Marc Geiller, Karim Noui, Laboratoire de Physique de l'ENS Lyon (Phys-ENS), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Fédération de recherche Denis Poisson (FDP), Université de Tours-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO), AstroParticule et Cosmologie (APC (UMR_7164)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), Université d'Orléans (UO)-Université de Tours-Centre National de la Recherche Scientifique (CNRS), Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure - Lyon (ENS Lyon)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon, Institut Denis Poisson (IDP), Centre National de la Recherche Scientifique (CNRS)-Université de Tours (UT)-Université d'Orléans (UO), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Centre National de la Recherche Scientifique (CNRS)-Université de Tours-Université d'Orléans (UO), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université d'Orléans (UO)-Université de Tours (UT)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
We have recently introduced a new and very simple action for three-dimensional massive gravity. This action is written in a first order formulation where the triad and the connection play a manifestly symmetric role, but where internal Lorentz gauge symmetry is broken. The absence of Lorentz invariance, which in this model is the mechanism underlying the propagation of a massive graviton, does however prevent from writing a purely metric non-linear action for the theory. Nonetheless, in this letter, we explain how to disentangle, at the non-linear level, the metric and non-metric degrees of freedom in the equations of motion. Focusing on the metric part, we show that it satisfies modified Einstein equations with higher derivative terms. As a particular case, these equations reproduce a well-studied model known as minimal massive gravity. In the general case, we obtain new metric field equations for massive gravity in three dimensions starting from the simple first order action. These field equations are consistent through a mechanism known as "third way consistency", which our theory therefore provides a new example of., 5 pages, published version