of Huygens probe descent into Titan. We present here the results of this experiment discussing their relevance in the analysis of the data which will be obtained during the Huygens mission at Titan.
- Published
- 2004
38. Near-IR spectroscopy of asteroids , , , and , potential targets for the Rosetta mission; remote observations campaign on IRTF
- Author
-
Maria Antonietta Barucci, Pierre Vernazza, Mirel Birlan, Richard P. Binzel, Irina Belskaya, Marcello Fulchignoni, Sonia Fornasier, and Schelte J. Bus
- Subjects
Physics ,010504 meteorology & atmospheric sciences ,Near-infrared spectroscopy ,Infrared telescope ,Astronomy ,Astronomy and Astrophysics ,Albedo ,01 natural sciences ,Remote observation ,Spectral line ,Astrobiology ,Mauna kea ,Space and Planetary Science ,Asteroid ,0103 physical sciences ,Spectroscopy ,010303 astronomy & astrophysics ,Instrumentation ,0105 earth and related environmental sciences - Abstract
In the frame of the international campaign to observe potential target asteroids for the Rosetta mission, remote observations have been carried out between Observatoire de Paris, in Meudon-France and the NASA Infrared Telescope Facility on Mauna Kea. The SpeX instrument was used in the 0.8–2.5 μm spectral region, for two observing runs in March and June 2003. This paper presents near-IR spectra of the asteroids 21 Lutetia, 89 Julia, 140 Siwa, 2181 Fogelin and 5480 (1989YK8). Near-IR spectra of the asteroids 21 Lutetia and 140 Siwa are flat and featureless. The spectrum of 89 Julia reveals absorption bands around 1 and 2 μm, which may indicate the presence of olivine and olivine-pyroxene mixtures and confirm the S-type designation. The small main-belt asteroids 2181 Fogelin and 5480 (1989YK8) are investigated spectroscopically for the first time. Near-IR spectra of these asteroids also show an absorption feature around 1 μm, which could be and indicator of igneous/metamorphic surface of the objects; new observations in visible as well as thermal albedo data are necessary to draw a reliable conclusion on the surface mineralogy of both asteroids.
- Published
- 2004
39. A statistical insight into the Edgeworth-Kuiper belt
- Author
-
A. Delsanti and Marcello Fulchignoni
- Subjects
Planetesimal ,Solar System ,Near-Earth object ,Minor-planet moon ,Planet ,Neptune ,Asteroid ,Nice model ,General Engineering ,Energy Engineering and Power Technology ,Astronomy ,Geology ,Astrobiology - Abstract
Ten years after the discovery of the first object entirely outside the orbit of Neptune, the number of detected Edgeworth-Kuiper Belt objects (EKBO) is close to 800: after the discovery of the asteroid 1 Ceres, it took 115 years to discover the same number of asteroids. These large comets dressed as asteroids are very elusive objects, challenging the observers with their faintness. As well as the comets and the asteroids, this group of objects represent a valuable source of information on the physical and chemical environment of the Solar System at the epoch of planet growth. In this paper we summarize the results of the first statistical studies of the bulk physical and chemical properties of EKBO, based on broad band photometry data. To cite this article: M. Fulchignoni, A.C. Delsanti, C. R. Physique 4 (2003).
- Published
- 2003
40. The Comas sola mission to test the HUYGENS/HASI instrument on board a stratospheric balloon
- Author
-
Michel Hamelin, Konrad Schwingenschuh, Gregorio J. Molina-Cuberos, Irmgard Jernej, Francesca Ferri, John C. Zarnecki, Håkan Svedhem, V. Brown, J. M. Jeronimo, Marcello Fulchignoni, T. Mäkinen, Rafael Rodrigo, Réjean Grard, J. J. López-Moreno, G.W. Leppelmeier, and L. Sabau
- Subjects
Physics ,Atmospheric Science ,Aerospace Engineering ,Astronomy and Astrophysics ,On board ,symbols.namesake ,Geophysics ,Space and Planetary Science ,symbols ,General Earth and Planetary Sciences ,Altimeter ,Atmosphere of Titan ,Titan (rocket family) ,Remote sensing ,Stratospheric balloon - Abstract
The HUYGENS Atmospheric Structure Instrument (HASI) was designed to characterise the atmosphere of Titan during the descent of the HUYGENS probe in the framework of the NASA/ESA CASSINI/HUYGENS mission in November 2004. A balloon campaign was conducted in Leon, Spain, in December 1995, in order to test the HASI hardware and software in the terrestrial atmosphere and investigate the influence of the HUYGENS probe on the electrical measurements in a real environment. The subsystems from the HASI instrument: the Pressure Profile, the Accelerometer, the Temperature Profile and the Permittivity, Wave and Altimetry packages with their corresponding sensors were accommodated on a HUYGENS 1:1 mock-up and launched by a stratospheric balloon crossing a distance of 340 km and reaching a maximum altitude of around 30 km. The Huygens mission at Titan was simulated by a drop test; the probe was separated from the balloon in order to descent to ground dragged by a parachute. Measurements have been performed both in the ascending and descending phases.
- Published
- 2002
41. [Untitled]
- Author
-
Athena Coustenis, J. A. M. McDonnell, G. Bianchini, John C. Zarnecki, V. Vanzani, Enrico Flamini, Konrad Schwingenschuh, Ari-Matti Harri, Peter Falkner, F.H. Neubauer, William J. Borucki, Alvin Seiff, A. Bar-Nun, G.W. Leppelmeier, Håkan Svedhem, Réjean Grard, M. A. Barucci, Giovanni Picardi, Arne Pedersen, J. J. López-Moreno, C. P. McKay, Francesco Angrilli, Michel Hamelin, Valerio Pirronello, Marcello Fulchignoni, Francesca Ferri, Rafael Rodrigo, and M. Coradini
- Subjects
Physics ,symbols.namesake ,Planetary science ,Schumann resonances ,Space and Planetary Science ,symbols ,Electric properties ,Astronomy and Astrophysics ,Atmosphere of Titan ,Titan (rocket family) ,Astrobiology ,Remote sensing - Abstract
The Huygens Atmospheric Structure Instrument (HASI) is a multi-sensor package which has been designed to measure the physical quantities characterising the atmosphere of Titan during the Huygens probe descent on Titan and at the surface. HASI sensors are devoted to the study of Titan's atmospheric structure and electric properties, and to provide information on its surface, whether solid or liquid.
- Published
- 2002
42. Instruments on board of space missions
- Author
-
Marcello Fulchignoni
- Subjects
Physics ,On board ,Focus (computing) ,business.industry ,Instrumentation (computer programming) ,Aerospace engineering ,business ,Space exploration - Abstract
I present here a short review about instrumentation for space missions, with a particular focus on the Cassini/Huygens probe and its main achievements.
- Published
- 2014
43. The 2000 Rosetta asteroid targets observational campaign: 140 Siwa and 4979 Otawara
- Author
-
S. Le Mouélic, Olivier Forni, E. Dotto, Maria Antonietta Barucci, A. Le Bras, Marcello Fulchignoni, Alain Doressoundiram, and Eric Quirico
- Subjects
Physics ,Rotation period ,Near-Earth object ,Space and Planetary Science ,Observatory ,Synodic day ,Asteroid ,Near-infrared spectroscopy ,Phase function ,Astronomy ,Astronomy and Astrophysics ,Astrophysics ,Planetary mass - Abstract
Photometric and spectroscopic observations of 140 Siwa and 4979 Otawara, targets of the Rosetta mission, have been carried out at the European Southern Observatory (ESO, Chile). The complete lightcurves in V and R of both asteroids and the Siwa spectrum in the range 0.95–2.52 μm have been obtained. We determined the precise synodic rotational period of 140 Siwa (18.495 h ± 0.005 h) and we confirmed the synodic rotational period of 4979 Otawara (2.707 h ± 0.005 h). The phase function has been obtained for both asteroids, allowing the determination of the HV and GV parameters: for 4979 Otawara HV = 14.62 mag, GV = 0.34; for 140 Siwa HV = 8.34 mag, GV = 0.17. The near infrared spectrum of Siwa does not show any spectral feature, which is consistent with a C/P type object.
- Published
- 2001
44. Solar wind as the origin of rapid reddening of asteroid surfaces
- Author
-
Mirel Birlan, Alessandro Rossi, Richard P. Binzel, Pierre Vernazza, Marcello Fulchignoni, Laboratoire d'Astrophysique de Marseille (LAM), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Institut de Mécanique Céleste et de Calcul des Ephémérides (IMCCE), Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Morphodynamique Continentale et Côtière (M2C), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS), Observatoire de Paris - Site de Meudon (OBSPM), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)
- Subjects
010504 meteorology & atmospheric sciences ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,Weathering ,engineering.material ,01 natural sciences ,Space weathering ,Astrobiology ,0103 physical sciences ,010303 astronomy & astrophysics ,Spectroscopy ,0105 earth and related environmental sciences ,Multidisciplinary ,Olivine ,85A04 ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,Astronomy ,J.2 Physical Sciences and Engineering ,Reflectivity ,Asteroids ,Solar wind ,Meteorite ,[SDU]Sciences of the Universe [physics] ,Asteroid ,engineering ,Geology - Abstract
International audience; A comparison of the laboratory reflectance spectra of meteorites with observations of asteroids revealed that the latter are much 'redder', with the spectral difference explained by 'space weather-ing' 1,2 , though the actual processes and timescales involved have remained controversial 3,4. A recent study 5 of young asteroid families concluded that they suffered only minimal space weathering. Here we report additional observations of those families, revealing that space weathering must be a very rapid process-the final colour of a silicate-rich asteroid is acquired shortly after its 'birth' (within 10 6 years of undergoing a catastrophic collision). This rapid timescale favours solar wind implantation as the main mechanism of space weathering, as laboratory experiments have shown that it is the most rapid of several competing processes. We further demonstrate the necessity to take account of composition when evaluating weathering effectiveness, as both laboratory and asteroid data show an apparent dependence of weathering on olivine abundance. The rapid colour change that we find implies that colour trends seen among asteroids are most probably due to compositional or surface-particle-size properties, rather than to different relative ages. Apparently fresh surfaces most frequently seen among small near-Earth asteroids may be the result of tidal shaking that rejuvenates their surfaces during planetary encounters
- Published
- 2009
45. Spectrophotometric Observations of Edgeworth–Kuiper Belt Objects
- Author
-
Alain Doressoundiram, David J. Tholen, M. A. Barucci, Monica Lazzarin, and Marcello Fulchignoni
- Subjects
Physics ,spectroscopy ,Solar System ,education.field_of_study ,Planetesimal ,Population ,Astronomy ,Astronomy and Astrophysics ,Astrophysics ,Accretion (astrophysics) ,Kuiper Belt Objects ,law.invention ,Telescope ,Space and Planetary Science ,law ,Trans-Neptunian object ,Formation and evolution of the Solar System ,education - Abstract
The Edgeworth–Kuiper Belt (EKB) objects are fossil remnants of the formation of the Solar System and they represent an important reservoir of primordial, thermally unprocessed material. The study of these objects has rapidly evolved in the last few years. New observational work allowed planetary scientists to investigate evolutionary and dynamical processes in the outer solar system, putting some constraints on, for example, the origin of comets and the accretion of planetesimals. The chemical and physical information on this population is still very poor: intensive observational studies are needed. For this reason we started a spectrophotometric observation program in 1997 at ESO with the NTT telescope to investigate the EKB. We present the obtained results for six objects (1994 JR 1 , 1994 TB, 1995 QY 9 , 1996 TL 66 , 1996 TO 66 , and 1996 TP 66 ). We analyzed all the B, V, R, and I data available in the literature to investigate some bulk properties. We found indications of a complex and inhomogeneous population.
- Published
- 1999
46. Compositional type characterization of Rosetta asteroid candidates
- Author
-
Alain Doressoundiram, C. A. Angeli, M. Florczak, Marcello Fulchignoni, Monica Lazzarin, and M. Antonietta Barucci
- Subjects
Physics ,Rosetta mission ,Asteroid candidate ,groundbased observations ,Space and Planetary Science ,Asteroid ,Astronomy ,Astronomy and Astrophysics ,Characterization (materials science) ,Astrobiology - Abstract
The final selection of the two Rosetta target asteroids will be made in a successive phase of the Rosetta project development, when the engineering parameters will be frozen. In this paper we present spectroscopic observations of the possible Rosetta candidates and we discuss the results obtained, particularly the definition of their compositional type. We examine the possibility to select some more “primitive” candidates. On the basis of its size and spectral type, we suggest including the asteroid 140 Siwa as one of the asteroid targets of the Rosetta mission.
- Published
- 1998
47. The near-Earth objects and their potential threat to our planet
- Author
-
M. A. Barucci, Marcello Fulchignoni, D. Perna, Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Observatoire de Paris - Site de Paris (OP), Centre National de la Recherche Scientifique (CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), and PSL Research University (PSL)-PSL Research University (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)
- Subjects
Physics ,[PHYS]Physics [physics] ,education.field_of_study ,Near-Earth object ,010504 meteorology & atmospheric sciences ,Meteoroid ,Population ,Astronomy ,Astronomy and Astrophysics ,Astrophysics ,Collision ,01 natural sciences ,Object (philosophy) ,Astrobiology ,13. Climate action ,Space and Planetary Science ,Planet ,Asteroid ,0103 physical sciences ,Trajectory ,education ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,010303 astronomy & astrophysics ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences - Abstract
The near-Earth object (NEO) population includes both asteroids (NEAs) and comet nuclei (NECs) whose orbits have perihelion distances q 140 m). These are big enough to cause, in the case of impact with Earth, destructive effects on a regional scale. Smaller objects can still produce major damage on a local scale, while the largest NEOs could endanger the survival of living species. Therefore, several national and international observational efforts have been started (i) to detect undiscovered NEOs and especially PHAs, (ii) to determine and continuously monitor their orbital properties and hence their impact probability, and (iii) to investigate their physical nature. Further ongoing activities concern the analysis of possible techniques to mitigate the risk of a NEO impact, when an object is confirmed to be on an Earth colliding trajectory. Depending on the timeframe available before the collision, as well as on the object’s physical properties, various methods to deflect a NEO have been proposed and are currently under study from groups of experts on behalf of international organizations and space agencies. This paper will review our current understanding of the NEO population, the scientific aspects and the ongoing space- and ground-based activities to foresee close encounters and to mitigate the effects of possible impacts.
- Published
- 2013
48. Detection of exposed H2O ice on the nucleus of comet 67P/Churyumov-Gerasimenko
- Author
-
Ivano Bertini, Ekkehard Kührt, Michael Küppers, Cesare Barbieri, Monica Lazzarin, P. L. Lamy, S. Fornasier, Gianrico Filacchione, Bernard Schmitt, Antoine Pommerol, Laurent Jorda, J. D. P. Deshapriya, Matteo Massironi, Gabriele Arnold, Holger Sierks, Dominique Bockelée-Morvan, Stubbe F. Hviid, C. Güttler, S. Fonti, F. Merlin, C. Leyrat, Cecilia Tubiana, J. B. Vincent, V. Da Deppo, A. Guilbert-Lepoutre, J.-R. Kramm, Marco Fulle, Mauro Ciarniello, Mohamed Ramy El-Maarry, Olivier Groussin, Detlef Koschny, Hans Rickman, F. Mancarella, L. M. Lara, Nicolas Thomas, M. T. Capria, N. Oklay, M. A. Barucci, W-H. Ip, Stéphane Erard, Maurizio Pajola, Priscilla Cerroni, G. Cremonese, Clement Feller, D. Perna, Andrea Raponi, Eric Quirico, J. J. Lopez Moreno, C. de Sanctis, Stefano Mottola, P. Drossart, B. J. R. Davidsson, Batiste Rousseau, Ernesto Palomba, R. Rodrigo, M. F. A'Hearn, J. L. Bertaux, Horst Uwe Keller, Pedro Hasselmann, Jörg Knollenberg, Marcello Fulchignoni, David Kappel, Fabrizio Capaccioni, Federico Tosi, Giampiero Naletto, Francesco Marzari, Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Istituto di Astrofisica e Planetologia Spaziali - INAF (IAPS), Istituto Nazionale di Astrofisica (INAF), Max-Planck-Institut für Sonnensystemforschung = Max Planck Institute for Solar System Research (MPS), Max-Planck-Gesellschaft, Physikalisches Institut [Bern], Universität Bern [Bern] (UNIBE), Dipartimento di Geoscienze [Padova], Università degli Studi di Padova = University of Padua (Unipd), Univers, Transport, Interfaces, Nanostructures, Atmosphère et environnement, Molécules (UMR 6213) (UTINAM), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC), Dipartimento di Fisica e Astronomia 'Galileo Galilei', Laboratoire d'Astrophysique de Marseille (LAM), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), International Space Science Institute [Bern] (ISSI), European Space Research and Technology Centre (ESTEC), Agence Spatiale Européenne = European Space Agency (ESA), Space Research Centre of Polish Academy of Sciences (CBK), Polska Akademia Nauk = Polish Academy of Sciences (PAN), Department of Physics and Astronomy [Uppsala], Uppsala University, Institut für Geophysik und Extraterrestrische Physik [Braunschweig] (IGEP), Technische Universität Braunschweig = Technical University of Braunschweig [Braunschweig], Department of Astronomy [College Park], University of Maryland [College Park], University of Maryland System-University of Maryland System, DLR Institut für Planetenforschung, Deutsches Zentrum für Luft- und Raumfahrt [Berlin] (DLR), PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), INAF - Osservatorio Astronomico di Padova (OAPD), Department of Information Engineering [Padova] (DEI), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Department of Physics [Lecce], Università del Salento [Lecce], INAF - Osservatorio Astronomico di Trieste (OAT), Institute of Space Science [Taiwan], National Central University [Taiwan] (NCU), Operations Department (ESAC), European Space Astronomy Centre (ESAC), Agence Spatiale Européenne = European Space Agency (ESA)-Agence Spatiale Européenne = European Space Agency (ESA), Instituto de Astrofísica de Andalucía (IAA), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), NASA Ames Research Center (ARC), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Ministerio de Economía y Competitividad (España), European Space Agency, Swedish National Space Agency, Agenzia Spaziale Italiana, German Centre for Air and Space Travel, Centre National D'Etudes Spatiales (France), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Max-Planck-Institut für Sonnensystemforschung (MPS), Universität Bern [Bern], Universita degli Studi di Padova, European Space Agency (ESA), Polska Akademia Nauk (PAN), Technische Universität Braunschweig [Braunschweig], IMPEC - LATMOS, European Space Agency (ESA)-European Space Agency (ESA), Consejo Superior de Investigaciones Científicas [Spain] (CSIC), Centre National d'Études Spatiales [Toulouse] (CNES)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), California Institute of Technology (CALTECH)-NASA, Université de Franche-Comté (UFC)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Centre National d'Études Spatiales [Toulouse] (CNES), ITA, USA, FRA, DEU, ESP, TWN, NLD, POL, SWE, and CHE
- Subjects
67P/Churyumov-Gerasimenko ,010504 meteorology & atmospheric sciences ,Comet ,Data analysis ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,Techniques: image processing ,Context (language use) ,01 natural sciences ,Spectral line ,Photometry ,individual: 67P/Churyumov-Gerasimenko [Comets] ,Methods: data analysis ,0103 physical sciences ,Comets ,medicine ,image processing [Techniques] ,data analysis [Methods] ,Techniques: imaging spectroscopy ,010303 astronomy & astrophysics ,Spectroscopy ,0105 earth and related environmental sciences ,Comets: individual: 67P/Churyumov-Gerasimenko ,Physics ,biology ,Pixel ,Spots ,Techniques: photometric ,imaging spectroscopy [Techniques] ,photometric [Techniques] ,Astronomy ,Astronomy and Astrophysics ,comets: individual: 67P/Churyumov-Gerasimenko – techniques: imaging spectroscopy – techniques: photometric – techniques: image processing – methods: data analysis ,biology.organism_classification ,comets: individual: 67P/Churyumov-Gerasimenko / techniques: imaging spectroscopy / techniques: photometric / techniques: image processing / methods: data analysis ,medicine.anatomical_structure ,Space and Planetary Science ,Absorption band ,Osiris ,Nucleus - Abstract
[Context] Since the orbital insertion of the Rosetta spacecraft, comet 67P/Churyumov-Gerasimenko (67P) has been mapped by OSIRIS camera and VIRTIS spectro-imager, producing a huge quantity of images and spectra of the comet's nucleus., [Aims] The aim of this work is to search for the presence of HO on the nucleus which, in general, appears very dark and rich in dehydrated organic material. After selecting images of the bright spots which could be good candidates to search for HO ice, taken at high resolution by OSIRIS, we check for spectral cubes of the selected coordinates to identify these spots observed by VIRTIS., [Methods] The selected OSIRIS images were processed with the OSIRIS standard pipeline and corrected for the illumination conditions for each pixel using the Lommel-Seeliger disk law. The spots with higher I/F were selected and then analysed spectrophotometrically and compared with the surrounding area. We selected 13 spots as good targets to be analysed by VIRTIS to search for the 2 μm absorption band of water ice in the VIRTIS spectral cubes., [Results] Out of the 13 selected bright spots, eight of them present positive HO ice detection on the VIRTIS data. A spectral analysis was performed and the approximate temperature of each spot was computed. The HO ice content was confirmed by modeling the spectra with mixing (areal and intimate) of HO ice and dark terrain, using Hapke's radiative transfer modeling. We also present a detailed analysis of the detected spots., The support of the national funding agencies of Germany (DLR), France (CNES), Italy (ASI), Spain (MEC), Sweden (SNSB), and the ESA Technical Directorate is gratefully acknowledged.
- Published
- 2016
49. The Lightcurve of 4179 Toutatis: Evidence for Complex Rotation
- Author
-
Valerij S. Shevchenko, Tomas Hudecek, Jean Lecacheux, Carol Neese, M. Antonietta Barucci, Leonid A. Akimov, Tsuko Nakamura, Vasilij G. Chiornij, Paolo Angelini, J.W. Young, O.B. Ezhkova, F. P. Velichko, C. A. Angeli, Claudia Venditti, Danilo Riccioli, François Colas, Peter Dentchev, Marcello Fulchignoni, Beatrice E. A. Mueller, Z.B. Korobova, Marc W. Buie, N. I. Koshkin, Peter V. Birch, Vasilij G. Shevchenko, Daniela Lazzaro, Michael C. Nolan, Elisabetta Dotto, S. Yu. Mel'Nikov, C. Blanco, Anna Caruso, Ben Zellner, Valdimir P. Kozhevnikov, M.Cristina De Sanctis, Nikolay Dorokhov, John R. Spencer, Roberta Venditti, Wayne Osborn, Alan W. Harris, Wieslaw Z. Wisniewski, Tadeusz Michalowski, Simon F. Green, Yurij N. Krugly, Ellen S. Howell, Petr Pravec, Valerij V. Kobelev, David J. Tholen, Alexander V. Kalashnikov, and Jack MacConnell
- Subjects
Physics ,Rotation period ,Observational evidence ,Photometry (astronomy) ,Amplitude ,Space and Planetary Science ,Asteroid ,Astronomy and Astrophysics ,Astrophysics ,Phase curve ,Rotation - Abstract
The Apollo asteroid 4179 Toutatis passed within 0.0242 AU of Earth in December 1992, and photometry was obtained by observers from at least 25 sites around the world, at solar phase angles between 121° and 0.2°. The phase curve is well described in the H, G system with a mean H of 15.3 and a slope parameter G of 0.10 ± 0.10. However, the rotational lightcurve is very unusual. The amplitude is large (1.2 magnitudes) and the rotation period is extremely long (several days). Most remarkably, the lightcurve does not appear to be periodic: it is unlikely that a single rotation period can account for the lightcurve even when the rapidly changing viewing and illumination geometry during the close Earth approach is taken into account, though strong lightcurve minima recurred approximately every 7.3 days. The likely explanation is that Toutatis has complex, tumbling, rotation with a characteristic period between 3 and 7 days. As noted by A. W. Harris (1994 Icarus 107, 209-211), the damping time scale from complex to simple rotation for a small, slowly rotating asteroid like Toutatis is so long that complex rotation is expected, but Toutatis is the first asteroid to show such strong observational evidence for complex rotation.
- Published
- 1995
50. Possible evidence for partial differentiation of asteroid Lutetia from Rosetta
- Author
-
Linda T. Elkins-Tanton, Ingo Richter, Marcello Fulchignoni, Benjamin P. Weiss, M. Antonietta Barucci, Colin Snodgrass, Richard P. Binzel, Jean-Baptiste Vincent, Martin Pätzold, Paul R. Weissman, Simone Marchi, Rita Schulz, Holger Sierks, Department of Earth, Atmospheric and Planetary Sciences [MIT, Cambridge] (EAPS), Massachusetts Institute of Technology (MIT), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Max-Planck-Institut für Sonnensystemforschung = Max Planck Institute for Solar System Research (MPS), Max-Planck-Gesellschaft, Solar System Exploration Research Virtual Institute (SSERVI), Southwest Research Institute [Boulder] (SwRI), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Rhenish Institute for Environmental Research (RIU), University of Cologne, Institut de Mécanique Céleste et de Calcul des Ephémérides (IMCCE), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Lille-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), European Space Research and Technology Centre (ESTEC), Agence Spatiale Européenne = European Space Agency (ESA), Max-Planck-Institut für Sonnensystemforschung (MPS), Max Planck Institute for Solar System Research (MPS), and European Space Agency (ESA)
- Subjects
[PHYS]Physics [physics] ,Planetesimal ,010504 meteorology & atmospheric sciences ,Metamorphic rock ,Astronomy and Astrophysics ,Crust ,engineering.material ,01 natural sciences ,Astrobiology ,Meteorite ,Space and Planetary Science ,Chondrite ,Asteroid ,0103 physical sciences ,Enstatite ,engineering ,Asteroid belt ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,010303 astronomy & astrophysics ,Geology ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences - Abstract
The petrologic diversity of meteorites demonstrates that planetesimals ranged from unmelted, variably metamorphosed aggregates to fully molten, differentiated bodies. However, partially differentiated bodies have not been unambiguously identified in the asteroid belt. New constraints on the density, composition, and morphology of 21 Lutetia from the Rosetta spacecraft indicate that the asteroid's high bulk density exceeds that of most known chondritic meteorite groups, yet its surface properties resemble those of some carbonaceous and enstatite chondrite groups. This indicates that Lutetia likely experienced early compaction processes like metamorphic sintering. It may have also partially differentiated, forming a metallic core overlain by a primitive chondritic crust.
- Published
- 2012
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.