16 results on '"Manzanera, J.A."'
Search Results
2. Protocol of Somatic Embryogenesis: Holm Oak (Quercus ilex L.)
- Author
-
Mauri, P.V., Manzanera, J.A., Jain, S. Mohan, editor, and Gupta, Pramod K., editor
- Published
- 2005
- Full Text
- View/download PDF
3. Aboveground biomass density models for NASA’s Global Ecosystem Dynamics Investigation (GEDI) lidar mission
- Author
-
Duncanson, L., Kellner, J.R., Armston, J., Dubayah, R., Minor, D.M., Hancock, S., Healey, S.P., Patterson, P.L., Saarela, S., Marselis, S., Silva, C.E., Bruening, J., Goetz, S.J., Tang, H., Hofton, M., Blair, B., Luthcke, S., Fatoyinbo, L., Abernethy, K., Alonso, A., Andersen, H.-E., Aplin, P., Baker, T.R., Barbier, N., Bastin, J.F., Biber, P., Boeckx, P., Bogaert, J., Boschetti, L., Brehm Boucher, P., Boyd, D.S., Burslem, D.F.R.P., Calvo-Rodriguez, S., Chave, J., Chazdon, R.L., Clark, D.B., Clark, D.A., Cohen, W.B., Coomes, D.A., Corona, P., Cushman, K.C., Cutler, M.E.J., Dalling, J.W., Dalponte, M., Dash, J., de-Miguel, S., Deng, S., Jeffery, K.J., Katoh, M., Kearsley, E., Kenfack, D., Kljun, N., Knapp, Nikolai, Král, K., Krůček, M., Labrière, N., Lewis, S.L., Longo, M., Lucas, R.M., Main, R., Manzanera, J.A., Vásquez Martínez, R., Mathieu, R., Memiaghe, H., Meyer, V., Monteagudo Mendoza, A., Monerris, A., Montesano, P., Morsdorf, F., Næsset, E., Naidoo, L., Nilus, R., O’Brien, M., Orwig, D.A., Papathanassiou, K., Parker, G., Philipson, C., Phillips, O.L., Pisek, J., Poulsen, J.R., Pretzsch, H., Rüdiger, C., Saatchi, S., Sanchez-Azofeifa, A., Sanchez-Lopez, N., Scholes, R., Silva, C.A., Simard, M., Skidmore, A., Stereńczak, K., Tanase, M., Torresan, C., Valbuena, R., Verbeeck, H., Vrska, T., Wessels, K., White, J.C., White, L.J.T., Zahabu, E., Zgraggen, C., Duncanson, L., Kellner, J.R., Armston, J., Dubayah, R., Minor, D.M., Hancock, S., Healey, S.P., Patterson, P.L., Saarela, S., Marselis, S., Silva, C.E., Bruening, J., Goetz, S.J., Tang, H., Hofton, M., Blair, B., Luthcke, S., Fatoyinbo, L., Abernethy, K., Alonso, A., Andersen, H.-E., Aplin, P., Baker, T.R., Barbier, N., Bastin, J.F., Biber, P., Boeckx, P., Bogaert, J., Boschetti, L., Brehm Boucher, P., Boyd, D.S., Burslem, D.F.R.P., Calvo-Rodriguez, S., Chave, J., Chazdon, R.L., Clark, D.B., Clark, D.A., Cohen, W.B., Coomes, D.A., Corona, P., Cushman, K.C., Cutler, M.E.J., Dalling, J.W., Dalponte, M., Dash, J., de-Miguel, S., Deng, S., Jeffery, K.J., Katoh, M., Kearsley, E., Kenfack, D., Kljun, N., Knapp, Nikolai, Král, K., Krůček, M., Labrière, N., Lewis, S.L., Longo, M., Lucas, R.M., Main, R., Manzanera, J.A., Vásquez Martínez, R., Mathieu, R., Memiaghe, H., Meyer, V., Monteagudo Mendoza, A., Monerris, A., Montesano, P., Morsdorf, F., Næsset, E., Naidoo, L., Nilus, R., O’Brien, M., Orwig, D.A., Papathanassiou, K., Parker, G., Philipson, C., Phillips, O.L., Pisek, J., Poulsen, J.R., Pretzsch, H., Rüdiger, C., Saatchi, S., Sanchez-Azofeifa, A., Sanchez-Lopez, N., Scholes, R., Silva, C.A., Simard, M., Skidmore, A., Stereńczak, K., Tanase, M., Torresan, C., Valbuena, R., Verbeeck, H., Vrska, T., Wessels, K., White, J.C., White, L.J.T., Zahabu, E., and Zgraggen, C.
- Abstract
NASA’s Global Ecosystem Dynamics Investigation (GEDI) is collecting spaceborne full waveform lidar data with a primary science goal of producing accurate estimates of forest aboveground biomass density (AGBD). This paper presents the development of the models used to create GEDI’s footprint-level (~25 m) AGBD (GEDI04_A) product, including a description of the datasets used and the procedure for final model selection. The data used to fit our models are from a compilation of globally distributed spatially and temporally coincident field and airborne lidar datasets, whereby we simulated GEDI-like waveforms from airborne lidar to build a calibration database. We used this database to expand the geographic extent of past waveform lidar studies, and divided the globe into four broad strata by Plant Functional Type (PFT) and six geographic regions. GEDI’s waveform-to-biomass models take the form of parametric Ordinary Least Squares (OLS) models with simulated Relative Height (RH) metrics as predictor variables. From an exhaustive set of candidate models, we selected the best input predictor variables, and data transformations for each geographic stratum in the GEDI domain to produce a set of comprehensive predictive footprint-level models. We found that model selection frequently favored combinations of RH metrics at the 98th, 90th, 50th, and 10th height above ground-level percentiles (RH98, RH90, RH50, and RH10, respectively), but that inclusion of lower RH metrics (e.g. RH10) did not markedly improve model performance. Second, forced inclusion of RH98 in all models was important and did not degrade model performance, and the best performing models were parsimonious, typically having only 1-3 predictors. Third, stratification by geographic domain (PFT, geographic region) improved model performance in comparison to global models without stratification. Fourth, for the vast majority of strata, the best performing models were fit using square root transformation of field AG
- Published
- 2022
4. Influence of Global Navigation Satellite System errors in positioning inventory plots for treeheight distribution studies (1)
- Author
-
Mauro, F., Valbuena, R., Manzanera, J.A., and Garcia-Abril, A.
- Subjects
Forest ecology -- Management ,Forest management -- Equipment and supplies -- Technology application ,Company business management ,Technology application ,Earth sciences - Abstract
Validation of predictive models in remote sensing requires a good coregistration of field and sensor data sets. However, previous research has demonstrated that Global Navigation Satellite System survey techniques often produce large positioning errors when applied to areas under forest canopies. In this article, we present a repeatable methodology for analyzing the effect of such errors when validating models that predict tree-height distributions from LiDAR data sets. The method is based on conditional probability theory applied to error positioning and includes an error assessment of the surveying technique. A technical criterion for selecting the plot radius that avoids significant effects of positioning errors was proposed. We demonstrated that for a plot radius greater than 10 m, the effects of positioning errors introduced by a phase-differential device were insignificant when studying forest tree-height distributions. Resume: La validation des modeles de prediction en matiere de teledetection necessite une bonne correspondance entre les donnees terrain et les donnees des capteurs. Toutefois, des recherches anterieures ont demontre que les techniques d'inventaire par la systeme mondial de navigation par satellite produisent souvent d'importantes erreurs de positionnement lorsqu'elles sont appliquees a des zones situees sous le couvert forestier. Dans cet article, nous presentons une methode reproductible pour analyser l'effet de telles erreurs lors de la validation des modeles de prediction de la distribution de la hauteur des arbres a partir de donnees lidar. La methode est basee sur la theorie des probabilites conditionnelles appliquee a l'erreur de positionnement et comprend une evaluation de l'erreur de la technique d'inventaire. Nous proposons un crite re technique pour choisir le rayon des placettes de maniere a eviter que l'erreur de positionnement ait des effets significatifs. Nous avons demontre que, pour une placette dont le rayon est superieur a 10 m, les effets des erreurs de positionnement produites par un appareil a phase differentielle ne sont pas significatifs lorsqu'on etudie la distribution de la hauteur des arbres. [Traduit par la Redaction], Introduction Sampling designs based on georeferenced field plots used in forestry are commonly affected by positioning errors from survey instruments. Although positioning accuracy may not be critical for certain studies [...]
- Published
- 2011
- Full Text
- View/download PDF
5. Effect of exogenous ABA on embryo maturation and quantification of endogenous levels of ABA and IAA in Quercus suber somatic embryos
- Author
-
García-Martín, G., Manzanera, J.A., and González-Benito, M.E.
- Published
- 2005
- Full Text
- View/download PDF
6. Induction, maturation and germination of holm oak (Quercus ilex L.) somatic embryos
- Author
-
Mauri, P.V. and Manzanera, J.A.
- Published
- 2003
- Full Text
- View/download PDF
7. A global reference dataset for remote sensing of forest biomass. The Forest Observation System approach
- Author
-
Shchepashchenko, D., Chave, J., Phillips, O.L., Lewis, S.L., Davies, S.J., Réjou-Méchain, M., Sist, P., Scipal, K., Perger, C., Herault, B., Labrière, N., Hofhansl, F., Affum-Baffoe, K., Aleinikov, A., Alonso, A., Amani, C., Araujo-Murakami, A., Armston, J., Arroyo, L., Ascarrunz, N., Azevedo, C., Baker, T., Bałazy, R., Banki, O., Bedeau, C., Berry, N., Bilous, A.M., Bilous, S.Y., Bissiengou, P., Blanc, L., Bobkova, K.S., Braslavskaya, T., Brienen, R., Burslem, D., Condit, R., Cuni-Sanchez, A., Danilina, D., del Castillo Torres, D., Derroire, G., Descroix, L., Doff Sotta, E., d'Oliveira, M.V.N., Dresel, C., Erwin, T., Evdokimenko, M.D., Falck, J., Feldpausch, T.R., Foli, E.G., Foster, R., Fritz, S., Garcia-Abril, A.D., Gornov, A., Gornova, M., Gothard-Bassébé, E., Gourlet-Fleury, S., Guedes, M., Hamer, K., Susanty, F.H., Higuchi, N., Honorio Coronado, E.N., Hubau, W., Hubbell, S., Ilstedt, U., Ivanov, V., Kanashiro, M., Karlsson, A., Karminov, V.N., Killeen, T., Konan, J.K., Konovalova, M., Kraxner, F., Krejza, J., Krisnawati, H., Krivobokov, L.V., Kuznetsov, M.A., Lakyda, I., Lakyda, P.I., Licona, J.C., Lucas, R.M., Lukina, N., Lussetti, D., Malhi, Y., Manzanera, J.A., Marimon, B., Marimon Junior, B.H., Martinez, R.V., Martynenko, O.V., Matsala, M.S., Matyashuk, R.K., Mazzei, L., Memiaghe, H., Mendoza, C., Monteagudo-Mendoza, A., Morozyuk, O.V., Mukhortova, L., Musa, S., Nazimova, D.I., Okuda, T., Oliveira, L.C., Ontikov, P.V., Osipov, A.F., Gutierrez, A.P., Pietsch, S., Playfair, M., Poulsen, J., Radchenko, V., Rodney, K., Rozak, A.H., Ruschel, A., Rutishauser, E., See, L., Shchepashchenko, M., Shevchenko, N., Shvidenko, A., Silva-Espejo, J.E., Silveira, M., Singh, J., Sonké, B., Souza, C., Stereńczak, K., Sullivan, M.J.P., Szatniewska, J., Taedoumg, H., ter Steege, H., Tikhonova, E., Toledo, M., Trefilova, O.V., Valbuena, R., Valenzuela Gamarra, L.V., Vedrova, E.F., Verhovets, S.V., Vidal, E., Vladimirova, N.A., Vleminckx, J., Vos, V.A., Vozmitel, F.K., Wanek, W., West, T.A.P., Woell, H., Woods, J.T., Wortel, V., Yamada, T., Zamah Shari, N.H., Zo-Bi, I.C., Shchepashchenko, D., Chave, J., Phillips, O.L., Lewis, S.L., Davies, S.J., Réjou-Méchain, M., Sist, P., Scipal, K., Perger, C., Herault, B., Labrière, N., Hofhansl, F., Affum-Baffoe, K., Aleinikov, A., Alonso, A., Amani, C., Araujo-Murakami, A., Armston, J., Arroyo, L., Ascarrunz, N., Azevedo, C., Baker, T., Bałazy, R., Banki, O., Bedeau, C., Berry, N., Bilous, A.M., Bilous, S.Y., Bissiengou, P., Blanc, L., Bobkova, K.S., Braslavskaya, T., Brienen, R., Burslem, D., Condit, R., Cuni-Sanchez, A., Danilina, D., del Castillo Torres, D., Derroire, G., Descroix, L., Doff Sotta, E., d'Oliveira, M.V.N., Dresel, C., Erwin, T., Evdokimenko, M.D., Falck, J., Feldpausch, T.R., Foli, E.G., Foster, R., Fritz, S., Garcia-Abril, A.D., Gornov, A., Gornova, M., Gothard-Bassébé, E., Gourlet-Fleury, S., Guedes, M., Hamer, K., Susanty, F.H., Higuchi, N., Honorio Coronado, E.N., Hubau, W., Hubbell, S., Ilstedt, U., Ivanov, V., Kanashiro, M., Karlsson, A., Karminov, V.N., Killeen, T., Konan, J.K., Konovalova, M., Kraxner, F., Krejza, J., Krisnawati, H., Krivobokov, L.V., Kuznetsov, M.A., Lakyda, I., Lakyda, P.I., Licona, J.C., Lucas, R.M., Lukina, N., Lussetti, D., Malhi, Y., Manzanera, J.A., Marimon, B., Marimon Junior, B.H., Martinez, R.V., Martynenko, O.V., Matsala, M.S., Matyashuk, R.K., Mazzei, L., Memiaghe, H., Mendoza, C., Monteagudo-Mendoza, A., Morozyuk, O.V., Mukhortova, L., Musa, S., Nazimova, D.I., Okuda, T., Oliveira, L.C., Ontikov, P.V., Osipov, A.F., Gutierrez, A.P., Pietsch, S., Playfair, M., Poulsen, J., Radchenko, V., Rodney, K., Rozak, A.H., Ruschel, A., Rutishauser, E., See, L., Shchepashchenko, M., Shevchenko, N., Shvidenko, A., Silva-Espejo, J.E., Silveira, M., Singh, J., Sonké, B., Souza, C., Stereńczak, K., Sullivan, M.J.P., Szatniewska, J., Taedoumg, H., ter Steege, H., Tikhonova, E., Toledo, M., Trefilova, O.V., Valbuena, R., Valenzuela Gamarra, L.V., Vedrova, E.F., Verhovets, S.V., Vidal, E., Vladimirova, N.A., Vleminckx, J., Vos, V.A., Vozmitel, F.K., Wanek, W., West, T.A.P., Woell, H., Woods, J.T., Wortel, V., Yamada, T., Zamah Shari, N.H., and Zo-Bi, I.C.
- Abstract
Forest biomass is an essential indicator for monitoring the Earth’s ecosystems and climate. It is a critical input to greenhouse gas accounting, estimation of carbon losses and forest degradation, assessment of renewable energy potential, and for developing climate change mitigation policies such as REDD+, among others. Wall-to-wall mapping of aboveground biomass (AGB) is now possible with satellite remote sensing (RS). However, RS methods require extant, up-to-date, reliable, representative and comparable in situ data for calibration and validation. Here, we present the Forest Observation System (FOS) initiative, an international cooperation to establish and maintain a global in situ forest biomass database. AGB and canopy height estimates with their associated uncertainties are derived at a 0.25ha scale from field measurements made in permanent research plots across the world's forests. All plot estimates are geolocated and have a size that allows for direct comparison with many RS measurements. The FOS offers the potential to improve the accuracy of RS-based biomass products while developing new synergies between the RS and ground-based ecosystem research communities. Live, most up-to-date dataset is available at https://forest-observation-system.net
- Published
- 2019
8. The Forest Observation System, building a global reference dataset for remote sensing of forest biomass
- Author
-
Schepaschenko, D., Chave, J., Phillips, O.L., Lewis, S.L., Davies, S.J., Réjou-Méchain, M., Sist, P., Scipal, K., Perger, C., Herault, B., Labrière, N., Hofhansl, F., Affum-Baffoe, K., Aleinikov, A., Alonso, A., Amani, C., Araujo-Murakami, A., Armston, J., Arroyo, L., Ascarrunz, N., Azevedo, C., Baker, T., Bałazy, R., Bedeau, C., Berry, N., Bilous, A.M., Bilous, S., Bissiengou, P., Blanc, L., Bobkova, .S., Braslavskaya, T., Brienen, R., Burslem, D., Condit, R., Cuni-Sanchez, A., Danilina, D., del Castillo Torres, D., Derroire, G., Descroix, L., Sotta, E.D., d’Oliveira, M.V.N., Dresel, C., Erwin, T., Evdokimenko, M.D., Falck, J., Feldpausch, T.R., Foli, E.G., Foster, R., Fritz, S., Garcia-Abril, A.D., Gornov, A., Gornova, M., Gothard-Bassébé, E., Gourlet-Fleury, S., Guedes, M., Hamer, K.C., Susanty, F.H., Higuchi, N., Coronado, E.N.H., Hubau, W., Hubbell, S., Ilstedt, U., Ivanov, V.V., Kanashiro, M., Karlsson, A., Karminov, V.N., Killeen, T., Koffi, J.-C., Konovalova, M., Kraxner, F., Krejza, J., Krisnawati, H., Krivobokov, L.V., Kuznetsov, M.A., Lakyda, I., Lakyda, P.I., Licona, J.C., Lucas, R.M., Lukina, N., Lussetti, D., Malhi, Y., Manzanera, J.A., Marimon, B., Marimon, B.H., Martinez, R.V., Martynenko, O.V., Matsala, M., Matyashuk, R.K., Mazzei, L., Memiaghe, H., Mendoza, C., Mendoza, A.M., Moroziuk, Olga V., Mukhortova, L., Musa, S., Nazimova, D.I., Okuda, T., Oliveira, L.C., Ontikov, P.V., Osipov, A., Pietsch, S., Playfair, M., Poulsen, J., Radchenko, V.G., Rodney, K., Rozak, A.H., Ruschel, A., Rutishauser, E., See, L., Shchepashchenko, M., Shevchenko, N., Shvidenko, A., Silveira, M., Singh, J., Sonké, B., Souza, C., Stereńczak, K., Stonozhenko, L., Sullivan, M., Szatniewska, J., Taedoumg, H., ter Steege, H., Tikhonova, E., Toledo, M., Trefilova, O.V., Valbuena, R., Gamarra, L.V., Vasiliev, S., Vedrova, E.F., Verhovets, S.V., Vidal, E., Vladimirova, N.A., Vleminckx, J., Vos, V.A., Vozmitel, F.K., Wanek, W., West, T., Woell, H., Woods, J.T., Wortel, V., Yamada, T., Nur Hajar, Z., Zo-Bi, I., Schepaschenko, D., Chave, J., Phillips, O.L., Lewis, S.L., Davies, S.J., Réjou-Méchain, M., Sist, P., Scipal, K., Perger, C., Herault, B., Labrière, N., Hofhansl, F., Affum-Baffoe, K., Aleinikov, A., Alonso, A., Amani, C., Araujo-Murakami, A., Armston, J., Arroyo, L., Ascarrunz, N., Azevedo, C., Baker, T., Bałazy, R., Bedeau, C., Berry, N., Bilous, A.M., Bilous, S., Bissiengou, P., Blanc, L., Bobkova, .S., Braslavskaya, T., Brienen, R., Burslem, D., Condit, R., Cuni-Sanchez, A., Danilina, D., del Castillo Torres, D., Derroire, G., Descroix, L., Sotta, E.D., d’Oliveira, M.V.N., Dresel, C., Erwin, T., Evdokimenko, M.D., Falck, J., Feldpausch, T.R., Foli, E.G., Foster, R., Fritz, S., Garcia-Abril, A.D., Gornov, A., Gornova, M., Gothard-Bassébé, E., Gourlet-Fleury, S., Guedes, M., Hamer, K.C., Susanty, F.H., Higuchi, N., Coronado, E.N.H., Hubau, W., Hubbell, S., Ilstedt, U., Ivanov, V.V., Kanashiro, M., Karlsson, A., Karminov, V.N., Killeen, T., Koffi, J.-C., Konovalova, M., Kraxner, F., Krejza, J., Krisnawati, H., Krivobokov, L.V., Kuznetsov, M.A., Lakyda, I., Lakyda, P.I., Licona, J.C., Lucas, R.M., Lukina, N., Lussetti, D., Malhi, Y., Manzanera, J.A., Marimon, B., Marimon, B.H., Martinez, R.V., Martynenko, O.V., Matsala, M., Matyashuk, R.K., Mazzei, L., Memiaghe, H., Mendoza, C., Mendoza, A.M., Moroziuk, Olga V., Mukhortova, L., Musa, S., Nazimova, D.I., Okuda, T., Oliveira, L.C., Ontikov, P.V., Osipov, A., Pietsch, S., Playfair, M., Poulsen, J., Radchenko, V.G., Rodney, K., Rozak, A.H., Ruschel, A., Rutishauser, E., See, L., Shchepashchenko, M., Shevchenko, N., Shvidenko, A., Silveira, M., Singh, J., Sonké, B., Souza, C., Stereńczak, K., Stonozhenko, L., Sullivan, M., Szatniewska, J., Taedoumg, H., ter Steege, H., Tikhonova, E., Toledo, M., Trefilova, O.V., Valbuena, R., Gamarra, L.V., Vasiliev, S., Vedrova, E.F., Verhovets, S.V., Vidal, E., Vladimirova, N.A., Vleminckx, J., Vos, V.A., Vozmitel, F.K., Wanek, W., West, T., Woell, H., Woods, J.T., Wortel, V., Yamada, T., Nur Hajar, Z., and Zo-Bi, I.
- Abstract
Forest biomass is an essential indicator for monitoring the Earth’s ecosystems and climate. It is a critical input to greenhouse gas accounting, estimation of carbon losses and forest degradation, assessment of renewable energy potential, and for developing climate change mitigation policies such as REDD+, among others. Wall-to-wall mapping of aboveground biomass (AGB) is now possible with satellite remote sensing (RS). However, RS methods require extant, up-to-date, reliable, representative and comparable in situ data for calibration and validation. Here, we present the Forest Observation System (FOS) initiative, an international cooperation to establish and maintain a global in situ forest biomass database. AGB and canopy height estimates with their associated uncertainties are derived at a 0.25 ha scale from field measurements made in permanent research plots across the world’s forests. All plot estimates are geolocated and have a size that allows for direct comparison with many RS measurements. The FOS offers the potential to improve the accuracy of RS-based biomass products while developing new synergies between the RS and ground-based ecosystem research communities.
- Published
- 2019
9. Protocol of Somatic Embryogenesis: Holm Oak (Quercus ilex L.)
- Author
-
Mauri, P.V., primary and Manzanera, J.A., additional
- Full Text
- View/download PDF
10. LINHE Project: Development of new protocols for the integration of digital cameras and LiDAR, NIR and Hyperspectral sensors.
- Author
-
Hill, R.A., Rosette, J., Suarez,, J., Antolin Sánchez, Roberto, Calzado-Martínez, C., Gómez, A., Manzanera, J.A., Meroño, J.E., Pedrazzani, D., Pérez,, H.H., Roldán-Zamarrón, A., Santos, I., Valbuena, R., Hill, R.A., Rosette, J., Suarez,, J., Antolin Sánchez, Roberto, Calzado-Martínez, C., Gómez, A., Manzanera, J.A., Meroño, J.E., Pedrazzani, D., Pérez,, H.H., Roldán-Zamarrón, A., Santos, I., and Valbuena, R.
- Abstract
The LINHE project aims to develop applications for forest management based on the combined use of LiDAR data, images from spaceborne (multi and hyperspectral) and airborne sensors (panchromatic, colour, near infrared), and NIR field data from a portable sensor. The integration of the different types of data should be performed in a rapid, intuitive, cost-effective and dynamic way. In order to achieve this objective, new algorithms were developed and existing ones were tested, for the correlation of data collected in the field and those gathered by the different sensors. Specific software (LINHE prototype viewer) was developed to support data gathering and consultations, and it was tested in three different forest ecosystems, so as to validate the tool for forest management purposes. The optimisation of the synergic capabilities derived from the combined use of the different sensors will allow the enhancement of their efficiency and provide accurate information for operational forestry.
- Published
- 2008
11. ACCLIMATION AND ESTABLISHMENT OF CORK OAK (QUERCUS SUBER) SOMATIC EMBRYO-DERIVED PLANTLETS AND POST-ACCLIMATION CORK QUALITY TEST
- Author
-
Pintos, B., primary, Manzanera, J.A., additional, Bueno, M.A., additional, Cremades, A., additional, and González-Adrados, J.R., additional
- Published
- 2009
- Full Text
- View/download PDF
12. Effect of exogenous ABA on embryo maturation and quantification of endogenous levels of ABA and IAA in Quercus suber somatic embryos
- Author
-
Garc�a-Mart�n, G., primary, Manzanera, J.A., additional, and Gonz�lez-Benito, M.E., additional
- Published
- 2005
- Full Text
- View/download PDF
13. CYCLIC SOMATIC EMBRYOGENESIS AND SCHEME FOR MULTIPLICATION OF QUERCUS ILEX L.
- Author
-
Mauri, P.V., primary, Manzanera, J.A., additional, and Marcote, M.M., additional
- Published
- 2001
- Full Text
- View/download PDF
14. SSR Markers for Quercus suber Tree Identification and Embryo Analysis.
- Author
-
Gomez, A., Pintos, B., Aguiriano, E., Manzanera, J.A., and Bueno, M.A.
- Subjects
CORK oak ,MICROSATELLITE repeats ,CHROMOSOMES - Abstract
Provides information on a study that used microsatellite markers for identification and embryo analysis of the Quercus suber tree.
- Published
- 2001
15. Induction, maturation and germination of holm oak (Quercus ilexL.) somatic embryos
- Author
-
Mauri, P.V. and Manzanera, J.A.
- Abstract
Somatic embryo induction from immature zygotic embryos followed by embryo development and maturation has been achieved in holm oak (Quercus ilexL.). Different types of explant have been assayed for the induction of somatic embryogenesis. Only immature zygotic embryos, collected in August, were successfully induced. Best results were obtained in Gamborg et al. (1968) medium supplemented with 10 μM BAP and 10 μM NAA. The reduction of the macronutrient concentration improved the rate of somatic embryo maturation and decreased that of secondary embryogenesis. Liquid medium provided a significantly higher fresh weight of somatic embryos and a higher rate of secondary embryogenesis than agar-solidified medium, while the latter was more adequate for embryo maturation. Secondary embryogenesis was controlled by culturing the maturing somatic embryos in medium with a high sucrose concentration in standard light conditions. Osmopriming on medium with 270 mM sucrose stimulated maturation, fresh and dry weight growth and germination potential.
- Published
- 2003
- Full Text
- View/download PDF
16. Aboveground biomass density models for NASA's Global Ecosystem Dynamics Investigation (GEDI) lidar mission
- Author
-
Duncanson, L., Kellner, .J.R., Armston, J., Dubayah, R., Minor, D.M., Hancock, S., Healey, S.P., Patterson, P.L., Saarela, S., Marselis, S., Silva, C.E., Bruening, J., Goetz, S.J., Tang, H., Hofton, M., Blair, B., Luthcke, S., Fatoyinbo, L., Abernethy, K., Alonso, A., Andersen, H.E., Aplin, P., Baker, T.R., Barbier, N., Bastin, J.F., Biber, P., Boeckx, P., Bogaert, J., Boschetti, L., Boucher, P.B., Boyd, D.S., Burslem, D.F.R.P., Calvo-Rodriguez, S., Chave, J., Chazdon, R.L., Clark, D.B., Clark, D.A., Cohen, W.B., Coomes, D.A., Corona, P., Cushman, K.C., Cutler, M.E.J., Dalling, J.W., Dalponte, M., Dash, J., de-Miguel, S., Deng, S., Ellis, P.W., Erasmus, B., Fekety, P.A., Fernandez-Landa, A., Ferraz, A., Fischer, R., Fisher, A.G., García-Abril, A., Gobakken, T., Hacker, J.M., Heurich, M., Hill, R.A., Hopkinson, C., Huang, H., Hubbell, S.P., Hudak, A.T., Huth, A., Imbach, B., Jeffery, K.J., Katoh, M., Kearsley, E., Kenfack, D, Kljun, N., Knapp, N., Král, K., Krůček, M., Labrière, N., Lewis, S.L., Longo, M. R., Lucas, R.M., Main, R., Manzanera, J.A., Martínez, R.V., Mathieu, R., Memiaghe, H., Meyer, V., Mendoza, A.M., Monerris, A., Montesano, P., Morsdorf, F., Næsset, E., Naidoo, L., Nilus, R., O'Brien, M., Orwig, D.A., Papathanassiou, K., Parker, G., Philipson, C., Phillips, O.L., Pisek, J., Poulsen, J.R., Pretzsch, H., Rüdiger, C., Duncanson, L., Kellner, .J.R., Armston, J., Dubayah, R., Minor, D.M., Hancock, S., Healey, S.P., Patterson, P.L., Saarela, S., Marselis, S., Silva, C.E., Bruening, J., Goetz, S.J., Tang, H., Hofton, M., Blair, B., Luthcke, S., Fatoyinbo, L., Abernethy, K., Alonso, A., Andersen, H.E., Aplin, P., Baker, T.R., Barbier, N., Bastin, J.F., Biber, P., Boeckx, P., Bogaert, J., Boschetti, L., Boucher, P.B., Boyd, D.S., Burslem, D.F.R.P., Calvo-Rodriguez, S., Chave, J., Chazdon, R.L., Clark, D.B., Clark, D.A., Cohen, W.B., Coomes, D.A., Corona, P., Cushman, K.C., Cutler, M.E.J., Dalling, J.W., Dalponte, M., Dash, J., de-Miguel, S., Deng, S., Ellis, P.W., Erasmus, B., Fekety, P.A., Fernandez-Landa, A., Ferraz, A., Fischer, R., Fisher, A.G., García-Abril, A., Gobakken, T., Hacker, J.M., Heurich, M., Hill, R.A., Hopkinson, C., Huang, H., Hubbell, S.P., Hudak, A.T., Huth, A., Imbach, B., Jeffery, K.J., Katoh, M., Kearsley, E., Kenfack, D, Kljun, N., Knapp, N., Král, K., Krůček, M., Labrière, N., Lewis, S.L., Longo, M. R., Lucas, R.M., Main, R., Manzanera, J.A., Martínez, R.V., Mathieu, R., Memiaghe, H., Meyer, V., Mendoza, A.M., Monerris, A., Montesano, P., Morsdorf, F., Næsset, E., Naidoo, L., Nilus, R., O'Brien, M., Orwig, D.A., Papathanassiou, K., Parker, G., Philipson, C., Phillips, O.L., Pisek, J., Poulsen, J.R., Pretzsch, H., and Rüdiger, C.
- Abstract
NASA's Global Ecosystem Dynamics Investigation (GEDI) is collecting spaceborne full waveform lidar data with a primary science goal of producing accurate estimates of forest aboveground biomass density (AGBD). This paper presents the development of the models used to create GEDI's footprint-level (~25 m) AGBD (GEDI04_A) product, including a description of the datasets used and the procedure for final model selection. The data used to fit our models are from a compilation of globally distributed spatially and temporally coincident field and airborne lidar datasets, whereby we simulated GEDI-like waveforms from airborne lidar to build a calibration database. We used this database to expand the geographic extent of past waveform lidar studies, and divided the globe into four broad strata by Plant Functional Type (PFT) and six geographic regions. GEDI's waveform-to-biomass models take the form of parametric Ordinary Least Squares (OLS) models with simulated Relative Height (RH) metrics as predictor variables. From an exhaustive set of candidate models, we selected the best input predictor variables, and data transformations for each geographic stratum in the GEDI domain to produce a set of comprehensive predictive footprint-level models. We found that model selection frequently favored combinations of RH metrics at the 98th, 90th, 50th, and 10th height above ground-level percentiles (RH98, RH90, RH50, and RH10, respectively), but that inclusion of lower RH metrics (e.g. RH10) did not markedly improve model performance. Second, forced inclusion of RH98 in all models was important and did not degrade model performance, and the best performing models were parsimonious, typically having only 1-3 predictors. Third, stratification by geographic domain (PFT, geographic region) improved model performance in comparison to global models without stratification. Fourth, for the vast majority of strata, the best performing models were fit using square root transformation of field AG
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.