37 results on '"Marc Herzlich"'
Search Results
2. Mathématiques et statistique pour les sciences de la nature: Modéliser, comprendre et appliquer
- Author
-
Gérard Biau, Jérôme Droniou, Marc Herzlich
- Published
- 2010
3. Computing Asymptotic Invariants with the Ricci Tensor on Asymptotically Flat and Asymptotically Hyperbolic Manifolds
- Author
-
Marc Herzlich
- Subjects
Flat manifold ,Nuclear and High Energy Physics ,Pure mathematics ,010308 nuclear & particles physics ,010102 general mathematics ,Statistical and Nonlinear Physics ,Conformal map ,16. Peace & justice ,01 natural sciences ,Center of mass (relativistic) ,Simple (abstract algebra) ,0103 physical sciences ,Mathematics::Differential Geometry ,0101 mathematics ,Equivalence (measure theory) ,Mathematical Physics ,Ricci curvature ,Mathematics - Abstract
We prove in a simple and coordinate-free way the equivalence between the classical definitions of the mass or of the center of mass of an asymptotically flat manifold and their alternative definitions depending on the Ricci tensor and conformal Killing fields. This enables us to prove an analogous statement in the asymptotically hyperbolic case.
- Published
- 2016
- Full Text
- View/download PDF
4. A remark on renormalized volume and Euler characteristic for ache 4-manifolds
- Author
-
Marc Herzlich, Institut de Mathématiques et de Modélisation de Montpellier (I3M), and Centre National de la Recherche Scientifique (CNRS)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)
- Subjects
Mathematics - Differential Geometry ,0209 industrial biotechnology ,High Energy Physics::Lattice ,02 engineering and technology ,01 natural sciences ,General Relativity and Quantum Cosmology ,High Energy Physics::Theory ,symbols.namesake ,020901 industrial engineering & automation ,Complex hyperbolic space ,Euler characteristic ,FOS: Mathematics ,0101 mathematics ,Einstein ,renormalized volume ,Mathematics ,Mathematical physics ,53C55, 58J28 ,010102 general mathematics ,Mathematical analysis ,Mathematics::Geometric Topology ,Differential Geometry (math.DG) ,Computational Theory and Mathematics ,[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] ,symbols ,Condensed Matter::Strongly Correlated Electrons ,Mathematics::Differential Geometry ,Geometry and Topology ,Analysis ,Volume (compression) - Abstract
This note computes the "renormalized volume" and a renormalizedGauss-Bonnet-Chern formula for the Euler characteristic ofasymptotically complex hyperbolic Einstein (in short: ACHE)4-manifolds., Comment: revised version ; reference to math.DG/0404455 added
- Published
- 2007
- Full Text
- View/download PDF
5. Analyse sur un demi-espace hyperbolique et polyhomogénéité locale
- Author
-
Olivier Biquard, Marc Herzlich, Institut de Mathématiques et de Modélisation de Montpellier (I3M), Centre National de la Recherche Scientifique (CNRS)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM), Université Pierre et Marie Curie - Paris 6 (UPMC), Département de Mathématiques et Applications - ENS Paris (DMA), Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), and École normale supérieure - Paris (ENS Paris)
- Subjects
Mathematics - Differential Geometry ,Applied Mathematics ,010102 general mathematics ,Mathematics::Spectral Theory ,01 natural sciences ,General Relativity and Quantum Cosmology ,Differential Geometry (math.DG) ,[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] ,0103 physical sciences ,FOS: Mathematics ,010307 mathematical physics ,0101 mathematics ,58J60, 58J32, 53B20 ,Humanities ,Analysis ,Mathematics - Abstract
International audience; Nous démontrons que toute métrique d'Einstein asymptotiquement hyperbolique réelle ou complexe possède un développement polyhomogène au voisinage de son bord à l'infini. La preuve s'étend également au cas dit local, c'est-à-dire quand le bord à l'infini est un ouvert de R^n . Ces résultats sont nouveaux en hyperbolique réel dans le cas local en dimension impaire et en hyperbolique complexe dans tous les cas.
- Published
- 2014
- Full Text
- View/download PDF
6. [Untitled]
- Author
-
Marc Herzlich and Andrei Moroianu
- Subjects
Pure mathematics ,Spinor ,010308 nuclear & particles physics ,010102 general mathematics ,Mathematical analysis ,Dimension (graph theory) ,Conformal map ,Dirac operator ,01 natural sciences ,symbols.namesake ,Differential geometry ,Ricci-flat manifold ,0103 physical sciences ,symbols ,Mathematics::Differential Geometry ,Geometry and Topology ,0101 mathematics ,Analysis ,Eigenvalues and eigenvectors ,Mathematics ,Spin-½ - Abstract
In this paper we prove the Spinc analog of the Hijazi inequality on the first eigenvalue of the Dirac operator on compact Riemannian manifolds and study its equality case. During this study, we are naturally led to consider generalized Killing spinors on Spinc manifolds and we prove that such objects can only exist on low-dimensional manifolds (up to dimension three). This allows us to give a nice geometrical description of the manifolds satisfying the equality case of the above-mentioned inequality and to classify them in dimension three and four.
- Published
- 1999
- Full Text
- View/download PDF
7. Erratum to 'The Huber theorem for non-compact conformally flat manifolds'
- Author
-
Marc Herzlich and Gilles Carron
- Subjects
Pure mathematics ,Argument ,General Mathematics ,Calculus ,Tian ,Mathematics - Abstract
An argument in our paper The Huber theorem for non-compact conformally flat manifolds [Comment. Math. Helv. 77 (2002), 192?220] was not justified. Using recent work by G. Tian and J. Viaclovsky, we show that our result holds true
- Published
- 2007
- Full Text
- View/download PDF
8. Scalar curvature and rigidity of odd-dimensional complex hyperbolic spaces
- Author
-
Marc Herzlich, Institut de Mathématiques et de Modélisation de Montpellier (I3M), and Centre National de la Recherche Scientifique (CNRS)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)
- Subjects
Mean curvature ,General Mathematics ,Hyperbolic space ,Prescribed scalar curvature problem ,010102 general mathematics ,Mathematical analysis ,Hyperbolic manifold ,Curvature ,01 natural sciences ,Relatively hyperbolic group ,[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] ,0103 physical sciences ,010307 mathematical physics ,0101 mathematics ,Hyperbolic triangle ,ComputingMilieux_MISCELLANEOUS ,Scalar curvature ,Mathematics - Abstract
International audience
- Published
- 1998
- Full Text
- View/download PDF
9. The positive mass theorem for black holes revisited
- Author
-
Marc Herzlich
- Subjects
General relativity ,General Physics and Astronomy ,Boundary (topology) ,Rigorous proof ,Pseudo-Riemannian manifold ,Black hole ,symbols.namesake ,Classical mechanics ,Energy condition ,symbols ,Geometry and Topology ,Finite set ,Mathematical Physics ,Mathematics ,Hawking radiation ,Mathematical physics - Abstract
We present a rigorous proof of the positive mass theorem for black holes. Accordingly, in a four-dimensional Lorentz manifold satisfying the dominant energy condition, the mass of a three-dimensional asymptotically flat slice with boundary composed of a finite number of future or past trapped closed 2-surfaces is nonnegative. The proof uses the classical Witten argument and is valid even if only rather weak asymptotic conditions are imposed.
- Published
- 1998
- Full Text
- View/download PDF
10. Théorèmes de masse positive
- Author
-
Marc Herzlich, Institut de Mathématiques et de Modélisation de Montpellier (I3M), and Centre National de la Recherche Scientifique (CNRS)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)
- Subjects
[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] ,010102 general mathematics ,0103 physical sciences ,Yamabe problem ,0101 mathematics ,010306 general physics ,01 natural sciences ,ComputingMilieux_MISCELLANEOUS ,Mathematics ,Mathematical physics ,Scalar curvature - Abstract
International audience
- Published
- 1998
- Full Text
- View/download PDF
11. Universal positive mass theorems
- Author
-
Marc Herzlich, Institut Montpelliérain Alexander Grothendieck (IMAG), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), and ANR-12-BS01-0004,GTO,Géométrie et Topologie des variétés ouvertes(2012)
- Subjects
Mathematics - Differential Geometry ,Pure mathematics ,media_common.quotation_subject ,positive mass theorem ,Curvature ,Mathematical proof ,01 natural sciences ,Weitzenböck formulas ,53B21, 53A55, 58J60, 83C30 ,0103 physical sciences ,FOS: Mathematics ,Stein-Weiss operators ,0101 mathematics ,Mathematical Physics ,Mathematics ,media_common ,010102 general mathematics ,asymptotically flat manifolds ,Statistical and Nonlinear Physics ,Infinity ,Natural bundle ,Algebra ,Differential Geometry (math.DG) ,[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] ,010307 mathematical physics ,Mathematics::Differential Geometry - Abstract
In this paper, we develop a general study of contributions at infinity of Bochner-Weitzenb\"ock-type formulas on asymptotically flat manifolds, inspired by Witten's proof of the positive mass theorem. As an application, we show that similar proofs can be obtained in a much more general setting as any choice of an irreducible natural bundle and a very large choice of first-order operators may lead to a positive mass theorem along the same lines if the necessary curvature conditions are satisfied., Comment: Communications in Mathematical Physics, Springer Verlag, 2016, to appear
- Published
- 2014
- Full Text
- View/download PDF
12. A Penrose-like Inequality for the Mass of Riemannian Asymptotically Flat Manifolds
- Author
-
Marc Herzlich
- Subjects
Pure mathematics ,Conjecture ,Mathematical analysis ,Statistical and Nonlinear Physics ,Space (mathematics) ,Sobolev space ,General Relativity and Quantum Cosmology ,Riemannian Penrose inequality ,Bounded function ,Metric (mathematics) ,Mathematics::Differential Geometry ,Schwarzschild radius ,Mathematical Physics ,Scalar curvature ,Mathematics - Abstract
We prove an optimal Penrose-like inequality for the mass of any asymptotically flat Riemannian 3-manifold having an inner minimal 2-sphere and nonnegative scalar curvature. Our result shows that the mass is bounded from below by an expression involving the area of the minimal sphere (as in the original Penrose conjecture) and some nomalized Sobolev ratio. As expected, the equality case is achieved if and only if the metric is that of a standard spacelike slice in the Schwarzschild space.
- Published
- 1997
- Full Text
- View/download PDF
13. Compactification conforme des variétés asymptotiquement plates
- Author
-
Marc Herzlich
- Subjects
Physics ,Weyl tensor ,Pure mathematics ,symbols.namesake ,Riemann manifold ,General Mathematics ,symbols ,Compactification (mathematics) - Abstract
Le theme de cet article est la recherche de compactifications conformes compactes et suffisamment regulieres de varietes riemanniennes asymptotiquement plates: une telle compactification existe si les tenseurs de Weyl et de Cotton-York decroissent a l'infini plus vite que r -4 et r -5 . Nous etudions egalement le cas critique ou ces tenseurs ont exactement la decroissance citee.
- Published
- 1997
- Full Text
- View/download PDF
14. Parabolic geodesics as parallel curves in parabolic geometries
- Author
-
Marc Herzlich, Institut de Mathématiques et de Modélisation de Montpellier (I3M), and Centre National de la Recherche Scientifique (CNRS)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)
- Subjects
Mathematics - Differential Geometry ,Geodesic ,General Mathematics ,Geometry ,Parabolic geometries ,Space (mathematics) ,01 natural sciences ,Parabolic cylindrical coordinates ,0103 physical sciences ,FOS: Mathematics ,Tangent vector ,0101 mathematics ,Mathematics::Representation Theory ,Mathematics ,010102 general mathematics ,Mathematical analysis ,Parabola ,Parabolic cylinder function ,parabolic geodesics ,MSC (2000) : 53B25, 53A55, R3A30 ,Manifold ,Connection (mathematics) ,Differential Geometry (math.DG) ,[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] ,010307 mathematical physics ,Mathematics::Differential Geometry - Abstract
International audience; We give a simple characterization of the parabolic geodesics introduced by Cap, Slovak and Zadnik for all parabolic geometries. This goes through the definition of a natural connection on the space of Weyl structures. We then show that parabolic geodesics can be characterized as the following data: a curve on the manifold and a Weyl structure along the curve, so that the curve is a geodesic for its companion Weyl structure and the Weyl structure is parallel along the curve and in the direction of the tangent vector of the curve.
- Published
- 2012
- Full Text
- View/download PDF
15. Mathématiques et statistique pour les sciences de la nature - Modéliser, comprendre et appliquer
- Author
-
Marc Herzlich, Gérard Biau, Jérôme Droniou, Laboratoire de Probabilités et Modèles Aléatoires (LPMA), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Pierre et Marie Curie - Paris 6 (UPMC), Laboratoire de Statistique Théorique et Appliquée (LSTA), Université Pierre et Marie Curie - Paris 6 (UPMC), Institut Montpelliérain Alexander Grothendieck (IMAG), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), and Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST] ,[STAT.TH]Statistics [stat]/Statistics Theory [stat.TH] - Abstract
L'ouvrage s’adresse a tout lecteur curieux de decouvrir une presentation precise, mais sans exces de theorie, des concepts mathematiques indispensables a la modelisation des phenomenes naturels. La premiere partie est consacree a l’etude des fonctions (a une ou plusieurs variables), au calcul des probabilites et aux liens entre probabilites et statistique. La deuxieme traite de themes statistiques plus elabores (estimations, tests d’hypotheses, regression). Enfin, la troisieme partie est dediee aux equations differentielles et a l’algebre lineaire. Chaque chapitre insiste sur la necessite de savoir modeliser, comprendre et appliquer. De nombreux exercices (avec solutions) permettent de completer l’expose et d’ouvrir vers davantage d’applications.
- Published
- 2010
16. Opérateurs géométriques, invariants conformes et variétés asymptotiquement hyperboliques
- Author
-
Marc Herzlich, Colin Guillarmou, Zindine Djadli, Institut de Mathématiques et de Modélisation de Montpellier (I3M), Centre National de la Recherche Scientifique (CNRS)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM), Laboratoire Jean Alexandre Dieudonné (JAD), Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS), Institut Fourier (IF ), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Université Nice Sophia Antipolis (... - 2019) (UNS), Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Institut Fourier (IF), and Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)
- Subjects
[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2009
17. Unique continuation results for Ricci curvature and applications
- Author
-
Marc Herzlich, Michael T. Anderson, Institut de Mathématiques et de Modélisation de Montpellier (I3M), Centre National de la Recherche Scientifique (CNRS)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM), Department of Mathematics, Stony Brook University [SUNY] (SBU), and State University of New York (SUNY)-State University of New York (SUNY)
- Subjects
Mathematics - Differential Geometry ,Curvature of Riemannian manifolds ,010308 nuclear & particles physics ,010102 general mathematics ,Mathematical analysis ,General Physics and Astronomy ,Boundary (topology) ,Conformal map ,01 natural sciences ,Differential Geometry (math.DG) ,[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] ,Ricci-flat manifold ,Bounded function ,0103 physical sciences ,FOS: Mathematics ,Isometry ,Mathematics::Differential Geometry ,Geometry and Topology ,0101 mathematics ,Mathematical Physics ,Ricci curvature ,ComputingMilieux_MISCELLANEOUS ,Scalar curvature ,Mathematics - Abstract
Unique continuation results are proved for metrics with prescribed Ricci curvature in the setting of bounded metrics on compact manifolds with boundary, and in the setting of complete, conformally compact metrics. Related to this issue, an isometry extension property is proved: continuous groups of isometries at conformal infinity extend into the bulk of any complete conformally compact Einstein metric. Relations of this property with the invariance of the Gauss-Codazzi constraint equations under deformations are also discussed., 32 pages, supercedes math.DG/0501067; final published version
- Published
- 2008
- Full Text
- View/download PDF
18. The canonical Cartan bundle and connection in CR geometry
- Author
-
Marc Herzlich, Institut de Mathématiques et de Modélisation de Montpellier (I3M), and Centre National de la Recherche Scientifique (CNRS)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)
- Subjects
Mathematics - Differential Geometry ,Cartan bundle ,Parallel transport ,General Mathematics ,010102 general mathematics ,Cartan formalism ,Geometry ,Affine connection ,01 natural sciences ,Connection (mathematics) ,010104 statistics & probability ,Canonical connection ,Differential Geometry (math.DG) ,Cartan connection ,[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] ,CR geometry ,FOS: Mathematics ,Projective connection ,Connection form ,Mathematics::Differential Geometry ,0101 mathematics ,53B21, 53C15 ,Mathematics - Abstract
We give a differential geometric description of the Cartan (or tractor) bundle and its canonical connection in CR geometry, thus offering a direct, alternative, definition to the usual abstract approach., minor changes ; wrong author in reference [7] corrected
- Published
- 2006
- Full Text
- View/download PDF
19. Mass formulae for asymptotically hyperbolic manifolds
- Author
-
Marc Herzlich
- Subjects
010308 nuclear & particles physics ,010102 general mathematics ,0103 physical sciences ,0101 mathematics ,01 natural sciences - Published
- 2005
- Full Text
- View/download PDF
20. A Burns-Epstein invariant for ACHE 4-manifolds
- Author
-
Olivier Biquard, Marc Herzlich, Institut de Mathématiques et de Modélisation de Montpellier (I3M), Centre National de la Recherche Scientifique (CNRS)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM), Institut de Recherche Mathématique Avancée (IRMA), Centre National de la Recherche Scientifique (CNRS)-Université Louis Pasteur - Strasbourg I, Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), and Université Louis Pasteur - Strasbourg I-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Mathematics - Differential Geometry ,Pure mathematics ,Polynomial ,General Mathematics ,32V15 ,Invariant manifold ,Curvature ,01 natural sciences ,Renormalization ,0103 physical sciences ,58J28 ,FOS: Mathematics ,0101 mathematics ,Invariant (mathematics) ,ComputingMilieux_MISCELLANEOUS ,Mathematics ,Sequence ,010102 general mathematics ,Mathematical analysis ,58J60 ,Mathematics::Geometric Topology ,53C55 ,Manifold ,Characteristic class ,58J37 ,Differential Geometry (math.DG) ,[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] ,Mathematics::Differential Geometry ,010307 mathematical physics - Abstract
We define a renormalized characteristic class for Einstein asymptotically complex hyperbolic (ACHE) manifolds of dimension 4: for any such manifold, the polynomial in the curvature associated to the characteristic class euler-3signature is shown to converge. This extends a work of Burns and Epstein in the Kahler-Einstein case. This extends a work of Burns and Epstein in the Kahler-Einstein case. We also define a new global invariant for any 3-dimensional pseudoconvex CR manifold, by a renormalization procedure of the eta invariant of a sequence of metrics which approximate the CR structure. Finally, we get a formula relating the renormalized characteristic class to the topological number euler-3signature and the invariant of the CR structure arising at infinity., Lemma 2.6 changed because of a mistake. Section 5 (using lemma 2.6) rewritten
- Published
- 2005
- Full Text
- View/download PDF
21. Diabatic Limit, Eta Invariants and Cauchy-Riemann Manifolds of Dimension 3
- Author
-
Marc Herzlich, Olivier Biquard, Michel Rumin, Institut de Recherche Mathématique Avancée (IRMA), Centre National de la Recherche Scientifique (CNRS)-Université Louis Pasteur - Strasbourg I, Institut de Mathématiques et de Modélisation de Montpellier (I3M), Centre National de la Recherche Scientifique (CNRS)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM), Laboratoire de Mathématiques d'Orsay (LM-Orsay), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11), Université Louis Pasteur - Strasbourg I-Centre National de la Recherche Scientifique (CNRS), Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), and Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Mathematics - Differential Geometry ,Pure mathematics ,General Mathematics ,Computation ,Diabatic ,Cauchy–Riemann equations ,53C20 ,01 natural sciences ,symbols.namesake ,Ricci-flat manifold ,0103 physical sciences ,58J28 ,FOS: Mathematics ,0101 mathematics ,Invariant (mathematics) ,Einstein ,Mathematics::Symplectic Geometry ,Mathematics ,010102 general mathematics ,Mathematical analysis ,32V05 ,Mathematics::Geometric Topology ,Differential Geometry (math.DG) ,[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] ,symbols ,32V20 ,CR manifold ,010307 mathematical physics ,Mathematics::Differential Geometry - Abstract
International audience; We relate a recently introduced non-local geometric invariant of compact strictly pseudoconvex Cauchy-Riemann (CR) manifolds of dimension 3 to various eta-invariants in CR geometry: on the one hand a renormalized eta-invariant appearing when considering a sequence of metrics converging to the CR structure by expanding the size of the Reeb field; on the other hand the eta-invariant of the middle degree operator of the contact complex. We then provide explicit computations for a class of examples: transverse circle invariant CR structures on Seifert manifolds. Applications are given to the problem of filling a CR manifold by a complex hyperbolic manifold, and more generally by a Kahler-Einstein or an Einstein metric.
- Published
- 2005
- Full Text
- View/download PDF
22. Conformally flat manifolds with nonnegative Ricci curvature
- Author
-
Marc Herzlich, Gilles Carron, Laboratoire de Mathématiques Jean Leray (LMJL), Centre National de la Recherche Scientifique (CNRS)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN), Institut de Mathématiques et de Modélisation de Montpellier (I3M), and Centre National de la Recherche Scientifique (CNRS)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)
- Subjects
Mathematics - Differential Geometry ,Pure mathematics ,Algebra and Number Theory ,Curvature of Riemannian manifolds ,010102 general mathematics ,Mathematical analysis ,Conformally flat manifolds ,Conformally flat manifold ,Space (mathematics) ,01 natural sciences ,Ricci curvature ,Differential Geometry (math.DG) ,[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] ,Ricci-flat manifold ,Product (mathematics) ,0103 physical sciences ,FOS: Mathematics ,Ricci decomposition ,010307 mathematical physics ,Mathematics::Differential Geometry ,53C15, 53C24, 58J60 ,0101 mathematics ,Scalar curvature ,Mathematics - Abstract
We show that complete conformally flat manifolds of dimension n>2 with nonnegative Ricci curvature enjoy nice rigidity properties: they are either flat, or locally isometric to a product of a sphere and a line, or are globally conformally equivalent to flat space or to a spherical spaceform. This extends previous works by Q.-M. Cheng, M.H. Noronha, B.-L. Chen and X.-P. Zhu, and S. Zhu., revised version, added reference to previous paper by S. Zhu on the same subject
- Published
- 2004
- Full Text
- View/download PDF
23. Extremality for the Vafa-Witten bound on the sphere
- Author
-
Marc Herzlich, Institut de Mathématiques et de Modélisation de Montpellier (I3M), and Centre National de la Recherche Scientifique (CNRS)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)
- Subjects
Mathematics - Differential Geometry ,Momentum operator ,Dirac operator ,58J50 ,01 natural sciences ,eigenvalue estimate ,symbols.namesake ,Corollary ,0103 physical sciences ,FOS: Mathematics ,scalar curvature ,0101 mathematics ,Eigenvalues and eigenvectors ,Mathematics ,Mathematical physics ,010102 general mathematics ,Mathematical analysis ,58J60 ,53C27 ,Differential Geometry (math.DG) ,[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] ,Metric (mathematics) ,symbols ,010307 mathematical physics ,Geometry and Topology ,Analysis ,Scalar curvature - Abstract
We prove that the round metric on the sphere has the largest first eigenvalue of the Dirac operator among all metrics that are larger than it. As a corollary, this gives an alternative proof of an extremality result for scalar curvature due to M. Llarull., Comment: to appear in G.A.F.A
- Published
- 2004
- Full Text
- View/download PDF
24. The Huber theorem for non-compact conformally flat manifolds
- Author
-
Gilles Carron, Marc Herzlich, Institut de Mathématiques et de Modélisation de Montpellier (I3M), Centre National de la Recherche Scientifique (CNRS)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM), Laboratoire de Mathématiques Jean Leray (LMJL), Centre National de la Recherche Scientifique (CNRS)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), and Université de Nantes (UN)-Université de Nantes (UN)
- Subjects
Pure mathematics ,Riemann curvature tensor ,Curvature of Riemannian manifolds ,General Mathematics ,Prescribed scalar curvature problem ,010102 general mathematics ,Mathematical analysis ,Curvature ,01 natural sciences ,symbols.namesake ,[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] ,0103 physical sciences ,symbols ,Curvature form ,Mathematics::Differential Geometry ,010307 mathematical physics ,Sectional curvature ,0101 mathematics ,Ricci curvature ,ComputingMilieux_MISCELLANEOUS ,Scalar curvature ,Mathematics - Abstract
It was proved in 1957 by Huber that any complete surface with integrable Gauss curvature is conformally equivalent to a compact surface with a finite number of points removed. Counterexamples show that the curvature assumption must necessarily be strengthened in order to get an analogous conclusion in higher dimensions. We show in this paper that any non compact Riemannian manifold with finite $ L^{n/2} $ -norm of the Ricci curvature satisfies Huber-type conclusions if either it is a conformal domain with volume growth controlled from above in a compact Riemannian manifold or if it is conformally flat of dimension 4 and a natural Sobolev inequality together with a mild scalar curvature decay assumption hold. We also get partial results in other dimensions.
- Published
- 2002
- Full Text
- View/download PDF
25. Minimal spheres, the Dirac operator and the Penrose inequality
- Author
-
Marc Herzlich, Institut de Mathématiques et de Modélisation de Montpellier (I3M), and Centre National de la Recherche Scientifique (CNRS)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)
- Subjects
Minimal surface ,Inequality ,010308 nuclear & particles physics ,media_common.quotation_subject ,010102 general mathematics ,Mathematical analysis ,Penrose diagram ,Dirac operator ,01 natural sciences ,symbols.namesake ,[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] ,0103 physical sciences ,symbols ,0101 mathematics ,ComputingMilieux_MISCELLANEOUS ,Mathematics ,Mathematical physics ,Yamabe invariant ,media_common - Abstract
International audience
- Published
- 2002
- Full Text
- View/download PDF
26. The mass of asymptotically hyperbolic Riemannian manifolds
- Author
-
Marc Herzlich, Piotr T. Chruściel, Institut de Mathématiques et de Modélisation de Montpellier (I3M), Centre National de la Recherche Scientifique (CNRS)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM), Laboratoire de Mathématiques et Physique Théorique (LMPT), Université de Tours-Centre National de la Recherche Scientifique (CNRS), and Université de Tours (UT)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Mathematics - Differential Geometry ,83c40 ,Pure mathematics ,General Mathematics ,Hyperbolic geometry ,FOS: Physical sciences ,Conformal map ,Riemannian geometry ,01 natural sciences ,symbols.namesake ,Ricci-flat manifold ,Riemannian Penrose inequality ,0103 physical sciences ,FOS: Mathematics ,0101 mathematics ,Invariant (mathematics) ,Mathematics::Symplectic Geometry ,Mathematical Physics ,ComputingMilieux_MISCELLANEOUS ,Mathematics ,010308 nuclear & particles physics ,010102 general mathematics ,Mathematical analysis ,Mathematical Physics (math-ph) ,53c20 ,Differential geometry ,Differential Geometry (math.DG) ,[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] ,symbols ,Positive energy theorem - Abstract
We present a set of global invariants, called "mass integrals", which can be defined for a large class of asymptotically hyperbolic Riemannian manifolds. When the "boundary at infinity" has spherical topology one single invariant is obtained, called the mass; we show positivity thereof. We apply the definition to conformally compactifiable manifolds, and show that the mass is completion-independent. We also prove the result, closely related to the problem at hand, that conformal completions of conformally compactifiable manifolds are unique., Comment: 27 pages, Latex2e with several style files; various misprints corrected, positivity theorem for black holes considerably strengthened, to appear in Pacific Jour. of Mathematics
- Published
- 2001
- Full Text
- View/download PDF
27. Ricci curvature in the neighbourhood of rank-one symmetric spaces
- Author
-
Erwann Delay, Marc Herzlich, Institut de Mathématiques et de Modélisation de Montpellier (I3M), Centre National de la Recherche Scientifique (CNRS)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM), EA2151 Laboratoire de Mathématiques d'Avignon (LMA), and Avignon Université (AU)
- Subjects
Pure mathematics ,Riemann curvature tensor ,Curvature of Riemannian manifolds ,010102 general mathematics ,Mathematical analysis ,Ricci flow ,Fubini–Study metric ,01 natural sciences ,Intrinsic metric ,symbols.namesake ,[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] ,0103 physical sciences ,symbols ,Ricci decomposition ,Mathematics::Differential Geometry ,010307 mathematical physics ,Geometry and Topology ,0101 mathematics ,Ricci curvature ,ComputingMilieux_MISCELLANEOUS ,Mathematics ,Scalar curvature - Abstract
We study the Ricci curvature of a Riemannian metric as a differential operator acting on the space of metrics close (in a weighted functional spaces topology) to the standard metric of a rank-one noncompact symmetric space. We prove that any symmetric bilinear field close enough to the standard may be realized as the Ricci curvature of a unique close metric if its decay rate at infinity (its weight) belongs to some precisely known interval. We also study what happens if the decay rate is too small or too large.
- Published
- 2001
- Full Text
- View/download PDF
28. Refined Kato inequalities in Riemannian geometry
- Author
-
Marc Herzlich, Institut de Mathématiques et de Modélisation de Montpellier (I3M), Centre National de la Recherche Scientifique (CNRS)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM), and Herzlich, Marc
- Subjects
Pure mathematics ,010102 general mathematics ,General Medicine ,Riemannian geometry ,01 natural sciences ,symbols.namesake ,[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] ,0103 physical sciences ,Calculus ,symbols ,010307 mathematical physics ,0101 mathematics ,[MATH.MATH-DG] Mathematics [math]/Differential Geometry [math.DG] ,ComputingMilieux_MISCELLANEOUS ,Mathematics - Abstract
International audience
- Published
- 2000
29. The canonical Cartan bundle and connection in CR geometry.
- Author
-
MARC HERZLICH
- Subjects
- *
DIFFERENTIAL geometry , *LIE algebras , *GEOMETRIC connections , *CR submanifolds , *MATHEMATICAL research - Abstract
AbstractWe give a simple differential geometric description of the canonical Cartan (or tractor) bundle and connection in CR geometry, thus offering an alternative definition to the usual abstract Lie algebraic approach. [ABSTRACT FROM AUTHOR]
- Published
- 2009
- Full Text
- View/download PDF
30. Conformally flat manifolds with nonnegative Ricci curvature.
- Author
-
Gilles Carron and Marc Herzlich
- Published
- 2006
- Full Text
- View/download PDF
31. Geometry of Artin groups, lattices and hyperbolic spaces
- Author
-
Haettel, Thomas, Institut Montpelliérain Alexander Grothendieck (IMAG), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, and Marc Herzlich
- Subjects
courbure négative ,rigidité ,nonpositive curvature ,groupes d'Artin ,espaces symétriques ,symmetric spaces ,groupes hiérarchiquement hyperboliques ,hierarchically hyperbolic groups ,[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR] ,isométries affines ,CAT(0) cube complexes ,affine isometries ,[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT] ,mapping class groups of surfaces ,braid groups ,[MATH.MATH-MG]Mathematics [math]/Metric Geometry [math.MG] ,groupes de tresses ,medians ,complexes cubiques CAT(0) ,immeubles ,buildings ,Artin groups ,groupes modulaires de surface ,higher rank lattices ,médianes ,rigidity ,réseaux de rang supérieur - Published
- 2021
32. Géométrie des groupes d'Artin, des réseaux et des espaces hyperboliques
- Author
-
Haettel, Thomas, Institut Montpelliérain Alexander Grothendieck (IMAG), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, and Marc Herzlich
- Subjects
courbure négative ,rigidité ,nonpositive curvature ,groupes d'Artin ,espaces symétriques ,symmetric spaces ,groupes hiérarchiquement hyperboliques ,hierarchically hyperbolic groups ,[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR] ,isométries affines ,CAT(0) cube complexes ,affine isometries ,[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT] ,mapping class groups of surfaces ,braid groups ,[MATH.MATH-MG]Mathematics [math]/Metric Geometry [math.MG] ,groupes de tresses ,medians ,complexes cubiques CAT(0) ,immeubles ,buildings ,Artin groups ,groupes modulaires de surface ,higher rank lattices ,médianes ,rigidity ,réseaux de rang supérieur - Published
- 2021
33. New invariants in CR and contact geometry
- Author
-
Dietrich, Gautier, Institut Montpelliérain Alexander Grothendieck (IMAG), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Université Montpellier, and Marc Herzlich
- Subjects
Paneitz operator ,[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] ,Yamabe invariant ,CR geometry ,Géométrie CR ,Opérateur de Paneitz ,Invariant de Yamabe - Abstract
Cauchy-Riemann geometry, CR for short, is the natural geometry of real pseudoconvex hypersurfaces of C^{n+1} for n≥1. We consider the generic case when CR manifolds are contact manifolds. CR geometry presents strong analogies with conformal geometry; hence, known invariants and techniques of conformal geometry can be transported to that context. We focus in this thesis on two such invariants. In a first part, using asymptotically complex hyperbolic geometry, we introduce a CR covariant differential operator on maps from a CR manifold to a Riemannian manifold, which coincides on functions with the CR Paneitz operator. In a second part, we propose a Yamabe invariant for contact manifolds which admit a CR structure, and we study its behaviour under connected sum.; La géométrie de Cauchy-Riemann, CR en abrégé, est la géométrie naturelle des hypersurfaces réelles pseudoconvexes de C^{n+1}, lorsque n≥1. Nous considérons le cas générique où les variétés CR considérées sont de contact. La géométrie CR présente de nombreuses similarités avec la géométrie conforme ; les invariants mis au jour et les techniques éprouvées en géométrie conforme peuvent donc être adaptées dans ce contexte. Nous nous intéressons dans cette thèse à deux invariants de ce type. Dans une première partie, en utilisant la géométrie asymptotiquement hyperbolique complexe, nous introduisons un opérateur différentiel CR covariant agissant sur les applications allant d'une variété CR vers une variété riemannienne, égal pour les fonctions à l'opérateur de Paneitz CR. Dans une seconde partie, nous proposons un invariant de Yamabe pour les variétés de contact admettant une structure CR, et nous étudions son comportement sous somme connexe.
- Published
- 2018
34. Nouveaux invariants en géométrie CR et de contact
- Author
-
Dietrich, Gautier, Institut Montpelliérain Alexander Grothendieck (IMAG), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Université Montpellier, and Marc Herzlich
- Subjects
Paneitz operator ,[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] ,Yamabe invariant ,CR geometry ,Géométrie CR ,Opérateur de Paneitz ,Invariant de Yamabe - Abstract
Cauchy-Riemann geometry, CR for short, is the natural geometry of real pseudoconvex hypersurfaces of C^{n+1} for n≥1. We consider the generic case when CR manifolds are contact manifolds. CR geometry presents strong analogies with conformal geometry; hence, known invariants and techniques of conformal geometry can be transported to that context. We focus in this thesis on two such invariants. In a first part, using asymptotically complex hyperbolic geometry, we introduce a CR covariant differential operator on maps from a CR manifold to a Riemannian manifold, which coincides on functions with the CR Paneitz operator. In a second part, we propose a Yamabe invariant for contact manifolds which admit a CR structure, and we study its behaviour under connected sum.; La géométrie de Cauchy-Riemann, CR en abrégé, est la géométrie naturelle des hypersurfaces réelles pseudoconvexes de C^{n+1}, lorsque n≥1. Nous considérons le cas générique où les variétés CR considérées sont de contact. La géométrie CR présente de nombreuses similarités avec la géométrie conforme ; les invariants mis au jour et les techniques éprouvées en géométrie conforme peuvent donc être adaptées dans ce contexte. Nous nous intéressons dans cette thèse à deux invariants de ce type. Dans une première partie, en utilisant la géométrie asymptotiquement hyperbolique complexe, nous introduisons un opérateur différentiel CR covariant agissant sur les applications allant d'une variété CR vers une variété riemannienne, égal pour les fonctions à l'opérateur de Paneitz CR. Dans une seconde partie, nous proposons un invariant de Yamabe pour les variétés de contact admettant une structure CR, et nous étudions son comportement sous somme connexe.
- Published
- 2018
35. Structure de variété de Hilbert et masse sur l'ensemble des données initiales relativistes faiblement asymptotiquement hyperboliques
- Author
-
Fougeirol, Jérémie, EA2151 Laboratoire de Mathématiques d'Avignon (LMA), Avignon Université (AU), Institut Montpelliérain Alexander Grothendieck (IMAG), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Université d'Avignon, Erwann Delay, and Marc Herzlich
- Subjects
Variété faiblement asymptotiquement hyperbolique ,[MATH.MATH-GM]Mathematics [math]/General Mathematics [math.GM] ,General relativity ,Hilbert manifold structure ,Structure de variété de Hilbert ,Non-linear elliptic PDE system ,Système d'EDP elliptique non-linéaire ,Relativité générale ,Constraint equations ,Équations de contrainte ,Weakly asymptotically hyperbolic manifold - Abstract
General relativity is a gravitational theory born a century ago, in which the universe is a 4-dimensional Lorentzian manifold (N,gamma) called spacetime and satisfying Einstein's field equations. When we separate the time dimension from the three spatial ones, constraint equations naturally follow on from the 3+1 décomposition of Einstein's equations. Constraint equations constitute a necessary condition,as well as sufficient, to consider the spacetime N as the time evolution of a Riemannian hypersurface (m,g) embeded into N with the second fundamental form K. (m,g,K) is then an element of C, the set of initial data solutions to the constraint equations. In this work, we use Robert Bartnik's method to provide a Hilbert submanifold structure on C for weakly asymptotically hyperbolic initial data, whose regularity can be related to the bounded L^{2} curvature conjecture. Difficulties arising from the weakly AH case led us to introduce two second order differential operators and we obtain Poincaré and Korn-type estimates for them. Once the Hilbert structure is properly described, we define a mass functional smooth on the submanifold C and compatible with our weak regularity assumptions. The geometrical invariance of the mass is studied and proven, only up to a weak regularity conjecture about coordinate changes near infinity. Finally, we make a correspondance between critical points of the mass and static metrics.; La relativité générale est une théorie physique de la gravitation élaborée il y a un siècle, dans laquelle l'univers est modélisé par une variété Lorentzienne (N,gamma) de dimension 4 appelée espace-temps et vérifiant les équations d'Einstein. Lorsque l'on sépare la dimension temporelle des trois dimensions spatiales, les équations de contrainte découlent naturellement de la décomposition 3+1 des équations d'Einstein. Elles constituent une condition nécessaire et suffisante pour pouvoir considérer l'espace-temps N comme l'évolution temporelle d'une hypersurface Riemannienne (m,g) plongée dans N avec une seconde forme fondamentale K. Le triplet (m,g,K) constitue alors une donnée initiale solution des équations de contrainte dont on note C l'ensemble. Dans cette thèse, nous utilisons la méthode de Robert Bartnik pour établir la structure de sous-variété de Hilbert de C pour des données initiales faiblement asymptotiquement hyperboliques, dont la régularité peut être reliée à la conjecture de courbure L^{2} bornée. Les difficultés inhérentes au cas faiblement AH ont nécessité l'introduction de deux opérateurs différentiels d'ordre deux et l'obtention d'estimées de type Poincaré et Korn pour ces opérateurs. Une fois la structure de Hilbert obtenue, nous définissons une fonctionnelle masse lisse sur la sous-variété C et compatible avec nos conditions de faible régularité. L'invariance géométrique de la masse est étudiée et montrée, modulo une conjecture en faible régularité relative au changement de cartes au voisinage de l'infini. Enfin, nous faisons le lien entre les points critiques de la masse et les métriques statiques.
- Published
- 2017
36. Entropie minimale des espaces localement symétriques
- Author
-
MERLIN, Louis, Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux, Christophe Bavard, Bavard, Christophe, Bessières, Laurent, Quint, Jean-François, Paulin, Frédéric, Besson, Gérard, Herzlich, Marc, Frédéric Paulin [Président], Gérard Besson [Rapporteur], Marc Herzlich [Rapporteur], Laurent Bessières, and Jean-François Quint
- Subjects
Conjecture de Gromov et Katok ,Entropie volumique ,[MATH.MATH-GM]Mathematics [math]/General Mathematics [math.GM] ,Quotients compacts de (H2)n ,Geometry Ambient ,Conjecture by Gromov and Katok ,Géométrie ambiante ,Volume entropy - Abstract
In this thesis we give an overview of the volume entropy rigidity problem. A conjecture by Gromov and Katok states that, on a locally symmetric space (M; g0), the symmetric metric g0 has minimal volume entropy among metrices with the same total volume. The text is self-contained, assuming a basic knowledge in differential geometry. Therefore we discuss in the first chapter some background material used in the sequel. The case of compact quotients of H2 _ H2 was unknown before this work ; we give a fully detailled proof. The key-point is to build a calibrating form as in [BCG95]. As a by-product, we present some applications provided by the proof of the volume entropy rigidity conjecture. We conclude by an informal section explaining the motivations of the problem to a non-mathematical reader.; Nous donnons dans cette thèse une preuve du problème de l’entropie volumique minimale dans les quotients compacts de H2_H2. Une conjecture de Gromov et Katok prétend en effet que, sur un espace localement symétrique (M; g0), la métrique de plus petite entropie volumique parmi les métriques de volume fixé est la métrique g0. Le texte se veut relativement abordable. C’est pourquoi nous avons intégré un premier chapitre qui contient une bonne partie du matériel qui sera utilisé par la suite. Puis nous passons en revue les preuves des différents cas du problème déjà traités. Le cas des quotients compacts de H2_H2 n’était pas connu avant ce travail ; nous en détaillons minutieusement la preuve. Notre démarche consiste à faire fonctionner la méthode de calibration imaginée dans [BCG95]. Nous présentons aussi les principales applications qui découlent de la preuve de la conjecture de Gromov et Katok. Nous concluons par une discussion heuristique qui explique les enjeux du problème que nous étudions.
- Published
- 2014
37. Mathematical study of Black Hole spacetimes and of their initial data in General Relativity
- Author
-
Cortier, Julien, Institut de Mathématiques et de Modélisation de Montpellier (I3M), Centre National de la Recherche Scientifique (CNRS)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM), Université Montpellier II - Sciences et Techniques du Languedoc, and Marc Herzlich, Piotr Chrusciel
- Subjects
équations des contraintes ,initial data ,extensions analytiques ,constraint equations ,espaces-temps ,vecteur de moment-énergie ,données initiales ,Géométrie Lorentzienne ,géométrie riemannienne ,analytic extensions ,Lorentzian geometry ,energy-momentum vector ,Riemannian geometry ,spacetimes ,[MATH]Mathematics [math] - Abstract
The aim of this thesis is the mathematical study of families of spacetimes satisfying the Einstein's equations of General Relativity. Two methods are used in this context. The first part, consisting of the first three chapters of this work, investigates the geometric properties of the Emparan-Reall and Pomeransky-Senkov families of 5-dimensional spacetimes. We show that they contain a black-hole region, whose event horizon has non-spherical compact cross sections. We construct an analytic extension, and show its maximality and its uniqueness within a natural class in the Emparan-Reall case. We further establish the Carter-Penrose diagram for these extensions, and analyse the structure of the ergosurface of the Pomeransky-Senkov spacetimes. The second part focuses on the study of initial data, solutions of the constraint equations induced by the Einstein's equations. We perform a gluing construction between a given family of inital data sets and initial data of Kerr-Kottler-de Sitter spacetimes, using Corvino's method. On the other hand, we construct 3-dimensional asymptotically hyperbolic metrics which satisfy all the assumptions of the positive mass theorem but the completeness, and which display an energy-momentum vector of arbitry causal type.; L'objet de cette thèse est l'étude mathématique de familles d'espaces-temps satisfaisant aux équations d'Einstein de la Relativité Générale. Deux approches sont considérées pour cette étude. La première partie, composée des trois premiers chapitres, examine les propriétés géométriques des espaces-temps d'Emparan-Reall et de Pomeransky-Senkov, de dimension 5. Nous montrons qu'ils contiennent un trou noir, dont l'horizon des événements est à sections compactes non-homéomorphes à la sphère. Nous en construisons une extension analytique, et prouvons que cette extension est maximale, et unique dans une certaine classe d'extensions pour les espaces-temps d'Emparan-Reall. Nous établissons ensuite le diagramme de Carter-Penrose de ces extensions, puis analysons la structure de l'ergosurface des espaces-temps de Pomeransky- Senkov. La deuxième partie est consacrée à l'étude de données initiales, solutions des équations des contraintes, induites par les équations d'Einstein. Nous effectuons un recollement d'une classe de données initiales avec des données initiales d'espaces-temps de Kerr-Kottler-de Sitter, en utilisant la méthode de Corvino. Nous construisons, d'autre part, des métriques asymptotiquement hyperboliques en dimension 3, satisfaisant les hypothèses du théorème de masse positive à l'exception de la complétude, et ayant un vecteur moment-énergie de genre causal arbitraire.
- Published
- 2011
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.