6 results on '"Marc Assens"'
Search Results
2. SaltiNet: Scan-Path Prediction on 360 Degree Images Using Saliency Volumes.
- Author
-
Marc Assens, Xavier Giró-i-Nieto, Kevin McGuinness, and Noel E. O'Connor
- Published
- 2017
- Full Text
- View/download PDF
3. Scanpath and saliency prediction on 360 degree images.
- Author
-
Marc Assens, Xavier Giró-i-Nieto, Kevin McGuinness, and Noel E. O'Connor
- Published
- 2018
- Full Text
- View/download PDF
4. Scanpath and saliency prediction on 360 degree images
- Author
-
Kevin McGuinness, Noel E. O'Connor, Xavier Giro-i-Nieto, Marc Assens, Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions, and Universitat Politècnica de Catalunya. GPI - Grup de Processament d'Imatge i Vídeo
- Subjects
Artificial intelligence ,Source code ,scanpath ,Computer science ,media_common.quotation_subject ,ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION ,Binary number ,Image processing ,02 engineering and technology ,Neural networks (Computer science) ,Imatges -- Processament -- Tècniques digitals ,Aprenentatge automàtic ,0202 electrical engineering, electronic engineering, information engineering ,Xarxes neuronals (Informàtica) ,Electrical and Electronic Engineering ,Imatges tridimensionals ,Representation (mathematics) ,media_common ,Image processing--Digital techniques ,business.industry ,saliency ,Deep learning ,Intel·ligència artificial ,Sampling (statistics) ,deep learning ,020206 networking & telecommunications ,Pattern recognition ,Enginyeria de la telecomunicació::Processament del senyal::Processament de la imatge i del senyal vídeo [Àrees temàtiques de la UPC] ,visual attention ,Task (computing) ,Cross entropy ,machine learning ,Signal Processing ,Three-dimensional imaging ,020201 artificial intelligence & image processing ,Computer Vision and Pattern Recognition ,business ,Software - Abstract
We introduce deep neural networks for scanpath and saliency prediction trained on 360-degree images. The scanpath prediction model called SaltiNet is based on a temporal-aware novel representation of saliency information named the saliency volume. The first part of the network consists of a model trained to generate saliency volumes, whose parameters are fit by back-propagation using a binary cross entropy (BCE) loss over downsampled versions of the saliency volumes. Sampling strategies over these volumes are used to generate scanpaths over the 360-degree images. Our experiments show the advantages of using saliency volumes, and how they can be used for related tasks. We also show how a similar architecture achieves state-of-the-art performance for the related task of saliency map prediction. Our source code and trained models available at https://github.com/massens/saliency-360salient-2017.
- Published
- 2018
5. SaltiNet: scan-path prediction on 360 degree images using saliency volumes
- Author
-
Kevin McGuinness, Noel E. O'Connor, Xavier Giro-i-Nieto, Marc Assens, Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions, and Universitat Politècnica de Catalunya. GPI - Grup de Processament d'Imatge i Vídeo
- Subjects
FOS: Computer and information sciences ,Artificial intelligence ,scanpath ,Computer science ,Computer Vision and Pattern Recognition (cs.CV) ,Computer Science - Computer Vision and Pattern Recognition ,ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION ,Image processing ,02 engineering and technology ,010501 environmental sciences ,01 natural sciences ,Convolutional neural network ,computer vision ,Neural networks (Computer science) ,Imatges -- Processament -- Tècniques digitals ,Salience (neuroscience) ,Machine learning ,Informàtica::Intel·ligència artificial::Representació del coneixement [Àrees temàtiques de la UPC] ,convolutional neural networks ,0202 electrical engineering, electronic engineering, information engineering ,Xarxes neuronals (Informàtica) ,Artificial vision ,0105 earth and related environmental sciences ,Image processing--Digital techniques ,Artificial neural network ,business.industry ,Deep learning ,Intel·ligència artificial ,Visió per ordinador ,saliency prediction ,deep learning ,Pattern recognition ,Enginyeria de la telecomunicació::Processament del senyal::Processament de la imatge i del senyal vídeo [Àrees temàtiques de la UPC] ,Visió artificial (Robòtica) ,Multimedia (cs.MM) ,Visualization ,Eye tracking ,020201 artificial intelligence & image processing ,eye gaze ,business ,Computer Science - Multimedia - Abstract
We introduce SaltiNet, a deep neural network for scanpath prediction trained on 360-degree images. The model is based on a temporal-aware novel representation of saliency information named the saliency volume. The first part of the network consists of a model trained to generate saliency volumes, whose parameters are fit by back-propagation computed from a binary cross entropy (BCE) loss over downsampled versions of the saliency volumes. Sampling strategies over these volumes are used to generate scanpaths over the 360-degree images. Our experiments show the advantages of using saliency volumes, and how they can be used for related tasks. Our source code and trained models available at https://github.com/massens/saliency-360salient-2017., Winner of the Best Scan-path Award at the Salient360!: Visual attention modeling for 360 degrees Images Grand Challenge of ICME 2017. Presented at the ICCV 2017 Workshop on Egocentric Perception, Interaction and Computing (EPIC)
- Published
- 2018
6. PathGAN: Visual Scanpath Prediction with Generative Adversarial Networks
- Author
-
Xavier Giro-i-Nieto, Kevin McGuinness, Marc Assens, Noel E. O'Connor, Leal-Taixé, Laura, Roth, Stefan, Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions, and Universitat Politècnica de Catalunya. GPI - Grup de Processament d'Imatge i Vídeo
- Subjects
FOS: Computer and information sciences ,Artificial intelligence ,scanpath ,Computer Science - Artificial Intelligence ,Computer science ,Computer Vision and Pattern Recognition (cs.CV) ,Computer Science - Computer Vision and Pattern Recognition ,ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION ,Image processing ,02 engineering and technology ,010501 environmental sciences ,01 natural sciences ,Neural networks (Computer science) ,Imatges -- Processament -- Tècniques digitals ,Adversarial system ,InformationSystems_MODELSANDPRINCIPLES ,Machine learning ,0202 electrical engineering, electronic engineering, information engineering ,Xarxes neuronals (Informàtica) ,0105 earth and related environmental sciences ,Image processing--Digital techniques ,Artificial neural network ,saliency ,business.industry ,Visió per ordinador ,Supervised learning ,Pattern recognition ,Enginyeria de la telecomunicació::Processament del senyal::Processament de la imatge i del senyal vídeo [Àrees temàtiques de la UPC] ,Gaze ,GAN ,ComputingMethodologies_PATTERNRECOGNITION ,Artificial Intelligence (cs.AI) ,adversarial training ,Fixation (visual) ,Computer vision ,020201 artificial intelligence & image processing ,cGAN ,business ,Generative grammar - Abstract
We introduce PathGAN, a deep neural network for visual scanpath prediction trained on adversarial examples. A visual scanpath is defined as the sequence of fixation points over an image defined by a human observer with its gaze. PathGAN is composed of two parts, the generator and the discriminator. Both parts extract features from images using off-the-shelf networks, and train recurrent layers to generate or discriminate scanpaths accordingly. In scanpath prediction, the stochastic nature of the data makes it very difficult to generate realistic predictions using supervised learning strategies, but we adopt adversarial training as a suitable alternative. Our experiments prove how PathGAN improves the state of the art of visual scanpath prediction on the iSUN and Salient360! datasets. Source code and models are available at https://imatge-upc.github.io/pathgan/, Comment: ECCV 2018 Workshop on Egocentric Perception, Interaction and Computing (EPIC). This work obtained the 2nd award in Prediction of Head-gaze Scan-paths for Images, and the 2nd award in Prediction of Eye-gaze Scan-paths for Images at the IEEE ICME 2018 Salient360! Challenge
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.