40 results on '"Marcaillou, B."'
Search Results
2. The Norfolk Ridge: A Proximal Record of the Tonga‐Kermadec Subduction Initiation
- Author
-
Collot, J, Sutherland, R., Etienne, S., Patriat, Martin, Roest, Walter, Marcaillou, B., Clerc, C., Stratford, W., Mortimer, N., Juan, C., Bordenave, A., Schnurle, Philippe, Barker, D., Williams, S., Wolf, S., Crundwell, M., Collot, J, Sutherland, R., Etienne, S., Patriat, Martin, Roest, Walter, Marcaillou, B., Clerc, C., Stratford, W., Mortimer, N., Juan, C., Bordenave, A., Schnurle, Philippe, Barker, D., Williams, S., Wolf, S., and Crundwell, M.
- Abstract
Norfolk Ridge bounds the northeastern edge of the continent of Zealandia and is proximal to where Cenozoic Tonga-Kermadec subduction initiation occurred. We present and analyze new seismic reflection, bathymetric and rock data from Norfolk Ridge that show it is composed of a thick sedimentary succession and that it was formed and acquired its present-day ridge physiography and architecture during Eocene to Oligocene uplift, emergence and erosion. Contemporaneous subsidence of the adjacent New Caledonia Trough shaped the western slope of Norfolk Ridge and was accompanied by volcanism. Neogene extension along the eastern slope of Norfolk Ridge led to the opening of the Norfolk Basin. Our observations reveal little or no contractional deformation, in contrast to observations elsewhere in Zealandia, and are hence significant for understanding the mechanics of subduction initiation. We suggest that subduction nucleated north of Norfolk Ridge and propagated rapidly along the ridge during the period 40-35 Ma, giving it a linear and narrow shape. Slab roll-back following subduction initiation may have preserved the ridge and created its eastern flank. Our observations suggest that pre-existing structures, which were likely inherited from Cretaceous Gondwana subduction, were well-oriented to propagate rupture and create self-sustaining subduction. Key Points We present new marine geophysical and geological data of Norfolk Ridge located along the northeastern edge of the Zealandia continent We show that the ridge is not inherited from Cretaceous rifting that led to isolation of Zealandia but from the TECTA Cenozoic tectonic event Analysis of the structure and evolution of Norfolk Ridge underpins our understanding of tectonic processes of subduction initiation Plain Language Summary Plate tectonic theory established and proved that the surface of Earth is composed of rigid moving plates, but it remains unclear how and why these plates sometimes re-configure their boundaries an
- Published
- 2023
- Full Text
- View/download PDF
3. The Norfolk Ridge: A Proximal Record of the Tonga‐Kermadec Subduction Initiation
- Author
-
Collot, J., primary, Sutherland, R., additional, Etienne, S., additional, Patriat, M., additional, Roest, W. R., additional, Marcaillou, B., additional, Clerc, C., additional, Stratford, W., additional, Mortimer, N., additional, Juan, C., additional, Bordenave, A., additional, Schnurle, P., additional, Barker, D., additional, Williams, S., additional, Wolf, S., additional, and Crundwell, M., additional
- Published
- 2023
- Full Text
- View/download PDF
4. Origin of an enigmatic regional Mio-Pliocene unconformity on the Demerara plateau
- Author
-
Marsset, T., Bayon, G., Cathalot, C., Caprais, J.C., Bermell, S., Sotin, C., Hebert, B., Mercier de Lépinay, M., Lebrun, J.F., Marcaillou, B., Heuret, A., Droz, L., Graindorge, D., Poetisi, E., Berrenstein, H., Pattier, F., Loncke, L., Imbert, P., Gaullier, V., Basile, C., Maillard, A., Roest, W.R., Patriat, M., and Vendeville, B.C.
- Published
- 2015
- Full Text
- View/download PDF
5. Tectonic and sedimentary architecture of the Karukéra spur: A record of the Lesser Antilles fore-arc deformations since the Neogene
- Author
-
De Min, L., Lebrun, J.-F., Cornée, J.-J., Münch, P., Léticée, J.L., Quillévéré, F., Melinte-Dobrinescu, M., Randrianasolo, A., Marcaillou, B., and Zami, F.
- Published
- 2015
- Full Text
- View/download PDF
6. Thermally-constrained fluid circulation and seismicity in the Lesser Antilles subduction zone
- Author
-
Ezenwaka, K., primary, Marcaillou, B., additional, Laigle, M., additional, Klingelhoefer, F., additional, Lebrun, J.-F., additional, Paulatto, M., additional, Biari, Y., additional, Rolandone, F., additional, Lucazeau, F., additional, Heuret, A., additional, Pichot, T., additional, and Bouquerel, H., additional
- Published
- 2022
- Full Text
- View/download PDF
7. Deep structure of the Demerara Plateau and its two-fold tectonic evolution: from a volcanic margin to a Transform Marginal Plateau, insights from the conjugate Guinea Plateau
- Author
-
Graindorge, David, Museur, Thomas, Klingelhoefer, Frauke, Roest, Walter, Basile, C., Loncke, L., Sapin, F., Heuret, A., Perrot, Julie, Marcaillou, B., Lebrun, J-f, Déverchère, Jacques, Graindorge, David, Museur, Thomas, Klingelhoefer, Frauke, Roest, Walter, Basile, C., Loncke, L., Sapin, F., Heuret, A., Perrot, Julie, Marcaillou, B., Lebrun, J-f, and Déverchère, Jacques
- Abstract
Transform marginal Plateaus (TMPs) are large and flat structures commonly found in deep oceanic domains, but origin and relationship to adjacent oceanic lithosphere remain poorly understood. This paper focuses on two conjugate TMPs, the Demerara Plateau off Suriname and French Guiana and the Guinea Plateau, located at the junction of the Jurassic Central Atlantic and the Cretaceous Equatorial Atlantic Oceans. The study helps to understand (1) the tectonic history of both Demerara and Guinea Plateaus, (2) the relationship between the Demerara Plateau and the adjacent oceanic domains and finally, (3) to throw light on the formation of Transform Marginal Plateaus (TMPs). We analyze two existing wide-angle seismic derived velocity models from the MARGATS seismic experiment (Demerara Plateau), and adjacent composite industrial seismic lines covering the Demerara and Guinea Plateaus. The Demerara Plateau displays a 30 km thick crust, subdivided into 3 layers, including a high velocity lower crust (HVLC). The velocities and velocity gradients do not fit values of typical continental crust but instead correspond to volcanic margin or Large Igneous Province (LIP) type crusts. We propose that the, possibly continental, lower crust is intruded by magmatic material and that the upper crustal layer is made of extrusive volcanic rocks of the same magmatic origin, forming thick seaward (westward) dipping reflectors (SDRs) sequences. This SDR complex extends to the Guinea Plateau as well and was emplaced during hotspot (Sierra Leone)-related volcanic rifting preceding the Jurassic opening of the Central Atlantic and forming the western margin of the plateau. N-S composite lines linking Demerara and Guinea plateaus reveal the spatial extent of the SDR complex but also a preexisting basement ridge separating the two plateaus. The entire Demerara-Guinea margin would therefore be an inherited Jurassic volcanic margin bordering the Central Atlantic Ocean to the east, with as a possible
- Published
- 2022
- Full Text
- View/download PDF
8. Thermally-constrained fluid circulation and seismicity in the Lesser Antilles subduction zone
- Author
-
Ezenwaka, K., Marcaillou, B., Laigle, M., Klingelhoefer, Frauke, Lebrun, J.-f., Paulatto, M., Biari, Y., Rolandone, F., Lucazeau, F., Heuret, A., Pichot, T., Bouquerel, H., Ezenwaka, K., Marcaillou, B., Laigle, M., Klingelhoefer, Frauke, Lebrun, J.-f., Paulatto, M., Biari, Y., Rolandone, F., Lucazeau, F., Heuret, A., Pichot, T., and Bouquerel, H.
- Abstract
At subduction zones, fluid circulation and elevated pore pressure are key factors controlling the seismogenic behavior along the plate interface by reducing absolute fault strength, increasing the time return of high magnitude co-seismic rupture and favoring aseismic slip. The Lesser Antilles is an end-member subduction zone where the slow subduction of numerous trans-oceanic fracture zones and patches of pervasively fractured, hydrated and serpentinized exhumed mantle rocks increase the water input. Heat-flow variations measured in the trench and the forearc during the Antithesis 1 cruise reveal heat advection by fluid circulation and shed a new light onto the thermal control of seismicity location in the subduction zone. In the Northern Lesser Antilles, heat-flow anomalies, negative in the trench and positive in the forearc, reveal a ventilated fluid circulation with downward percolation of cold fluids at the sediment-starved, pervasively fractured trench and upward discharge of warm fluids through the Tintamarre Fault Zone in the forearc. In contrast, in the Central Lesser Antilles, a positive heat-flow anomaly at the trench and the accretionary wedge is typical of an insulated fluid circulation where warm fluids invade the plate interface flowing updip from the subduction depths up to the trench. The investigated margin segments correspond with a very low number of interplate thrust earthquakes, illustrating the frequent statement that fluids in subduction zones tend to reduce the interplate coupling, favor slow to aseismic slip behavior, and increase the time return of large seismic events. Moreover, the location of intraslab, and supraslab earthquakes at depth beneath the Central Lesser Antilles suggest a close relation to temperature-related dehydration reactions.
- Published
- 2022
- Full Text
- View/download PDF
9. Caribbean Plate Boundaries Control on the Tectonic Duality in the Back‐Arc of the Lesser Antilles Subduction Zone During the Eocene
- Author
-
Cerpa, N. G., primary, Hassani, R., additional, Arcay, D., additional, Lallemand, S., additional, Garrocq, C., additional, Philippon, M., additional, Cornée, J.‐J., additional, Münch, P., additional, Garel, F., additional, Marcaillou, B., additional, Mercier de Lépinay, B., additional, and Lebrun, J.‐F., additional
- Published
- 2021
- Full Text
- View/download PDF
10. Elongated giant seabed polygons and underlying polygonal faults as indicators of the creep deformation of Pliocene to recent sediments in the Grenada Basin, Caribbean Sea
- Author
-
Gay, Aurelien, Padron, C., Meyer, S., Beaufort, D., Oliot, E., Lallemand, S., Marcaillou, B., Philippon, M., Cornée, J‐j., Audemard, F., Lebrun, J‐f., Klingelhoefer, Frauke, Mercier De Lepinay, B., Münch, P., Garrocq, C., Boucard, M., Schenini, L., The Garanti Cruise Team, Géosciences Montpellier, Institut national des sciences de l'Univers (INSU - CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université des Antilles (UA), Laboratoire Géodynamique et enregistrement Sédimentaire (LGS), Géosciences Marines (GM), Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER), Département Géosciences [Université de Poitiers], Université de Poitiers, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Géoazur (GEOAZUR 7329), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud]), Universidad Nacional de San Luis [San Luis] (UNSL), ANR-17-CE31-0009,GAARAnti,Pont terrestre 'GAARlandia' vs voies de dispersion à travers les Petites Antilles–Couplage entre dynamique de la subduction et processus de l'évolution des espèces dans le domaine des Caraïbes.(2017), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Montpellier (UM)-Université des Antilles (UA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Géodynamique et enregistrement Sédimentaire - Geosciences Marines (GM-LGS), and Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)
- Subjects
010504 meteorology & atmospheric sciences ,seabed polygons ,Outcrop ,[SDU.STU.GP]Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph] ,Fault (geology) ,Structural basin ,Deformation (meteorology) ,010502 geochemistry & geophysics ,01 natural sciences ,fluid seep ,Paleontology ,Geochemistry and Petrology ,14. Life underwater ,Forearc ,Seabed ,0105 earth and related environmental sciences ,geography ,geography.geographical_feature_category ,Subsidence ,15. Life on land ,Geophysics ,Creep ,volumetric contraction ,Geology ,polygonal faults ,creep deformation - Abstract
International audience; Based on 2D seismic profiles, multibeam and seabed grab cores acquired during the Garanti cruise in 2017, 1–5 km wide seabed giant polygons were identified in the Grenada basin, covering a total area of ∼55,000 km2, which is the largest area of outcropping polygonal faults (PF) ever found on Earth so far. They represent the top part of an active 700–1,200 m thick underlying polygonal fault system (PFS) formed due to the volumetric contraction of clay- and smectite-rich sediments, initiated in the sub-surface at the transition between the Early to Middle Pliocene. The short axes of the best-fit ellipses obtained from a graphical center-to-center method were interpreted as the local orientation of a preferential contraction perpendicular to the creep deformation of slope sediments. In the North Grenada Basin, the polygons are relatively regular, but their short axes seem to be parallel to a N40°E extension recently evidenced in the forearc, possibly extending in the backarc, but not shown in the study area. They are most probably related to a progressive burial due to a homogeneous subsidence. In the South Grenada Basin, the polygons are more elongated and their axes are progressively rotating southeastward toward the depocenter, indicating a creep deformation toward the center of the basin created by a differential subsidence. Seabed polygons and underlying PF could thus be indicative of the deformation regime of shallow sediments related to main slopes controlled by two different basin architectures.
- Published
- 2021
- Full Text
- View/download PDF
11. Paleogene V-shaped basins and Neogene subsidence of the Northern Lesser Antilles Forearc
- Author
-
Boucard, M, Marcaillou, B, Lebrun, Jf, Laurencin, M, Klingelhoefer, Frauke, Laigle, M, Lallemand, S, Schenini, L, Graindorge, David, Cornee, Jj, Munch, P, Philippon, M, The Antithesis 1, 3 And Garanti Scientific Teams., Boucard, M, Marcaillou, B, Lebrun, Jf, Laurencin, M, Klingelhoefer, Frauke, Laigle, M, Lallemand, S, Schenini, L, Graindorge, David, Cornee, Jj, Munch, P, Philippon, M, and The Antithesis 1, 3 And Garanti Scientific Teams.
- Abstract
Oblique collision of buoyant provinces against subduction zones frequently results in individualizing and rotating regional-scale blocks. In contrast, the collision of the Bahamas Bank against the Northeastern Caribbean Plate increased the margin convexity triggering forearc fragmentation into small-scale blocks. This deformation results in a prominent >450- km-long sequence of V-shaped basins that widens trenchward separated by elevated spurs, in the Northern Lesser Antilles (NLA, i.e. Guadeloupe to Virgin Island). In absence of deep structure imaging, various competing models were proposed to account for this faults-bounded Basins-and-Spurs System. High-resolution bathymetric and deep multichannel seismic data acquired during cruises ANTITHESIS1-3, reveal a drastically different tectonic evolution of the NLA forearc. During Eocene-Oligocene time, the NLA margin accommodated the Bahamas Bank collision and the consecutive margin convex bending by trench-parallel extension along N40- 90°-trending normal faults, opening V-shaped valleys in the forearc. Backarc spreading in the Kalinago Basin and block rotations went along with this tectonic phase, which ends up with tectonic uplifts and an earliest-middle Miocene regional emersion phase. Post middle Miocene, regional subsidence and tectonic extension in the forearc is partly accommodated along the newly-imaged N300°-trending, 200-km-long Tintamarre Normal Faults Zone. This drastic subsidence phase reveals vigorous margin basal erosion, which likely generated the synchronous westward migration of the volcanic arc. Thus, unlike widely-accepted previous theoretical models, the first deep seismic images in the NLA forearc show that the NE-SW faulting and the prominent V-Shaped valleys result from a past and sealed tectonic phase related to the margin bending and consecutive blocks rotation.
- Published
- 2021
- Full Text
- View/download PDF
12. Caribbean plate boundaries control on the tectonic duality in the back‐arc of the Lesser Antilles subduction zone during the Eocene
- Author
-
Cerpa, N. G., Hassani, R., Arcay, D., Lallemand, S., Garrocq, C., Philippon, M., Cornée, J.‐j., Münch, P., Garel, F., Marcaillou, B., Mercier De Lépinay, B., Lebrun, J.‐f., Cerpa, N. G., Hassani, R., Arcay, D., Lallemand, S., Garrocq, C., Philippon, M., Cornée, J.‐j., Münch, P., Garel, F., Marcaillou, B., Mercier De Lépinay, B., and Lebrun, J.‐f.
- Abstract
The Eocene tectonic evolution of the easternmost Caribbean Plate (CP) boundary, i.e. the Lesser Antilles subduction zone (LASZ), is debated. Recents works shed light on a peculiar period of tectonic duality in the arc/back-arc regions. A compressional-to-transpressional regime occurred in the north, while rifting and seafloor spreading occurred in Grenada basin to the south. The mechanism for this strong spatial variation and its evolution through time has yet to be established. Here, using 3-D subduction mechanical models, we evaluate whether the change in the trench-curvature radius at the northeast corner of the CP could have modulated the duality. We assume asymmetrical CP boundaries at the north (from east to west: oblique subduction to strike-slip) and at the south (subduction-transform edge propagator-like behavior). Regardless of the imposed trench curvature, the southern half of our modeled CP undergoes a NW-to-W-oriented extension due to the tendency of the southernmost part of the South-America oceanic slab to rollback. In contrast, the tectonic regime in the northeast corner of the CP depends on the trench-curvature radius. A low radius promotes transtension-to-transpression, with a NE-oriented compressive component of the principal stress. A high radius largely reduces the compressive component and promotes an extensional regime similar to that in the south. We thus propose that an initially low-curvature radius of the NE-LASZ triggered the tectonic N-S duality in the Eocene and led to an ephemeral period of transpression/compression at the north. However, an additional mechanism might have been required to locally enhance compression.
- Published
- 2021
- Full Text
- View/download PDF
13. The Bunce Fault and Strain Partitioning in the Northern Lesser Antilles
- Author
-
Laurencin, M., Marcaillou, B., Graindorge, David, Lebrun, J.‐f., Klingelhoefer, Frauke, Boucard, M., Laigle, M., Lallemand, S., Schenini, L., Laurencin, M., Marcaillou, B., Graindorge, David, Lebrun, J.‐f., Klingelhoefer, Frauke, Boucard, M., Laigle, M., Lallemand, S., and Schenini, L.
- Abstract
Strain partitioning related to oblique plate convergence has long been debated in Northern Lesser Antilles. Geophysical data acquired during the ANTITHESIS cruises highlight that the sinistral strike‐slip Bunce Fault develops along the vertical, long, and linear discontinuity between the sedimentary wedge and a more rigid backstop. The narrowness of the 20‐ to 30‐km‐wide accretionary wedge and its continuity over ~850 km is remarkable. The Bunce Fault extends as far south as 18.5°N where it anastomoses within the accretionary prism where the sharp increase in convergence obliquity possibly acts as a mechanical threshold. Surface traces related to subducting seamounts suggest that 80% of the lateral component of the convergent motion is taken up by internal deformation within the accretionary prism and by the Bunce Fault. The absence of crustal‐scale, long‐term tectonic system south of the Anegada Passage casts doubt upon the degree of strain partitioning in the Northern Lesser Antilles. Plain Language Summary Lithospheric plates are frequently bounded by subduction zones where oceanic plates underthrust overriding plates. In most cases, this convergence is oblique to the margin, its resulting tectonic deformation is generally due to margin‐normal and margin‐parallel components of the plate convergence vector. At the Northern Lesser Antilles, the North American Plate subducts beneath the Caribbean Plate with oblique convergence increasing from Guadeloupe to Virgin Islands. This study aims to analyze and resolve the tectonic deformation along this margin. We acquired marine geophysical data during ANTITHESIS cruises (2014–2016) to image the seafloor and the crustal structure. We place a particular emphasis on the strike‐slip Bunce Fault, which extends over ~850 km, including a newly discovered 350‐km segment, 20–30 km landward from the trench. Although long strike‐slip faults have already been observed at oblique subduction zones, the proximity of the Bunce Fault to t
- Published
- 2019
- Full Text
- View/download PDF
14. Influence of increasing convergence obliquity and shallow slab geometry onto tectonic deformation and seismogenic behavior along the Northern Lesser Antilles zone
- Author
-
Laurencin, M., Graindorge, D., Klingelhoefer, F., Marcaillou, B., and Evain, M.
- Published
- 2018
- Full Text
- View/download PDF
15. Characterizing the Neogene tectono-sedimentary evolution of the Northern Lesser Antilles forearc: a land-sea study
- Author
-
Jean-Len Leticee, jean-jacques cornée, Leveneur, E., Marcelle Boudagher-Fadel, Quillévéré Frédéric, Melinte-Dobrinescu, M., Melody Philippon, Philippe Munch, Muriel Laurencin, Marcaillou, B., Klingelhoefer, F., Lebrun, J. F., Serge Lallemand, Géosciences Montpellier, Institut national des sciences de l'Univers (INSU - CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université des Antilles (UA), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement [Lyon] (LGL-TPE), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École normale supérieure - Lyon (ENS Lyon), Laboratoire Géosciences Océan (LGO), Université de Bretagne Sud (UBS)-Université de Brest (UBO)-Institut Universitaire Européen de la Mer (IUEM), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD), Géoazur (GEOAZUR 7329), Institut national des sciences de l'Univers (INSU - CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Centre National de la Recherche Scientifique (CNRS)-Observatoire de la Côte d'Azur, Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA), Unité de recherche Géosciences Marines (Ifremer) (GM), Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Montpellier (UM)-Université des Antilles (UA)-Centre National de la Recherche Scientifique (CNRS), Institut Français de Recherche pour l'Exploitation de la Mer - Brest (IFREMER Centre de Bretagne), Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Bretagne Sud (UBS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud]), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Université de Bretagne Sud (UBS)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS), and Géosciences Marines (GM)
- Subjects
[SDU.STU]Sciences of the Universe [physics]/Earth Sciences - Abstract
International audience; In the frame of the ANR program GAARanti, aiming to track regional emersion surfaces and potential timing of land emersion or drowning, we conducted new field studies in islands belonging to the Anguilla Bank (Saint Barthélémy, Saint Martin, Tintamarre and Anguilla), the northernmost bank located in the forearc of the Lesser Antilles subduction zone and south of the Anegada passage. Our new micropaleontological, sedimentological and paleoenvironmental investigations allow a highly accurate calibration of the Neogene successions using large benthic foraminifers, planktonic foraminifers and calcareous nannofossils. We determine three main regional unconformities cropping out on the islands of the Anguilla bank.Interpretations of seismic lines acquired during the AntiTheSis (2016) and GARANTI (2017) cruises allow to reconstruct the tectono-sedimentary evolution of the offshore forearc basins, between South Saba Bank and Sombrero Basin. We use our well constrained onshore dataset and petroleum industry wells drilled in the Saba Bank to propose a constrained sismostratigraphy of offshore basins and onshore-offshore correlations.At regional scale, we identify three main unconformities dated: (1) Late Eocene, (2) Mid Miocene (ca 15 Ma) and (3) Zanclean (4 Ma).The Late Eocene unconformity is related to compressional tectonics and led to the emergence of most of our study area. Then subsidence occurred and topographic depressions were infilled by Oligocene to Early Miocene deposits, partly controlled by extensional fault activity along NW-SE and ENE-WSW faults systems bounding the Kalinago Basin and Anguilla Bank, respectively. The Mid Miocene unconformity is related to tectonics with increasing importance from south to north, thus probably related to the onset of the opening of Anegada Passage. This unconformity is related to emergence and erosion on the Anguilla and Saba Banks. The northern Antilles then subsided and most of basins reveal passive infilling during Middle Miocene to Pliocene. The Zanclean unconformity is related to localized uplifts that led to the final emergence of Anguilla, Tintamarre and St Martin carbonate platforms.
- Published
- 2018
16. The Bunce Fault and Strain Partitioning in the Northern Lesser Antilles
- Author
-
Laurencin, M., primary, Marcaillou, B., additional, Graindorge, D., additional, Lebrun, J.‐F., additional, Klingelhoefer, F., additional, Boucard, M., additional, Laigle, M., additional, Lallemand, S., additional, and Schenini, L., additional
- Published
- 2019
- Full Text
- View/download PDF
17. Paleogene V‐Shaped Basins and Neogene Subsidence of the Northern Lesser Antilles Forearc.
- Author
-
Boucard, M., Marcaillou, B., Lebrun, J.‐F., Laurencin, M., Klingelhoefer, F., Laigle, M., Lallemand, S., Schenini, L., Graindorge, D., Cornée, J.‐J., Münch, P., Philippon, M., and the ANTITHESIS and GARANTI Scientific Teams
- Abstract
Oblique collision of buoyant provinces against subduction zones frequently results in individualizing and rotating regional‐scale blocks. In contrast, the collision of the Bahamas Bank against the Northeastern Caribbean Plate increased the margin convexity triggering forearc fragmentation into small‐scale blocks. This deformation results in a prominent sequence of V‐shaped basins that widens trenchward separated by elevated spurs, in the Northern Lesser Antilles (NLA, i.e., Guadeloupe to Virgin Island). In absence of deep structure imaging, various competing models were proposed to account for this Basins‐and‐Spurs System. However, high‐resolution bathymetric and deep multichannel seismic data acquired during cruises ANTITHESIS 1‐3, reveal a drastically different tectonic evolution of the NLA Forearc. During Eocene‐Oligocene time, the Caribbean Northeastern Boundary accommodated the Bahamas Bank collision and the subsequent margin convex bending by major left‐lateral strike‐slip faults systems in the Greater Antilles and by trench‐parallel extension along N40°–90°‐trending normal faults in the NLA. Block rotations, forearc fracturing, and V‐shaped valleys opening went along with this tectonic phase, which ends up with tectonic uplifts and an earliest‐middle Miocene regional emersion phase. Post middle Miocene regional subsidence and tectonic extension in the forearc are partly accommodated along the newly imaged N300°‐trending, 200‐km‐long normal Tintamarre Faults Zone. This drastic subsidence phase reveals vigorous margin basal erosion, which likely generated the synchronous westward migration of the volcanic arc. Thus, unlike widely accepted previous theoretical models, the NE‐SW faulting and the prominent V‐shaped valleys result from a past and sealed tectonic phase related to the margin bending and subsequent blocks rotation. Key Points: The N. Lesser Antilles has undergone Eocene‐Oligocene NW‐SE extention and post mid Miocene NE‐SW extension separated by a regional emersionFault‐bounded V‐Shaped valleys result from past and sealed NW‐SE extention due to Bahamas Bank collision, margin bending, and blocks rotationDrastic post mid Miocene subsidence and synchronous westward migration of the volcanic arc reveal vigorous subduction‐related margin erosion [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
18. Deepwater fold-and-thrust belt along New Caledonia's western margin: relation to post-obduction vertical motions
- Author
-
Collot, J., Patriat, M., Etienne, S., Rouillard, P., Soetaert, F., Juan, C, Marcaillou, B., Palazzin, Giulia, Clerc, Camille, Maurizot, P., Pattier, F., Tournadour, E., Sevin, B., Privat, A., Service Geologique de la Nouvelle-Calédonie, Direction de l'Industrie, des Mines et de l'Energie, Service de la Géologie de Nouvelle Calédonie, Direction de l'Industrie, des Mines et de l'Energie de Nouvelle Calédonie, Géoazur (GEOAZUR 7329), Institut national des sciences de l'Univers (INSU - CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Centre National de la Recherche Scientifique (CNRS)-Observatoire de la Côte d'Azur, Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA), Institut des Sciences de la Terre d'Orléans - UMR7327 (ISTO), Bureau de Recherches Géologiques et Minières (BRGM) (BRGM)-Observatoire des Sciences de l'Univers en région Centre (OSUC), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS), Géodynamique - UMR7327, Institut national des sciences de l'Univers (INSU - CNRS)-Université d'Orléans (UO)-Bureau de Recherches Géologiques et Minières (BRGM) (BRGM)-Institut des Sciences de la Terre d'Orléans - UMR7327 (ISTO), PSL Research University (PSL)-PSL Research University (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Bureau de Recherches Géologiques et Minières (BRGM) (BRGM)-Observatoire des Sciences de l'Univers en région Centre (OSUC), PSL Research University (PSL)-PSL Research University (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Insulaire du Vivant et de l'Environnement (LIVE), Université de la Nouvelle Calédonie (UNC), Université Côte d'Azur (UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Centre National de la Recherche Scientifique (CNRS)-Observatoire de la Côte d'Azur, Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA), Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers en région Centre (OSUC), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Bureau de Recherches Géologiques et Minières (BRGM) (BRGM), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Bureau de Recherches Géologiques et Minières (BRGM) (BRGM)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers en région Centre (OSUC), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Observatoire de Paris, Université de la Nouvelle-Calédonie (UNC), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud]), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Bureau de Recherches Géologiques et Minières (BRGM) (BRGM)-Observatoire des Sciences de l'Univers en région Centre (OSUC), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)
- Subjects
[SDU.STU.TE]Sciences of the Universe [physics]/Earth Sciences/Tectonics ,isostasy ,obduction ,deepwater fold-and-thrust belt - Abstract
International audience; Classically, deepwater fold-and-thrust belts are classified in two main types, depending if they result from near- or far-field stresses and the understanding of their driving and triggering mechanism is poorly known. We present a geophysical dataset off the western margin of New Caledonia (SW Pacific) that reveals deformed structures of a deepwater fold-and-thrust belt that we interpret as a near-field gravity-driven system, which is not located at a rifted passive margin. The main factor triggering deformation is inferred to be oversteepening of the margin slope by post-obduction isostatic rebound. Onshore erosion of abnormally-dense obducted material, combined with sediment loading in the adjacent basin, has induced vertical motions that have caused oversteepening of the margin. Detailed morpho-bathymetric, seismic stratigraphic and structural analysis reveals that the fold-and-thrust belt extends 200 km along the margin, and 50 km into the New Caledonia Trough. Deformation is rooted at depths greater than 5 km beneath the seafloor, affects an area of 3500 km2, and involves a sediment volume of approximately 13 000 km3. This deformed belt is organized into an imbricate fan system of faults, and one out-of-sequence thrust fault affects the seabed. The thrust faults are deeply rooted in the basin along a low-angle floor thrust and connected to New Caledonia Island along a major detachment. This study not only provides a better knowledge of the New Caledonia margin, but also provides new insight into the mechanisms that trigger deepwater fold-and-thrust belts.
- Published
- 2017
- Full Text
- View/download PDF
19. Deepwater fold-and-thrust belt along New Caledonia's western margin: relation to post-obduction vertical motions
- Author
-
Collot, Julien, Patriat, Martin, Etienne, S., Rouillard, P., Soetaert, F., Juan, C., Marcaillou, B., Palazzin, G., Clerc, C., Maurizot, P., Pattier, F, Tournadour, E., Sevin, B., Privat, A., Collot, Julien, Patriat, Martin, Etienne, S., Rouillard, P., Soetaert, F., Juan, C., Marcaillou, B., Palazzin, G., Clerc, C., Maurizot, P., Pattier, F, Tournadour, E., Sevin, B., and Privat, A.
- Abstract
Classically, deepwater fold-and-thrust belts are classified in two main types, depending if they result from near- or far-field stresses and the understanding of their driving and triggering mechanism is poorly known. We present a geophysical dataset off the western margin of New Caledonia (SW Pacific) that reveals deformed structures of a deepwater fold-and-thrust belt that we interpret as a near-field gravity-driven system, which is not located at a rifted passive margin. The main factor triggering deformation is inferred to be oversteepening of the margin slope by post-obduction isostatic rebound. Onshore erosion of abnormally-dense obducted material, combined with sediment loading in the adjacent basin, has induced vertical motions that have caused oversteepening of the margin. Detailed morpho-bathymetric, seismic stratigraphic and structural analysis reveals that the fold-and-thrust belt extends 200 km along the margin, and 50 km into the New Caledonia Trough. Deformation is rooted at depths greater than 5 km beneath the seafloor, affects an area of 3500 km2, and involves a sediment volume of approximately 13 000 km3. This deformed belt is organized into an imbricate fan system of faults, and one out-of-sequence thrust fault affects the seabed. The thrust faults are deeply rooted in the basin along a low-angle floor thrust and connected to New Caledonia Island along a major detachment. This study not only provides a better knowledge of the New Caledonia margin, but also provides new insight into the mechanisms that trigger deepwater fold-and-thrust belts.
- Published
- 2017
- Full Text
- View/download PDF
20. The polyphased tectonic evolution of the Anegada Passage in the northern Lesser Antilles subduction zone
- Author
-
Laurencin, Muriel, Marcaillou, B., Graindorge, D., Klingelhoefer, Frauke, Lallemand, S., Laigle, M., Lebrun, J. -f., Laurencin, Muriel, Marcaillou, B., Graindorge, D., Klingelhoefer, Frauke, Lallemand, S., Laigle, M., and Lebrun, J. -f.
- Abstract
The influence of the highly oblique plate convergence at the northern Lesser Antilles onto the margin strain partitioning and deformation pattern, although frequently invoked, has never been clearly imaged. The Anegada Passage is a set of basins and deep valleys, regularly related to the southern boundary of the Puerto-Rico-Virgin-Islands (PRVI) microplate. Despite the publications of various tectonic models mostly based on bathymetric data, the tectonic origin and deformation of this Passage remains unconstrained in the absence of deep structure imaging. During cruises Antithesis 1 and 3 (2013 - 2016), we recorded the first deep multichannel seismic images and new multibeam data in the northern Lesser Antilles margin segment in order to shed a new light on the structure and tectonic pattern of the Anegada Passage. We image the northeastern extent of the Anegada Passage, from the Sombrero Basin to the Lesser Antilles margin front. Our results reveal that this northeastern segment is an EW-trending left-stepping en-échelon strike-slip system that consists of the Sombrero and Malliwana pull-apart basins, the Malliwana and Anguilla left-lateral faults and the NE-SW compressional restraining bend at the Malliwana Hill. Reviewing the structure of the Anegada Passage, from the South of Puerto-Rico to the Lesser Antilles margin front, reveals a polyphased tectonic history. A past NW-SE extension, possibly related to the rotation or escape of the PRVI block due to collision of the Bahamas Bank, and a currently active WNW-ESE strike-slip deformation associated to the shear component of the strain partitioning resulting from the subduction obliquity.
- Published
- 2017
- Full Text
- View/download PDF
21. The polyphased tectonic evolution of the Anegada Passage in the northern Lesser Antilles subduction zone
- Author
-
Laurencin, M., primary, Marcaillou, B., additional, Graindorge, D., additional, Klingelhoefer, F., additional, Lallemand, S., additional, Laigle, M., additional, and Lebrun, J.‐F., additional
- Published
- 2017
- Full Text
- View/download PDF
22. Structure of the Demerara passive-transform margin and associated sedimentary processes. Initial results from the IGUANES cruise
- Author
-
Loncke, L., Maillard, A., Basile, C., Roest, Walter, Bayon, Germain, Gaullier, V., Pattier, France, Mercier De Lépinay, Marion, Grall, Celine, Droz, L., Marsset, Tania, Giresse, P., Caprais, Jean-claude, Cathalot, Cecile, Graindorge, D., Heuret, A., Lebrun, J. F., Bermell, Sylvain, Marcaillou, B., Sotin, C., Hebert, B., Patriat, Martin, Bassetti, M. A., Tallobre, Cedric, Buscail, R., Durrieu De Madron, X., Bourrin, F., Loncke, L., Maillard, A., Basile, C., Roest, Walter, Bayon, Germain, Gaullier, V., Pattier, France, Mercier De Lépinay, Marion, Grall, Celine, Droz, L., Marsset, Tania, Giresse, P., Caprais, Jean-claude, Cathalot, Cecile, Graindorge, D., Heuret, A., Lebrun, J. F., Bermell, Sylvain, Marcaillou, B., Sotin, C., Hebert, B., Patriat, Martin, Bassetti, M. A., Tallobre, Cedric, Buscail, R., Durrieu De Madron, X., and Bourrin, F.
- Abstract
he IGUANES cruise took place in May 2013 on the R/V L'Atalante along the Demerara passive transform margin off French Guiana and Surinam. Seismic, multibeam and chirp acquisitions were made. Piston cores were collected for pore geochemistry and sedimentology. A mooring was deployed on the sea-bottom for 10 months (temperature, salinity, turbidity and current measurements). This new dataset highlights the lateral variability of the 350 km-long Guiana–Surinam transform margin due to the presence of a releasing bend between two transform segments. The adjacent Demerara Plateau is affected by a 350 km-long giant slide complex. This complex initiated in Cretaceous times and was regularly reactivated until recent times. Since the Miocene, contourite processes seem to be active due to the onset of the North Atlantic Deep Water (NADW) bottom current. A main NADW water vein flows towards SE, eroding slide headscarps and allowing the deposition of contourite drifts. Numerous depressions looking like comet tails or comet scours record this flow. Some of those were interpreted before the cruise as active pockmarks. Pore geochemistry and core analysis do not show any evidence of present-day gas seepage.
- Published
- 2016
- Full Text
- View/download PDF
23. Origin of an enigmatic regional Mio-Pliocene unconformity on the Demerara plateau
- Author
-
Pattier, France, Loncke, L., Imbert, Patrice, Gaullier, V., Basile, C., Maillard, Alexandre, Roest, Walter, Patriat, Martin, Vendeville, B. C., Marsset, Tania, Bayon, Germain, Cathalot, Cecile, Caprais, Jean-claude, Bermell, Sylvain, Sotin, Christine, Hebert, Bertil, Mercier De Lepinay, Marion, Lebrun, J. F., Marcaillou, B., Heuret, A., Droz, Laurence, Graindorge, David, Poetisi, E., Berrenstein, H., Pattier, France, Loncke, L., Imbert, Patrice, Gaullier, V., Basile, C., Maillard, Alexandre, Roest, Walter, Patriat, Martin, Vendeville, B. C., Marsset, Tania, Bayon, Germain, Cathalot, Cecile, Caprais, Jean-claude, Bermell, Sylvain, Sotin, Christine, Hebert, Bertil, Mercier De Lepinay, Marion, Lebrun, J. F., Marcaillou, B., Heuret, A., Droz, Laurence, Graindorge, David, Poetisi, E., and Berrenstein, H.
- Abstract
The Demerara plateau, located offshore French Guiana and Suriname, is part of a passive transform continental margin particularly prone to develop slope instabilities, probably in relation to the presence of a free distal border along its steep continental slope. Slope failure occurred at different periods (Cretaceous to Neogene) and shows an overall retrogressive evolution through time. Upslope these failure headscarp, an enigmatic regional MioPliocene unconformity has been discovered through the interpretation of new academic and industrial datasets. The aim of this work is to describe and understand the origin of this surface. Our analysis shows that this unconformity is made of a series of valleys that cross-cut sedimentary strata. Each one of these valleys has a short lateral extent and is closed along two perpendicular directions, which suggests that it could correspond to a highly meandering system, or to some sub-circular depressions. The infill of these features is equivalent to the regional stratigraphic strata found outside the structures, but in a subdued position. This seems to imply that the structures have originated by a local loss of sediments at their base or by sliding processes. Furthermore, these depressions intersect each other through time, while migrating progressively downslope. We discuss a series of hypotheses that try to explain the onset and evolution of these depressions forming the Mio-Pliocene unconformity (Canyons? Slope failures? Contourite moats? Hydrate pockmarks?). Having established that these structures are depressions formed by collapse, and have many similarities with structures recently described in the literature as pockmarks associated with gas hydrate dissolution, we favor this hypothesis. We propose that these hydrate pockmarks form with a mass failure that was triggered by fluid-overpressure development at the base of the hydrate stability zone.
- Published
- 2015
- Full Text
- View/download PDF
24. The 2010 Haiti earthquake: A complex fault pattern constrained by seismologic and tectonic observations
- Author
-
Mercier de Lépinay, B., Deschamps, A., Klingelhoefer, F., Mazabraud, Y., Delouis, B., Clouard, V., Hello, Yann, Crozon, J., Marcaillou, B., Graindorge, D., Vallée, Martin, Perrot, J., Bouin, M. P., Saurel, J. M., Charvis, Philippe, St-Louis, M., Géoazur (GEOAZUR 6526), Observatoire de la Côte d'Azur, Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Unité de recherche Géosciences Marines (Ifremer) (GM), Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER), Institut universitaire de formation des maîtres - Guadeloupe (IUFM Guadeloupe), Université des Antilles et de la Guyane (UAG), Institut de Physique du Globe de Paris (IPGP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-IPG PARIS-Université Paris Diderot - Paris 7 (UPD7)-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS), Domaines Océaniques (LDO), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Observatoire des Sciences de l'Univers-Institut d'écologie et environnement-Centre National de la Recherche Scientifique (CNRS), Observatoire Volcanologique de Guadeloupe, Bureau des Mines et de l'Energie, Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Géosciences Marines (GM), and Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDU.STU.GP]Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph] ,[SDE.MCG]Environmental Sciences/Global Changes ,[PHYS.PHYS.PHYS-GEO-PH]Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph] ,Haiti 2010 earthquake ,aftershocks - Abstract
After the January 12, 2010, Haiti earthquake, we deployed a mainly offshore temporary network of seismologic stations around the damaged area. The distribution of the recorded aftershocks, together with morphotectonic observations and mainshock analysis, allow us to constrain a complex fault pattern in the area. Almost all of the aftershocks have a N-S compressive mechanism, and not the expected left-lateral strike-slip mechanism. A first-order slip model of the mainshock shows a N264 degrees E north-dipping plane, with a major left-lateral component and a strong reverse component. As the aftershock distribution is sub-parallel and close to the Enriquillo fault, we assume that although the cause of the catastrophe was not a rupture along the Enriquillo fault, this fault had an important role as a mechanical boundary. The azimuth of the focal planes of the aftershocks are parallel to the north-dipping faults of the Transhaitian Belt, which suggests a triggering of failure on these discontinuities. In the western part, the aftershock distribution reflects the triggering of slip on similar faults, and/or, alternatively, of the south-dipping faults, such the Trois-Baies submarine fault. These observations are in agreement with a model of an oblique collision of an indenter of the oceanic crust of the Southern Peninsula and the sedimentary wedge of the Transhaitian Belt: the rupture occurred on a wrench fault at the rheologic boundary on top of the under-thrusting rigid oceanic block, whereas the aftershocks were the result of the relaxation on the hanging wall along pre-existing discontinuities in the frontal part of the Transhaitian Belt. Citation: Mercier de Lepinay, B., et al. (2011), The 2010 Haiti earthquake: A complex fault pattern constrained by seismologic and tectonic observations, Geophys. Res. Lett., 38, L22305, doi:10.1029/2011GL049799.
- Published
- 2011
- Full Text
- View/download PDF
25. Structure of the Demerara passive-transform margin and associated sedimentary processes. Initial results from the IGUANES cruise
- Author
-
Loncke, L., primary, Maillard, A., additional, Basile, C., additional, Roest, W. R., additional, Bayon, G., additional, Gaullier, V., additional, Pattier, F., additional, Mercier de Lépinay, M., additional, Grall, C., additional, Droz, L., additional, Marsset, T., additional, Giresse, P., additional, Caprais, J. C., additional, Cathalot, C., additional, Graindorge, D., additional, Heuret, A., additional, Lebrun, J. F., additional, Bermell, S., additional, Marcaillou, B., additional, Sotin, C., additional, Hebert, B., additional, Patriat, M., additional, Bassetti, M. A., additional, Tallobre, C., additional, Buscail, R., additional, Durrieu de Madron, X., additional, and Bourrin, F., additional
- Published
- 2015
- Full Text
- View/download PDF
26. Origin of an enigmatic regional Mio-Pliocene unconformity on the Demerara plateau
- Author
-
Pattier, F., primary, Loncke, L., additional, Imbert, P., additional, Gaullier, V., additional, Basile, C., additional, Maillard, A., additional, Roest, W.R., additional, Patriat, M., additional, Vendeville, B.C., additional, Marsset, T., additional, Bayon, G., additional, Cathalot, C., additional, Caprais, J.C., additional, Bermell, S., additional, Sotin, C., additional, Hebert, B., additional, Mercier de Lépinay, M., additional, Lebrun, J.F., additional, Marcaillou, B., additional, Heuret, A., additional, Droz, L., additional, Graindorge, D., additional, Poetisi, E., additional, and Berrenstein, H., additional
- Published
- 2015
- Full Text
- View/download PDF
27. Visión general de la morfología submarina del margen convergente de Ecuador-Sur de Colombia: implicaciones sobre la transferencia de masa y la edad de la subducción de la Cordillera de Carnegie
- Author
-
Collot, Jean-Yves, Michaud, François, Alvarado, A., Marcaillou, B., Sosson, M., Ratzov, G., Migeon, S., Calahorrano, A., Pazmino, A., Géoazur (GEOAZUR 6526), Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Institute for Research on Earth Evolution [Yokosuka] (IFREE), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Collot J-Y, V. Sallares, and A. Pazmiño, Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Nice Sophia Antipolis (... - 2019) (UNS), Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Collot, Jean-Yves (ed.), Sallares, V. (ed.), and Pazmino, N. (ed.)
- Subjects
RELIEF SOUS MARIN ,BATHYMETRIE ,FOND MARIN ,TRANSFERT DE MASSE ,SUBDUCTION ,TECTONIQUE DE PLAQUES ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences - Published
- 2009
28. Geologia y geofisica marina y terrestre del Ecuador : desde la costa continental hasta las Islas Galápagos
- Author
-
Marcaillou, B., Spence, G., Collot, J.-Y., Wang, K., Ribodetti, A., Collot, Jean-Yves (ed.), Sallares, V. (ed.), Pazmino, N. (ed.), Institute for Research on Earth Evolution [Yokosuka] (IFREE), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Géoazur (GEOAZUR 6526), Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Collot J-Y, V. Sallares, and A. Pazmiño, Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Nice Sophia Antipolis (1965 - 2019) (UNS), and COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
SISMICITE ,ANALYSE THERMIQUE ,SUBDUCTION ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,MARGE CONTINENTALE ,SEDIMENTATION EN MER PROFONDE ,TECTONIQUE - Published
- 2009
29. Coeval subduction erosion and underplating associated with a crustal splay fault at the Ecuador-Colombia convergent margin
- Author
-
Collot, J.-Y., Ribodetti, A., Marcaillou, B., Agudelo, W., Géoazur (GEOAZUR 6526), Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Institute for Research on Earth Evolution [Yokosuka] (IFREE), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Nice Sophia Antipolis (... - 2019) (UNS), and Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2008
30. Influence of trench sedimentation rate on heat flow and location of the thermally-defined seismogenic zone in the North Ecuador – South Colombia margin
- Author
-
Marcaillou, B., Spence, G., Wang, K., Collot, J.-Y., Ribodetti, A., Institute for Research on Earth Evolution [Yokosuka] (IFREE), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Géoazur (GEOAZUR 6526), Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Nice Sophia Antipolis (1965 - 2019) (UNS), and COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2008
31. Structural control on the megathrust slip: the example of the Ecuador-Colombia active margin
- Author
-
Collot, J.-Y., Marcaillou, B., Agudelo, W., Sage, F., Ribodetti, A., Géoazur (GEOAZUR 6526), Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Nice Sophia Antipolis (... - 2019) (UNS), and Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2007
32. Memorias : sextas jornadas en ciencias de la tierra
- Author
-
Collot, Jean-Yves, Sage, F., Calahorrano, A., Alvarado, A., Marcaillou, B., Michaud, François, Agudelo, W., and D'Acrémont, E.
- Subjects
CAMPAGNE OCEANOGRAPHIQUE ,FOND MARIN ,TECTONIQUE DE PLAQUES ,GEOMORPHOLOGIE ,MARGE CONTINENTALE ACTIVE ,GEOPHYSIQUE MARINE ,STRUCTURE SEDIMENTAIRE - Published
- 2006
33. Thermal regime from bottom simulating reflectors along the north Ecuador-south Colombia margin; relation to margin segmentation and great subduction earthquakes
- Author
-
MARCAILLOU, B., SPENCE, G., COLLOT, J.-Y., WANG, K., Géoazur (GEOAZUR 6526), Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Nice Sophia Antipolis (1965 - 2019) (UNS), and COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDU]Sciences of the Universe [physics] - Abstract
Journal of Geophysical Research, v. 111, n. B12, p. B12407, 2006. http://dx.doi.org/10.1029/2005JB004239; International audience
- Published
- 2006
- Full Text
- View/download PDF
34. Are rupture zone limits of great subduction earthquakes controlled by upper plate structures? Evidence from MCS data aquired across the Northen Ecuador-South West Colombia margin
- Author
-
Collot, J.-Y., Marcaillou, B., Sage, F., Michaud, F., Agudelo, W., Charvis, P., Graindorge, David, Gutscher, Marc-André, Spence, G., Géoazur (GEOAZUR 6526), Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Géoazur (GEOAZUR 7329), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud]), Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), and COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])
- Subjects
[SDU]Sciences of the Universe [physics] - Abstract
Journal of Geophysical Research, v. 109, p. B11103, 2004. http://dx.doi.org/10.1029/2004JB003060; International audience
- Published
- 2004
- Full Text
- View/download PDF
35. Are rupture zone limits of great subduction earthquakes controlled by upper plate structures ? : evidence from multichannel seismic reflection data acquired across the northern Ecuador - southwest Colombia margin
- Author
-
Collot, Jean Yves, Marcaillou,B., Sage, F., Michaud, F., Agudelo, W., Charvis, Philippe, Graindorge, D., Gutscher, M.A., and Spence, G.
- Subjects
FAILLE ,BATHYMETRIE ,SUBDUCTION ,SEISME ,MARGE CONTINENTALE ACTIVE ,PROFIL SISMIQUE ,SISMIQUE A REFLEXION ,VARIATION PLURIANNUELLE ,MODELISATION - Abstract
Subduction of the Nazca plate beneath the Ecuador Colombia margin has produced four megathrust earthquakes during the last century. The 500 km long rupture zone of the 1906 (Mw = 8.8) event was partially reactivated by three thrust events, in 1942 (Mw = 7.8), 1958 (Mw = 7.7), and 1979 (Mw = 8.2), whose rupture zones abut one another. Multichannel seismic reflection and bathymetric data acquired during the SISTEUR cruise show evidence that the margin wedge is segmented by transverse crustal faults that potentially correlate with the limits of the earthquake coseismic slip zones. The Paleogene Neogene Jama Quininde and Esmeraldas crustal faults define a 200 km long margin crustal block that coincides with the 1942 earthquake rupture zone. Subduction of the buoyant Carnegie Ridge is inferred to partially lock the plate interface along central Ecuador. However, coseismic slip during the 1942 and 1906 earthquakes may have terminated against the subducted northern flank of the ridge. We report on a newly identified Manglares crustal fault that cuts transversally through the margin wedge and correlates with the limit between the 1958 and 1979 rupture zones. During the earthquake cycle the fault is associated with high stress concentration on the plate interface. An outer basement high, which bounds the margin seaward of the 1958 rupture zone, may act as a deformable buttress to seaward propagation of coseismic slip along a megathrust splay fault. Coseismic uplift of the basement high is interpreted as the cause for the 1958 tsunami. We propose a model of weak transverse faults which reduce coupling between adjacent margin segments, together with a splay fault and an asperity along the plate interface as controlling the seismogenic rupture of the 1958 earthquake.
- Published
- 2004
36. Thermal segmentation along the N. Ecuador-S. Colombia margin (1-4 degrees N) : Prominent influence of sedimentation rate in the trench
- Author
-
Marcaillou, B., Spence, G., Wang, K., Collot, Jean-Yves, Ribodetti, Alessandra, Marcaillou, B., Spence, G., Wang, K., Collot, Jean-Yves, and Ribodetti, Alessandra
- Abstract
Along the deformation front of the North Ecuador-South Colombia (NESC) margin, both surface heat flow and trench sediment thickness show prominent along-strike variations, indicating significant spatial variations in sedimentation rate. Investigating these variations helps us address the important question of how trench sedimentation influences the temperature distribution along the interplate contact and the extent of the megathrust seismogenic zone. We examine this issue by analysing 1/ a new dense reflection data set, 21 pre-stack depth migration of selected multichannel seismic reflection lines, 3/ numerous newly-identified bottom-simulating reflectors and 4/ the first heat probe measurements in the region. We develop thermal models that include sediment deposition and compaction on the cooling oceanic plate as well as Viscous corner flow in the mantle wedge. We estimate that the temperature from 60-150 degrees C to 350-450 degrees C, commonly associated with the updip and downdip limits of the seismogenic zone, extends along the plate interface over a downclip distance of 160 to 190 20 km. We conclude that the updip limit of the seismogenic zone for the great megathrust earthquake of 1979 is associated with low-temperature (60-70 degrees C) processes. Our models also suggest that 60-70% of the two-fold decrease in measured heat flow from 3 degrees N to 2.8 degrees N is related to an abrupt Southward increase in sedimentation rate in the trench. Such a change may potentially induce a landward shift of the 60-150 degrees C isotherms, and thus the updip limit of the seismogenic zone, by 10 to 20 km.
- Published
- 2008
37. Seafloor margin map helps in understanding subduction earthquakes
- Author
-
Collot, Julien, Migeon, Sebastien, Spence, G., Legonidec, Y., Marcaillou, B., Schneider, J.-l., Michaud, F., Alvarado, A., Lebrun, J.-f., Sosson, M., Pazmino, A., Collot, Julien, Migeon, Sebastien, Spence, G., Legonidec, Y., Marcaillou, B., Schneider, J.-l., Michaud, F., Alvarado, A., Lebrun, J.-f., Sosson, M., and Pazmino, A.
- Abstract
cuador and southwest (SW) Colombia suffered widespread damage during the twentieth century as a result of some of the greatest subduction earthquakes and associated tsunamis ever recorded. In 1906, the Ecuador‐SW Columbia margin, located at the transition between the continent and deep ocean, ruptured over a 500‐kilometer length as a single great (Mw = 8.8) subduction earthquake (Figure 1a) [Kelleher, 1972]. The 1906 rupture zone was partially reactivated in 1942, 1958, and 1979 by earthquakes of Mw 7.7 to 8.2 (Figure 1b), with 100‐200 kilometerlong rupture zones [Beck and Ruff, 1984]. Such considerable variation in earthquake rupture length and magnitude in this area's seismic cycles during the last century has raised questions about the nature and enduring significance of the boundaries that exist between rupture zones and about the long‐term recurrence interval between earthquakes.
- Published
- 2005
- Full Text
- View/download PDF
38. Origin of a crustal splay fault and its relation to the seismogenic zone and underplating at the erosional north Ecuador–south Colombia oceanic margin
- Author
-
Collot, J.-Y., primary, Agudelo, W., additional, Ribodetti, A., additional, and Marcaillou, B., additional
- Published
- 2008
- Full Text
- View/download PDF
39. Enquête auprès des médecins généralistes sur le Samu–Smur
- Author
-
Cazenave, C., primary, Lorilloux, S., additional, NGuyen, A., additional, Jeanne, E., additional, Marcaillou, B., additional, Moro, J., additional, Richard, O., additional, and Lambert, Y., additional
- Published
- 2007
- Full Text
- View/download PDF
40. Seafloor margin map helps in understanding subduction earthquakes
- Author
-
Collot, J.-Y., primary, Migeon, S., additional, Spence, G., additional, Legonidec, Y., additional, Marcaillou, B., additional, Schneider, J.-L., additional, Michaud, F., additional, Alvarado, A., additional, Lebrun, J.-F., additional, Sosson, M., additional, and Pazmino, A., additional
- Published
- 2005
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.