1. On the Magnetic Nature of Quiet-Sun Chromospheric Grains
- Author
-
María Jesús Martínez González, Tanausú del Pino Alemán, Adur Pastor Yabar, C. Quintero Noda, and Andrés Asensio Ramos
- Subjects
Solar atmosphere ,Quiet solar chromosphere ,Magnetic fields ,Spectropolarimetry ,Astrophysics ,QB460-466 - Abstract
Ca ii K grains, i.e., intermittent, short-lived (about 1 minute), periodic (2–4 minutes), pointlike chromospheric brightenings, are considered to be the manifestations of acoustic waves propagating upward from the solar surface and developing into shocks in the chromosphere. After the simulations of Carlsson and Stein, we know that hot shocked gas moving upward interacting with the downflowing chromospheric gas (falling down after having been displaced upward by a previous shock) nicely reproduces the spectral features of the Ca ii K profiles observed in such grains, i.e., a narrowband emission-like feature at the blue side of the line core. However, these simulations are one-dimensional and cannot explain the location or the pointlike shape of the grains. Here, we report on the magnetic nature of these events. Furthermore, we report on similar events occurring at the largest flux concentrations, though they are longer-lived (up to 8 minutes) and exhibit the typical signature of steep velocity gradients traveling across the atmosphere. The spectral signatures of the studied events resemble their counterparts in sunspots, the umbral flashes. We then propose that magnetohydrodynamical waves are not only channeled through the magnetic field in sunspots, but they pervade the whole atmosphere. The propagation along magnetic fields can explain the pointlike appearance of the calcium grains observed in the quiet chromosphere.
- Published
- 2023
- Full Text
- View/download PDF