15 results on '"María Esther Rubio-Ruíz"'
Search Results
2. Hepatoprotective Mechanisms Induced by Spinach Methanolic Extract in Rats with Hyperglycemia—An Immunohistochemical Analysis
- Author
-
Javier Flores-Estrada, Agustina Cano-Martínez, Álvaro Vargas-González, Vicente Castrejón-Téllez, Jorge Cornejo-Garrido, Martín Martínez-Rosas, Verónica Guarner-Lans, and María Esther Rubio-Ruíz
- Subjects
spinach methanolic extract (SME) ,liver damage ,oxidative stress ,inflammation ,fibrosis ,parenchymal (PQ) cells ,Therapeutics. Pharmacology ,RM1-950 - Abstract
Spinach methanolic extract (SME) has a hepatoprotective effect due to its polyphenolic antioxidants; however, its action in parenchymal (PQ) and non-parenchymal (nPQ) cells remains unknown. This study investigates the hepatoprotective effect of SME on streptozotocin-induced hyperglycemic rats (STZ), focusing on immunohistochemical analyses. Methods: The extract was prepared, and the total polyphenols and antioxidant activity were quantified. Adult male Wistar rats were divided into four groups (n = 8): normoglycemic rats (NG), STZ-induced hyperglycemic (STZ), STZ treated with 400 mg/kg SME (STZ-SME), and NG treated with SME (SME) for 12 weeks. Serum liver transaminases and lipid peroxidation levels in tissue were determined. The distribution pattern and relative levels of markers related to oxidative stress [reactive oxygen species (ROS), superoxide dismutase-1, catalase, and glutathione peroxidase-1], of cytoprotective molecules [nuclear NRF2 and heme oxygenase-1 (HO-1)], of inflammatory mediators [nuclear NF-κB, TNF-α], proliferation (PCNA), and of fibrogenesis markers [TGF-β, Smad2/3, MMP-9, and TIMP1] were evaluated. Results: SME had antioxidant capacity, and it lowered serum transaminase levels in STZ-SME compared to STZ. It reduced NOX4 staining, and lipid peroxidation levels were related to low formation of ROS. In STZ-SME, the immunostaining for antioxidant enzymes increased in nPQ cells compared to STZ. However, enzymes were also localized in extra and intracellular vesicles in STZ. Nuclear NRF2 staining and HO-1 expression in PQ and nPQ were higher in STZ-SME than in STZ. Inflammatory factors were decreased in STZ-SME and were related to the percentage decrease in NF-κB nuclear staining in nPQ cells. Similarly, TGF-β (in the sinusoids) and MMP-9 (in nPQ) were increased in the STZ-SME group compared to the other groups; however, staining for CTGF, TIMP1, and Smad2/3 was lower. Conclusions: SME treatment in hyperglycemic rats induced by STZ may have hepatoprotective properties due to its scavenger capacity and the regulation of differential expression of antioxidant enzymes between the PQ and nPQ cells, reducing inflammatory and fibrogenic biomarkers in liver tissue.
- Published
- 2023
- Full Text
- View/download PDF
3. Nonclassical Axis of the Renin-Angiotensin System and Neprilysin: Key Mediators That Underlie the Cardioprotective Effect of PPAR-Alpha Activation during Myocardial Ischemia in a Metabolic Syndrome Model
- Author
-
María Sánchez-Aguilar, Luz Ibarra-Lara, Leonardo del Valle-Mondragón, Elizabeth Soria-Castro, Juan Carlos Torres-Narváez, Elizabeth Carreón-Torres, Alicia Sánchez-Mendoza, and María Esther Rubio-Ruíz
- Subjects
Biology (General) ,QH301-705.5 - Abstract
The activation of the renin-angiotensin system (RAS) participates in the development of metabolic syndrome (MetS) and in heart failure. PPAR-alpha activation by fenofibrate reverts some of the effects caused by these pathologies. Recently, nonclassical RAS components have been implicated in the pathogenesis of hypertension and myocardial dysfunction; however, their cardiac functions are still controversial. We evaluated if the nonclassical RAS signaling pathways, directed by angiotensin III and angiotensin-(1-7), are involved in the cardioprotective effect of fenofibrate during ischemia in MetS rats. Control (CT) and MetS rats were divided into the following groups: (a) sham, (b) vehicle-treated myocardial infarction (MI-V), and (c) fenofibrate-treated myocardial infarction (MI-F). Angiotensin III and angiotensin IV levels and insulin increased the aminopeptidase (IRAP) expression and decreased the angiotensin-converting enzyme 2 (ACE2) expression in the hearts from MetS rats. Ischemia activated the angiotensin-converting enzyme (ACE)/angiotensin II/angiotensin receptor 1 (AT1R) and angiotensin III/angiotensin IV/angiotensin receptor 4 (AT4R)-IRAP axes. Fenofibrate treatment prevented the damage due to ischemia in MetS rats by favoring the angiotensin-(1-7)/angiotensin receptor 2 (AT2R) axis and inhibiting the angiotensin III/angiotensin IV/AT4R-IRAP signaling pathway. Additionally, fenofibrate downregulated neprilysin expression and increased bradykinin production. These effects of PPAR-alpha activation were accompanied by a reduction in the size of the myocardial infarct and in the activity of serum creatine kinase. Thus, the regulation of the nonclassical axis of RAS forms part of a novel protective effect of fenofibrate in myocardial ischemia.
- Published
- 2020
- Full Text
- View/download PDF
4. Nitrosative Stress and Its Association with Cardiometabolic Disorders
- Author
-
Israel Pérez-Torres, Linaloe Manzano-Pech, María Esther Rubio-Ruíz, María Elena Soto, and Verónica Guarner-Lans
- Subjects
nitric oxide ,peroxynitrite ,nitrosative stress ,uncoupled NOS isoforms ,Organic chemistry ,QD241-441 - Abstract
Reactive nitrogen species (RNS) are formed when there is an abnormal increase in the level of nitric oxide (NO) produced by the inducible nitric oxide synthase (iNOS) and/or by the uncoupled endothelial nitric oxide synthase (eNOS). The presence of high concentrations of superoxide anions (O2−) is also necessary for their formation. RNS react three times faster than O2− with other molecules and have a longer mean half life. They cause irreversible damage to cell membranes, proteins, mitochondria, the endoplasmic reticulum, nucleic acids and enzymes, altering their activity and leading to necrosis and to cell death. Although nitrogen species are important in the redox imbalance, this review focuses on the alterations caused by the RNS in the cellular redox system that are associated with cardiometabolic diseases. Currently, nitrosative stress (NSS) is implied in the pathogenesis of many diseases. The mechanisms that produce damage remain poorly understood. In this paper, we summarize the current knowledge on the participation of NSS in the pathology of cardiometabolic diseases and their possible mechanisms of action. This information might be useful for the future proposal of anti-NSS therapies for cardiometabolic diseases.
- Published
- 2020
- Full Text
- View/download PDF
5. PPAR Alpha Activation by Clofibrate Alleviates Ischemia/Reperfusion Injury in Metabolic Syndrome Rats by Decreasing Cardiac Inflammation and Remodeling and by Regulating the Atrial Natriuretic Peptide Compensatory Response
- Author
-
María Sánchez-Aguilar, Luz Ibarra-Lara, Agustina Cano-Martínez, Elizabeth Soria-Castro, Vicente Castrejón-Téllez, Natalia Pavón, Citlalli Osorio-Yáñez, Eulises Díaz-Díaz, and María Esther Rubio-Ruíz
- Subjects
Inorganic Chemistry ,Organic Chemistry ,General Medicine ,Physical and Theoretical Chemistry ,Molecular Biology ,ischemia/reperfusion injury ,natriuretic peptides ,metabolic syndrome ,cardiac remodeling ,cardiac inflammation ,PPAR alpha agonist ,Spectroscopy ,Catalysis ,Computer Science Applications - Abstract
Metabolic syndrome (MetS) is a cluster of factors that increase the risk of developing diabetes, stroke, and heart failure. The pathophysiology of injury by ischemia/reperfusion (I/R) is highly complex and the inflammatory condition plays an important role by increasing matrix remodeling and cardiac apoptosis. Natriuretic peptides (NPs) are cardiac hormones with numerous beneficial effects mainly mediated by a cell surface receptor named atrial natriuretic peptide receptor (ANPr). Although NPs are powerful clinical markers of cardiac failure, their role in I/R is still controversial. Peroxisome proliferator-activated receptor α agonists exert cardiovascular therapeutic actions; however, their effect on the NPs’ signaling pathway has not been extensively studied. Our study provides important insight into the regulation of both ANP and ANPr in the hearts of MetS rats and their association with the inflammatory conditions caused by damage from I/R. Moreover, we show that pre-treatment with clofibrate was able to decrease the inflammatory response that, in turn, decreases myocardial fibrosis, the expression of metalloprotease 2 and apoptosis. Treatment with clofibrate is also associated with a decrease in ANP and ANPr expression.
- Published
- 2023
- Full Text
- View/download PDF
6. Oxidative Stress in Plasma from Patients with Marfan Syndrome Is Modulated by Deodorized Garlic Preliminary Findings
- Author
-
Israel Pérez-Torres, María Elena Soto, Linaloe Manzano-Pech, Eulises Díaz-Diaz, Elizabeth Soria-Castro, María Esther Rubio-Ruíz, and Verónica Guarner-Lans
- Subjects
Adult ,Male ,Aging ,QH573-671 ,Article Subject ,Adolescent ,Cell Biology ,General Medicine ,Middle Aged ,Biochemistry ,Marfan Syndrome ,Oxidative Stress ,Young Adult ,Case-Control Studies ,Humans ,Female ,Longitudinal Studies ,Prospective Studies ,Cytology ,Garlic ,Research Article - Abstract
Marfan syndrome (MFS) is a genetic disorder of connective tissue that affects the fibrillin-1 protein (FBN-1). It is associated with the formation of aneurysms, damage to the endothelium and oxidative stress (OS). Allium sativum (garlic) has antioxidant properties; therefore, the goal of this study was to show the antioxidant effect of deodorized garlic (DG) on antioxidant enzymes and OS markers in the plasma of patients with MFS. The activity of antioxidant enzymes such as extracellular superoxide dismutase (EcSOD), peroxidases, glutathione peroxidase (GPx), gluthatione-S-tranferase (GST), and thioredoxin reductase (TrxR) was quantified, and nonenzymatic antioxidant system markers including lipid peroxidation (LPO), carbonylation, nitrates/nitrites, GSH, and vitamin C in plasma were determined in patients with MFS before and after treatment with DG. The results show that DG increased the activity of the EcSOD, peroxidases, GPx, GST, TrxR ( p ≤ 0.05 ) and decrease LPO, carbonylation, and nitrates/nitrites ( p ≤ 0.01 ). However, glutathione was increased ( p = 0.01 ) in plasma from patients with MFS. This suggests that treatment with garlic could lower the OS threshold by increasing the activity of antioxidant enzymes and could help in the prevention and mitigation of adverse OS in patients with MFS.
- Published
- 2022
7. Rats Exposed to Excess Sucrose During a Critical Period Develop Inflammation and Express a Secretory Phenotype of Vascular Smooth Muscle Cells
- Author
-
Verónica Guarner-Lans, Elizabeth Soria-Castro, Agustina Cano-Martínez, María Esther Rubio-Ruiz, Gabriela Zarco, Elizabeth Carreón-Torres, Oscar Grimaldo, Vicente Castrejón-Téllez, and Israel Pérez-Torres
- Subjects
hypertension ,sucrose ingestion ,critical window ,synthetic phenotype ,vascular smooth muscle cells ,inflammation ,Microbiology ,QR1-502 - Abstract
Background: Neonatal rats that receive sucrose during a critical postnatal period (CP, days 12 to 28) develop hypertension by the time they reach adulthood. Inflammation might contribute to changes during this period and could be associated with variations in the vascular smooth muscle (VSMC) phenotype. Objective: We studied changes in inflammatory pathways that could underlie the expression of the secretory phenotype in the VSMC in the thoracic aorta of rats that received sucrose during CP. Methods: We analyzed histological changes in the aorta and the expression of the COX-2, TLR4, iNOS, eNOS, MMP-2 and -9, and β- and α-actin, the quantities of TNF-α, IL-6, and IL-1β using ELISA, and the levels of fatty acids using gas chromatography. Results: The aortic wall presented disorganization, decellularization, and wavy elastic fibers and an increase in the lumen area. The α- and β-actin expressions were decreased, while COX-2, TLR4, TNF-α, and the activity of IL-6 were increased. Oleic acid was increased in CP in comparison to the control group. Conclusions: There is transient hypertension at the end of the CP that is accompanied by inflammation and a change in the phenotype of VSMC to the secretory phenotype. The inflammatory changes could act as epigenetic signals to determine the development of hypertension when animals reach adulthood.
- Published
- 2024
- Full Text
- View/download PDF
8. High Sucrose Ingestion during a Critical Period of Vessel Development Promotes the Synthetic Phenotype of Vascular Smooth Muscle Cells and Modifies Vascular Contractility Leading to Hypertension in Adult Rats
- Author
-
Vicente Castrejón-Téllez, María Esther Rubio-Ruiz, Agustina Cano-Martínez, Israel Pérez-Torres, Leonardo Del Valle-Mondragón, Elizabeth Carreón-Torres, and Verónica Guarner-Lans
- Subjects
Diseases of the circulatory (Cardiovascular) system ,RC666-701 - Abstract
Cardiometabolic diseases, including hypertension, may result from exposure to high sugar diets during critical periods of development. Here, we studied the effect of sucrose ingestion during a critical period (CP) between postnatal days 12 and 28 of the rat on blood pressure, aortic histology, vascular smooth muscle phenotype, expression of metalloproteinases 2 and 9, and vascular contractility in adult rats and compared it with those of adult rats that received sucrose for 6 months and developed metabolic syndrome (MS). Blood pressure increased to a similar level in CP and MS rats. The diameter of lumen, media, and adventitia of aortas from CP rats was decreased. Muscle fibers were discontinuous. There was a decrease in the expression of alpha-actin in CP and MS rat aortas, suggesting a change to the secretory phenotype in vascular smooth muscle. Metalloproteinases 2 and 9 were decreased in CP and MS rats, suggesting that phenotype remains in an altered steady stationary state with little interchange of the vessel matrix. Aortic contraction to norepinephrine did not change, but aortic relaxation was diminished in CP and MS aortas. In conclusion, high sugar diets during the CP increase predisposition to hypertension in adults.
- Published
- 2022
- Full Text
- View/download PDF
9. Interconnection between Cardiac Cachexia and Heart Failure—Protective Role of Cardiac Obesity
- Author
-
María Elena Soto, Israel Pérez-Torres, María Esther Rubio-Ruiz, Linaloe Manzano-Pech, and Verónica Guarner-Lans
- Subjects
cardiac cachexia ,heart failure ,adipose tissue ,cardiac fat tissue ,Cytology ,QH573-671 - Abstract
Cachexia may be caused by congestive heart failure, and it is then called cardiac cachexia, which leads to increased morbidity and mortality. Cardiac cachexia also worsens skeletal muscle degradation. Cardiac cachexia is the loss of edema-free muscle mass with or without affecting fat tissue. It is mainly caused by a loss of balance between protein synthesis and degradation, or it may result from intestinal malabsorption. The loss of balance in protein synthesis and degradation may be the consequence of altered endocrine mediators such as insulin, insulin-like growth factor 1, leptin, ghrelin, melanocortin, growth hormone and neuropeptide Y. In contrast to many other health problems, fat accumulation in the heart is protective in this condition. Fat in the heart can be divided into epicardial, myocardial and cardiac steatosis. In this review, we describe and discuss these topics, pointing out the interconnection between heart failure and cardiac cachexia and the protective role of cardiac obesity. We also set the basis for possible screening methods that may allow for a timely diagnosis of cardiac cachexia, since there is still no cure for this condition. Several therapeutic procedures are discussed including exercise, nutritional proposals, myostatin antibodies, ghrelin, anabolic steroids, anti-inflammatory substances, beta-adrenergic agonists, medroxyprogesterone acetate, megestrol acetate, cannabinoids, statins, thalidomide, proteasome inhibitors and pentoxifylline. However, to this date, there is no cure for cachexia.
- Published
- 2022
- Full Text
- View/download PDF
10. Modulation of Renal Function in a Metabolic Syndrome Rat Model by Antioxidants in Hibiscus sabdariffa L.
- Author
-
Félix Leao Rodríguez-Fierros, Verónica Guarner-Lans, María Elena Soto, Linaloe Manzano-Pech, Eulises Díaz-Díaz, Elizabeth Soria-Castro, María Esther Rubio-Ruiz, Francisco Jiménez-Trejo, and Israel Pérez-Torres
- Subjects
metabolic syndrome ,Hibiscus sabdariffa L. ,oxidative stress ,kidney ,renal function ,Organic chemistry ,QD241-441 - Abstract
Metabolic syndrome (MS) is the association of three or more pathologies among which obesity, hypertension, insulin resistance, dyslipidemia, and diabetes are included. It causes oxidative stress (OS) and renal dysfunction. Hibiscus sabdariffa L. (HSL) is a source of natural antioxidants that may control the renal damage caused by the MS. The objective of this work was to evaluate the effect of a 2% HSL infusion on renal function in a MS rat model induced by the administration of 30% sucrose in drinking water. 24 male Wistar rats were divided into 3 groups: Control rats, MS rats and MS + HSL rats. MS rats had increased body weight, systolic blood pressure, triglycerides, insulin, HOMA index, and leptin (p ≤ 0.04). Renal function was impaired by an increase in perfusion pressure in the isolated and perfused kidney, albuminuria (p ≤ 0.03), and by a decrease in clearance of creatinine (p ≤ 0.04). The activity of some antioxidant enzymes including the superoxide dismutase isoforms, peroxidases, glutathione peroxidase, glutathione-S-transferase was decreased (p ≤ 0.05). Lipoperoxidation and carbonylation were increased (p ≤ 0.001). The nitrates/nitrites ratio, total antioxidant capacity, glutathione levels and vitamin C were decreased (p ≤ 0.03). The treatment with 2% HSL reversed these alterations. The results suggest that the treatment with 2% HSL infusion protects renal function through its natural antioxidants which favor an improved renal vascular response. The infusion contributes to the increase in the glomerular filtration rate, by promoting an increase in the enzymatic and non-enzymatic antioxidant systems leading to a decrease in OS and reestablishing the normal renal function.
- Published
- 2021
- Full Text
- View/download PDF
11. Rosiglitazone, a Ligand to PPARγ, Improves Blood Pressure and Vascular Function through Renin-Angiotensin System Regulation
- Author
-
María Sánchez-Aguilar, Luz Ibarra-Lara, Leonardo Del Valle-Mondragón, María Esther Rubio-Ruiz, Alicia G. Aguilar-Navarro, Absalom Zamorano-Carrillo, Margarita del Carmen Ramírez-Ortega, Gustavo Pastelín-Hernández, and Alicia Sánchez-Mendoza
- Subjects
Biology (General) ,QH301-705.5 - Abstract
Rosiglitazone (RGZ), a peroxisome proliferator-activated receptor gamma (PPARγ) ligand, has been reported to act as insulin sensitizer and exert cardiovascular actions. In this work, we hypothesized that RGZ exerts a PPARγ–dependent regulation of blood pressure through modulation of angiotensin-converting enzyme (ACE)-type 2 (ACE2)/angiotensin-(1-7)/angiotensin II type-2 receptor (AT2R) axis in an experimental model of high blood pressure. We carried on experiments in normotensive (Sham) and aortic coarctation (AoCo)-induced hypertensive male Wistar rats. Both sham and AoCo rats were treated 7 days with vehicle (V), RGZ (5 mg/kg/day), or RGZ+BADGE (120 mg/kg/day) post-coarctation. We measured blood pressure and vascular reactivity on aortic rings, as well as the expression of renin-angiotensin system (RAS) proteins. We found that RGZ treatment in AoCo group decreases blood pressure values and improves vascular response to acetylcholine, both parameters dependent on PPARγ-stimulation. RGZ lowered serum angiotensin II (AngII) but increased Ang-(1-7) levels. It also decreased 8-hydroxy-2′-deoxyguanosine (8-OH-2dG), malondialdehyde (MDA), and improved the antioxidant capacity. Regarding protein expression of RAS, RGZ decreases ACE and angiotensin II type 1 receptor (AT1R) and improved ACE2, AT2R, and Mas receptor in AoCo rats. Additionally, an in silico analysis revealed that 5′UTR regions of RAS and PPARγ share motifs with a transcriptional regulatory role. We conclude that RGZ lowers blood pressure values by increasing the expression of RAS axis proteins ACE2 and AT2R, decreasing the levels of AngII and increasing levels of Ang-(1-7) in a PPARγ-dependent manner. The in silico analysis is a valuable tool to predict the interaction between PPARγ and RAS.
- Published
- 2019
- Full Text
- View/download PDF
12. Resveratrol and Quercetin Administration Improves Antioxidant DEFENSES and reduces Fatty Liver in Metabolic Syndrome Rats
- Author
-
Maria Esther Rubio-Ruiz, Verónica Guarner-Lans, Agustina Cano-Martínez, Eulises Díaz-Díaz, Linaloe Manzano-Pech, Anel Gamas-Magaña, Vicente Castrejón-Tellez, Concepción Tapia-Cortina, and Israel Pérez-Torres
- Subjects
resveratrol ,quercetin ,metabolic syndrome ,fatty liver ,oxidative stress ,Organic chemistry ,QD241-441 - Abstract
Mixtures of resveratrol (RSV) + quercetin (QRC) have antioxidant properties that probably impact on fatty liver in metabolic syndrome (MS) individuals. Here, we study the effects of a mixture of RSV + QRC on oxidative stress (OS) and fatty liver in a rat model of MS. Weanling male Wistar rats were separated into four groups (n = 8): MS rats with 30% sucrose in drinking water plus RSV + QRC (50 and 0.95 mg/kg/day, respectively), MS rats without treatment, control rats (C), and C rats plus RSV + QRC. MS rats had increased systolic blood pressure, triglycerides, insulin levels, insulin resistance index homeostasis model (HOMA), adiponectin, and leptin. The RSV + QRC mixture compensated these variables to C values (p < 0.01) in MS rats. Lipid peroxidation and carbonylation were increased in MS. Total antioxidant capacity and glutathione (GSH) were decreased in MS and compensated in MS plus RVS + QRC rats. Catalase, superoxide dismutase isoforms, peroxidases, glutathione-S-transferase, glutathione reductase, and the expression of Nrf2 were decreased in MS and reversed in MS plus RVS + QRC rats (p < 0.01). In conclusion, the mixture of RSV + QRC has benefic effects on OS in fatty liver in the MS rats through the improvement of the antioxidant capacity and by the over-expression of the master factor Nrf2, which increases the antioxidant enzymes and GSH recycling.
- Published
- 2019
- Full Text
- View/download PDF
13. Changes in Angiotensin Receptor Distribution and in Aortic Morphology Are Associated with Blood Pressure Control in Aged Metabolic Syndrome Rats
- Author
-
Verónica Guarner-Lans, Elizabeth Soria-Castro, Rocío Torrico-Lavayen, Araceli Patrón-Soberano, Karla G. Carvajal-Aguilera, Vicente Castrejón-Tellez, and María Esther Rubio-Ruiz
- Subjects
Diseases of the circulatory (Cardiovascular) system ,RC666-701 - Abstract
The role of the renin-angiotensin system (RAS) in blood pressure regulation in MS during aging is unknown. It participates in metabolic syndrome (MS) and aging regulating vascular tone and remodeling. RAS might participate in a compensatory mechanism decreasing blood pressure and allowing MS rats to reach 18 months of age and it might form part of therapeutical procedures to ameliorate MS. We studied histological changes and distribution of RAS receptors in aortas of MS aged rats. Electron microscopy images showed premature aging in MS since the increased fibrosis, enlarged endothelium, and invasion of this layer by muscle cells that was present in control 18-month-old aortas were also found in 6-month-old aortas from MS rats. AT1, AT2, and Mas receptors mediate the effects of Ang II and Ang 1-7, respectively. Fluorescence from AT2 decreased with age in control and MS aortas, while fluorescence of AT1 increased in aortas from MS rats at 6 months and diminished during aging. Mas expression increased in MS rats and remained unchanged in control rats. In conclusion, there is premature aging in the aortas from MS rats and the elevated expression of Mas receptor might contribute to decrease blood pressure during aging in MS.
- Published
- 2016
- Full Text
- View/download PDF
14. Fenofibrate Therapy Restores Antioxidant Protection and Improves Myocardial Insulin Resistance in a Rat Model of Metabolic Syndrome and Myocardial Ischemia: The Role of Angiotensin II
- Author
-
Luz Ibarra-Lara, María Sánchez-Aguilar, Alicia Sánchez-Mendoza, Leonardo Del Valle-Mondragón, Elizabeth Soria-Castro, Elizabeth Carreón-Torres, Eulises Díaz-Díaz, Héctor Vázquez-Meza, Verónica Guarner-Lans, and María Esther Rubio-Ruiz
- Subjects
metabolic syndrome ,insulin resistance ,myocardial ischemia ,fenofibrate ,oxidative stress ,angiotensin II ,Organic chemistry ,QD241-441 - Abstract
Renin-angiotensin system (RAS) activation promotes oxidative stress which increases the risk of cardiac dysfunction in metabolic syndrome (MetS) and favors local insulin resistance. Fibrates regulate RAS improving MetS, type-2 diabetes and cardiovascular diseases. We studied the effect of fenofibrate treatment on the myocardic signaling pathway of Angiotensin II (Ang II)/Angiotensin II type 1 receptor (AT1) and its relationship with oxidative stress and myocardial insulin resistance in MetS rats under heart ischemia. Control and MetS rats were assigned to the following groups: (a) sham; (b) vehicle-treated myocardial infarction (MI) (MI-V); and (c) fenofibrate-treated myocardial infarction (MI-F). Treatment with fenofibrate significantly reduced triglycerides, non-high density lipoprotein cholesterol (non-HDL-C), insulin levels and insulin resistance index (HOMA-IR) in MetS animals. MetS and MI increased Ang II concentration and AT1 expression, favored myocardial oxidative stress (high levels of malondialdehyde, overexpression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4), decreased total antioxidant capacity and diminished expression of superoxide dismutase (SOD)1, SOD2 and catalase) and inhibited expression of the insulin signaling cascade: phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PkB, also known as Akt)/Glut-4/endothelial nitric oxide synthase (eNOS). In conclusion, fenofibrate treatment favors an antioxidant environment as a consequence of a reduction of the Ang II/AT1/NOX4 signaling pathway, reestablishing the cardiac insulin signaling pathway. This might optimize cardiac metabolism and improve the vasodilator function during myocardial ischemia.
- Published
- 2016
- Full Text
- View/download PDF
15. Effect of the Aged Garlic Extract on Cardiovascular Function in Metabolic Syndrome Rats
- Author
-
Israel Pérez-Torres, Juan Carlos Torres-Narváez, José Pedraza-Chaverri, María Esther Rubio-Ruiz, Eulises Díaz-Díaz, Leonardo del Valle-Mondragón, Raúl Martínez-Memije, Elvira Varela López, and Verónica Guarner-Lans
- Subjects
aged garlic extract ,metabolic syndrome ,cardiovascular functioning ,oxidative stress ,Organic chemistry ,QD241-441 - Abstract
The antioxidant properties of aged garlic extract (AGE) on cardiovascular functioning (CF) in metabolic syndrome (MS) remains poorly studied. Here we study the AGE effects on CF in a rat model of MS. Control rats plus saline solution (C + SS), MS rats (30% sucrose in drinking water from weaning) plus saline solution (MS + SS), control rats receiving AGE (C + AGE 125 mg/Kg/12 h) and MS rats with AGE (MS + AGE) were studied. MS + SS had increased triglycerides, systolic blood pressure, insulin, leptin, HOMA index, and advanced glycation end products. AGE returned their levels to control values (p < 0.01). Cholesterol was decreased by AGE (p = 0.05). Glutathion and GPx activity were reduced in MS + SS rats and increased with AGE (p = 0.05). Lipid peroxidation was increased in MS + SS and AGE reduced it (p = 0.001). Vascular functioning was deteriorated by MS (increased vasocontraction and reduced vasodilation) and AGE improved it (p = 0.001). Coronary vascular resistance was increased in MS rats and AGE decreased it (p = 0.001). Cardiac performance was not modified by MS but AGE increased it. NO measured in the perfusate liquid from the heart and serum citrulline, nitrites/nitrates were decreased in MS and AGE increased them (p < 0.01). In conclusion, AGE reduces MS-induced cardiovascular risk, through its anti-oxidant properties.
- Published
- 2016
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.