33 results on '"Manrique, Jose Antonio"'
Search Results
2. ExoMars Raman Laser Spectrometer RLS, a tool for the potential recognition of wet target craters on Mars
- Author
-
Veneranda, Marco, Lopez-Reyes, Guillermo, Manrique, Jose Antonio, Medina, Jesus, Ruiz-Galende, Patricia, Torre-Fdez, Imanol, Castro, Kepa, Lantz, Cateline, Poulet, Francois, Dypvik, Henning, Werner, Stephanie C., and Rull, Fernando
- Subjects
Astrophysics - Earth and Planetary Astrophysics ,Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
In the present work, NIR, LIBS, Raman and XRD techniques have been complementarily used to carry out a comprehensive characterization of a terrestrial analogue selected from the Chesapeake Bay Impact Structure (CBIS). The obtained data clearly highlight the key role of Raman spectroscopy in the detection of minor and trace compounds, through which inferences about geological processes occurred in the CBIS can be extrapolated. Beside the use of commercial systems, further Raman analyses were performed by the Raman Laser Spectrometer (RLS) ExoMars Simulator. This instrument represents the most reliable tool to effectively predict the scientific capabilities of the ExoMars/Raman system that will be deployed on Mars in 2021. By emulating the analytical procedures and operational restrictions established by the ExoMars mission rover design, it was proved that the RLS ExoMars Simulator is able to detect the amorphization of quartz, which constitutes an analytical clue of the impact origin of craters. On the other hand, the detection of barite and siderite, compounds crystallizing under hydrothermal conditions, helps to indirectly confirm the presence of water in impact targets. Furthermore, the RLS ExoMars Simulator capability of performing smart molecular mappings was also evaluated. According to the obtained results, the algorithms developed for its operation provide a great analytical advantage over most of the automatic analysis systems employed by commercial Raman instruments, encouraging its application for many additional scientific and commercial purposes.
- Published
- 2021
- Full Text
- View/download PDF
3. Spectroscopic study of olivine-bearing rocks and its relevance to the ExoMars rover mission
- Author
-
Veneranda, Marco, Manrique, Jose Antonio, Lopez-Reyes, Guillermo, Medina, Jesus, Torre-Fdez, Imanol, Castro, Kepa, Madariaga, Juan Manuel, Lanz, Cateline, Poulet, Francois, Krzesinska, Agata M., Hellevang, Helge, Werner, Stephanie C., and Rull, Fernando
- Subjects
Astrophysics - Earth and Planetary Astrophysics ,Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
We present the compositional analysis of three terrestrial analogues of Martian olivine-bearing rocks derived from both laboratory and flight-derived analytical instruments. In the first step, state-of-the-art spectroscopic (XRF, NIR and Raman) and diffractometric (XRD) laboratory systems were complementary used. Besides providing a detailed mineralogical and geochemical characterization of the samples, results comparison shed light on the advantages ensured by the combined use of Raman and NIR techniques, being these the spectroscopic instruments that will soon deploy (2021) on Mars as part of the ExoMars/ESA rover payload. In order to extrapolate valuable indicators of the mineralogical data that could derive from the ExoMars/Raman Laser Spectrometer (RLS), laboratory results were then compared with the molecular data gathered through the RLS ExoMars Simulator. Beside correctly identifying all major phases (feldspar, pyroxene and olivine), the RLS ExoMars Simulator confirmed the presence of additional minor compounds (i.e. hematite and apatite) that were not detected by complementary techniques. Furthermore, concerning the in-depth study of olivine grains, the RLS ExoMars simulator was able to effectively detect the shifting of the characteristic double peak around 820 and 850 cm-1, from which the Fe-Mg content of the analysed crystals can be extrapolated. Considering that olivine is one of the main mineral phases of the ExoMars landing site (Oxia Planum), this study suggests that the ExoMars/RLS system has the potential to provide detailed information about the elemental composition of olivine on Mars.
- Published
- 2021
- Full Text
- View/download PDF
4. PTAL multi-spectral database of planetary terrestrial analogues: Raman data overview
- Author
-
Veneranda, Marco, Saiz, Jesus, Sanz-Arranz, Aurelio, Manrique, Jose Antonio, Lopez-Reyes, Guillermo, Medina, Jesus, Dypvik, Henning, Werner, Stephanie C., and Rull, Fernando
- Subjects
Astrophysics - Earth and Planetary Astrophysics ,Astrophysics - Instrumentation and Methods for Astrophysics ,Condensed Matter - Materials Science - Abstract
The multi analytical study of terrestrial analogues is a useful strategy to deepen the knowledge about the geological and environmental evolution of Mars and other extraterrestrial bodies. In spite of the increasing importance that LIBS, NIR and Raman techniques are acquiring in the field of space exploration, there is a lack web-based platform providing free access to a wide multi-spectral database of terrestrial analogue materials. The Planetary Terrestrial Analogue Library (PTAL) project aims at responding to this critical need by developing and providing free web accessibility to LIBS, NIR and Raman data from more than 94 terrestrial analogues selected according to their congruence with Martian geological contexts. In this framework, the present manuscript provides the scientific community with a complete overview of the over 4500 Raman spectra collected to feed the PTAL database. Raman data, obtained through the complementary use of laboratory and spacecraft-simulator systems, confirmed the effectiveness of this spectroscopic technique for the detection of major and minor mineralogical phases of the samples, the latter being of critical importance for the recognition of geological processes that could have occurred on Mars and other planets. In light of the forthcoming missions to Mars, the results obtained through the RLS ExoMars Simulator offer a valuable insight on the scientific outcome that could derive from the RLS spectrometer that will soon land on Mars as part of the ExoMars rover payload.
- Published
- 2021
- Full Text
- View/download PDF
5. Post-landing major element quantification using SuperCam laser induced breakdown spectroscopy
- Author
-
Anderson, Ryan B., Forni, Olivier, Cousin, Agnes, Wiens, Roger C., Clegg, Samuel M., Frydenvang, Jens, Gabriel, Travis S.J., Ollila, Ann, Schröder, Susanne, Beyssac, Olivier, Gibbons, Erin, Vogt, David S., Clavé, Elise, Manrique, Jose-Antonio, Legett, Carey, IV, Pilleri, Paolo, Newell, Raymond T., Sarrao, Joseph, Maurice, Sylvestre, Arana, Gorka, Benzerara, Karim, Bernardi, Pernelle, Bernard, Sylvain, Bousquet, Bruno, Brown, Adrian J., Alvarez-Llamas, César, Chide, Baptiste, Cloutis, Edward, Comellas, Jade, Connell, Stephanie, Dehouck, Erwin, Delapp, Dorothea M., Essunfeld, Ari, Fabre, Cecile, Fouchet, Thierry, Garcia-Florentino, Cristina, García-Gómez, Laura, Gasda, Patrick, Gasnault, Olivier, Hausrath, Elisabeth M., Lanza, Nina L., Laserna, Javier, Lasue, Jeremie, Lopez, Guillermo, Madariaga, Juan Manuel, Mandon, Lucia, Mangold, Nicolas, Meslin, Pierre-Yves, Nelson, Anthony E., Newsom, Horton, Reyes-Newell, Adriana L., Robinson, Scott, Rull, Fernando, Sharma, Shiv, Simon, Justin I., Sobron, Pablo, Fernandez, Imanol Torre, Udry, Arya, Venhaus, Dawn, McLennan, Scott M., Morris, Richard V., and Ehlmann, Bethany
- Published
- 2022
- Full Text
- View/download PDF
6. The SuperCam Instrument Suite on the NASA Mars 2020 Rover: Body Unit and Combined System Tests
- Author
-
Wiens, Roger C., Maurice, Sylvestre, Robinson, Scott H., Nelson, Anthony E., Cais, Philippe, Bernardi, Pernelle, Newell, Raymond T., Clegg, Sam, Sharma, Shiv K., Storms, Steven, Deming, Jonathan, Beckman, Darrel, Ollila, Ann M., Gasnault, Olivier, Anderson, Ryan B., André, Yves, Michael Angel, S., Arana, Gorka, Auden, Elizabeth, Beck, Pierre, Becker, Joseph, Benzerara, Karim, Bernard, Sylvain, Beyssac, Olivier, Borges, Louis, Bousquet, Bruno, Boyd, Kerry, Caffrey, Michael, Carlson, Jeffrey, Castro, Kepa, Celis, Jorden, Chide, Baptiste, Clark, Kevin, Cloutis, Edward, Cordoba, Elizabeth C., Cousin, Agnes, Dale, Magdalena, Deflores, Lauren, Delapp, Dorothea, Deleuze, Muriel, Dirmyer, Matthew, Donny, Christophe, Dromart, Gilles, George Duran, M., Egan, Miles, Ervin, Joan, Fabre, Cecile, Fau, Amaury, Fischer, Woodward, Forni, Olivier, Fouchet, Thierry, Fresquez, Reuben, Frydenvang, Jens, Gasway, Denine, Gontijo, Ivair, Grotzinger, John, Jacob, Xavier, Jacquinod, Sophie, Johnson, Jeffrey R., Klisiewicz, Roberta A., Lake, James, Lanza, Nina, Laserna, Javier, Lasue, Jeremie, Le Mouélic, Stéphane, Legett, IV, Carey, Leveille, Richard, Lewin, Eric, Lopez-Reyes, Guillermo, Lorenz, Ralph, Lorigny, Eric, Love, Steven P., Lucero, Briana, Madariaga, Juan Manuel, Madsen, Morten, Madsen, Soren, Mangold, Nicolas, Manrique, Jose Antonio, Martinez, J. P., Martinez-Frias, Jesus, McCabe, Kevin P., McConnochie, Timothy H., McGlown, Justin M., McLennan, Scott M., Melikechi, Noureddine, Meslin, Pierre-Yves, Michel, John M., Mimoun, David, Misra, Anupam, Montagnac, Gilles, Montmessin, Franck, Mousset, Valerie, Murdoch, Naomi, Newsom, Horton, Ott, Logan A., Ousnamer, Zachary R., Pares, Laurent, Parot, Yann, Pawluczyk, Rafal, Glen Peterson, C., Pilleri, Paolo, Pinet, Patrick, Pont, Gabriel, Poulet, Francois, Provost, Cheryl, Quertier, Benjamin, Quinn, Heather, Rapin, William, Reess, Jean-Michel, Regan, Amy H., Reyes-Newell, Adriana L., Romano, Philip J., Royer, Clement, Rull, Fernando, Sandoval, Benigno, Sarrao, Joseph H., Sautter, Violaine, Schoppers, Marcel J., Schröder, Susanne, Seitz, Daniel, Shepherd, Terra, Sobron, Pablo, Dubois, Bruno, Sridhar, Vishnu, Toplis, Michael J., Torre-Fdez, Imanol, Trettel, Ian A., Underwood, Mark, Valdez, Andres, Valdez, Jacob, Venhaus, Dawn, and Willis, Peter
- Published
- 2021
- Full Text
- View/download PDF
7. Raman spectroscopy, assisted by X‐ray fluorescence and laser‐induced breakdown spectroscopy, to characterise original and altered mineral phases in the NWA 2975 Martian shergottite.
- Author
-
Población, Iratxe, Torre‐Fdez, Imanol, Aramendia, Julene, López‐Reyes, Guillermo, Cabalín, Luisa M., Madariaga, Juan Manuel, Rull, Fernando, Laserna, Javier J., Carrizo, Daniel, Martínez‐Frías, Jesús, Belenguer, Tomás, Taravillo, Mercedes, Dell'Aglio, Marcella, De Giacomo, Alessandro, Huidobro, Jennifer, Manrique, Jose Antonio, Delgado, Tomás, Arana, Gorka, Castro, Kepa, and Veneranda, Marco
- Subjects
LASER-induced breakdown spectroscopy ,LASER-induced fluorescence ,MARTIAN meteorites ,X-ray fluorescence ,MINERALS ,PYRRHOTITE ,RAMAN spectroscopy - Abstract
A fragment of the NWA 2975 Martian meteorite, an enriched basaltic shergottite, was analysed to complete its geochemical characterisation performed 10 years ago. By this means, the feasibility of the employed techniques in a combined way for present and future space exploration missions can be tested. For this aim, Raman spectroscopy was used supported by micro energy dispersive X‐ray fluorescence (μ‐EDXRF) and laser‐induced breakdown spectroscopy (LIBS) for an accurate interpretation of molecular and elemental results. Raman spectroscopy results from two setups, InVia from Renishaw and RLS Simulator, were compared. The major minerals detected by Raman spectroscopy were pyroxenes (mainly augite, pigeonite and enstatite) and plagioclases (mainly shocked maskelynite). Raman spectroscopy allowed defining different metal compositions for these main minerals based on the secondary Raman spectroscopy bands in the 200–500 cm−1 region. In addition, other minerals were found such as merrillite, as well as pyrrhotite and apatite, in several veins and cracks of the meteorite, in agreement with the initial report by the Meteoritical Bulletin. Moreover, it should be highlighted that coesite was found for the very first time in this meteorite. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
8. Semi‐quantification of binary saline solutions by Raman spectroscopy: Implications for Europa.
- Author
-
Manrique, Jose Antonio, Veneranda, Marco, Merino‐Lomas, Yaiza, Rull, Fernando, Charro, Elena, Gonzalez, Manuel A., Lopez, Jose Manuel, Gutiez, Eduardo Rodríguez, Sanz‐Arranz, Jose Aurelio, Maurice, Sylvestre, and Lopez‐Reyes, Guillermo
- Subjects
- *
SALINE solutions , *RAMAN spectroscopy , *ARTIFICIAL neural networks , *PLANETARY exploration , *RAMAN lasers , *BINARY mixtures - Abstract
The Europa lander is a concept for a potential future planetary exploration mission which purpose is to characterize the icy shell of Europa and to search for organics. To achieve this objective, the current concept of the lander includes a Raman spectrometer, such as RLS instrument, that could be able to analyze (sub) surface targets in their solid and liquid form. Knowing that ice and brines of Europa are potentially enriched by sulfate and chlorides, this work seeks to evaluate if Raman spectroscopy could be used to semi quantify the saline content of water solutions using space‐like instrumentation. To do so, MgSO4 and MgCl2 were used to prepare three sets of water solutions. Raman analyses were then performed by the laboratory simulator of the ExoMars Raman Laser Spectrometer (RLS), which has been defined as the threshold system for the Europa Lander. After data analysis, two different semi‐quantification approaches were tested, and their results compared. Although univariate calibration curves proved to successfully quantify the content of SO42− and Cl− anions dissolved in mono‐analyte water solutions, this strategy provided very poor results when applied to binary saline mixtures. Overcoming this issue, the non‐linearity prediction ability of Artificial Neural Networks (ANNs) in combination with bandfitting allows to successfully resolve the complexity of the vibrational perturbation suffered by the OH region, which is caused by the cross interaction of H2O molecules with different anions. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
9. Application of chemometrics on Raman spectra from Mars: Recent advances and future perspectives.
- Author
-
Veneranda, Marco, Manrique, Jose Antonio, Sanz‐Arranz, Aurelio, Julve Gonzalez, Sofia, Prieto Garcia, Clara, Pascual Sanchez, Elena, Konstantinidis, Menelaos, Charro, Elena, Lopez, Jose Manuel, Gonzalez, Manuel Angel, Rull, Fernando, and Lopez‐Reyes, Guillermo
- Subjects
- *
CHEMOMETRICS , *MARS (Planet) , *PLANETARY exploration , *MULTISENSOR data fusion , *RAMAN spectroscopy , *SPECTROMETERS - Abstract
The SuperCam and SHERLOC instruments onboard the NASA/Perseverance rover are returning the first Raman spectra to be ever collected from another planet. Similarly, the RLS instrument onboard the ESA/Rosalind Franklin rover will collect Raman spectra from powdered rocks sampled from the subsurface of Mars. To optimize the scientific exploitation of Raman spectra returned from planetary exploration missions, tailored chemometric tools are being developed that take into account the analytical capability of the mentioned Raman spectrometers. In this framework, the ERICA research group is using laboratory simulators of SuperCam and RLS to perform representative laboratory studies that will enhance the scientific outcome of both Mars2020 and ExoMars missions. On one hand, preliminary studies proved the chemometric analysis of RLS datasets could be used to obtain a reliable semi‐quantitative estimation of the main mineral phases composing Martian geological samples. On the other hand, it was proved the data fusion of Raman and LIBS spectra gathered by SuperCam could be used to enhance the discrimination of mineral phases from remote geological targets. Besides describing the models developed by the ERICA group, this work presents an overview of the complementary chemometric approaches so far tested in this field of study and propose further improvements to be addressed in the future. SuperCam and Sherloc are the first Raman instruments to be ever operated in another planet. Looking ahead, additional planetary missions will deploy Raman spectrometers on Mars (ExoMars/RLS) and Phobos (MMX/RAX). To optimize the scientific return of this analytical instrument, dedicated chemometric tools need to be developed for data treatment and interpretation. Here, an overview of the effort the SuperCam and RLS team are doing in optimizing the exploitation of the Raman spectra from Mars is provided. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
10. Semi‐quantification of binary saline solutions by Raman spectroscopy: Implications for Europa
- Author
-
Manrique, Jose Antonio, primary, Veneranda, Marco, additional, Merino‐Lomas, Yaiza, additional, Rull, Fernando, additional, Charro, Elena, additional, Gonzalez, Manuel A., additional, Lopez, Jose Manuel, additional, Gutiez, Eduardo Rodríguez, additional, Sanz‐Arranz, Jose Aurelio, additional, Maurice, Sylvestre, additional, and Lopez‐Reyes, Guillermo, additional
- Published
- 2022
- Full Text
- View/download PDF
11. Scientific performances evaluation of the Raman Laser (RLS) FM-instrument for Exomars mission to Mars
- Author
-
Rull, Fernando, primary, Moral, Andoni, additional, Lopez-Reyes, Guillermo, additional, Perez, Carlos, additional, Seoane, Laura, additional, Zafra, Jesus, additional, Veneranda, Marco, additional, Manrique, Jose Antonio, additional, Rodriguez, Eduardo, additional, Rodriguez, Pablo, additional, Belenguer, Tomás, additional, and Prieto, Olga, additional
- Published
- 2022
- Full Text
- View/download PDF
12. Calculation of Europa relevant solutions salinity using RLS-like data. A next step for Mars payload.
- Author
-
Rull, Fernando, primary, Manrique, Jose Antonio, additional, Veneranda, Marco, additional, Merino, Yaiza, additional, and Lopez, Guillermo, additional
- Published
- 2022
- Full Text
- View/download PDF
13. Application of chemometrics on Raman spectra from Mars: Recent advances and future perspectives
- Author
-
Veneranda, Marco, primary, Manrique, Jose Antonio, additional, Sanz‐Arranz, Aurelio, additional, Julve Gonzalez, Sofia, additional, Prieto Garcia, Clara, additional, Pascual Sanchez, Elena, additional, Konstantinidis, Menelaos, additional, Charro, Elena, additional, Lopez, Jose Manuel, additional, Gonzalez, Manuel Angel, additional, Rull, Fernando, additional, and Lopez‐Reyes, Guillermo, additional
- Published
- 2022
- Full Text
- View/download PDF
14. Compositionally and density stratified igneous terrain in Jezero crater, Mars
- Author
-
Wiens, Roger C., Udry, Arya, Beyssac, Olivier, Quantin-Nataf, Cathy, Mangold, Nicolas, Cousin, Agnès, Mandon, Lucia, Bosak, Tanja, Forni, Olivier, McLennan, Scott M., Sautter, Violaine, Brown, Adrian, Benzerara, Karim, Johnson, Jeffrey R., Mayhew, Lisa, Maurice, Sylvestre, Anderson, Ryan B., Clegg, Samuel M., Crumpler, Larry, Gabriel, Travis S. J., Gasda, Patrick, Hall, James, Horgan, Briony H. N., Kah, Linda, Legett, Carey, Madariaga, Juan Manuel, Meslin, Pierre-Yves, Ollila, Ann M., Poulet, Francois, Royer, Clement, Sharma, Shiv K., Siljeström, Sandra, Simon, Justin I., Acosta-Maeda, Tayro E., Alvarez-Llamas, Cesar, Angel, S. Michael, Arana, Gorka, Beck, Pierre, Bernard, Sylvain, Bertrand, Tanguy, Bousquet, Bruno, Castro, Kepa, Chide, Baptiste, Clavé, Elise, Cloutis, Ed, Connell, Stephanie, Dehouck, Erwin, Dromart, Gilles, Fischer, Woodward, Fouchet, Thierry, Francis, Raymond, Frydenvang, Jens, Gasnault, Olivier, Gibbons, Erin, Gupta, Sanjeev, Hausrath, Elisabeth M., Jacob, Xavier, Kalucha, Hemani, Kelly, Evan, Knutsen, Elise, Lanza, Nina, Laserna, Javier, Lasue, Jeremie, Le Mouélic, Stéphane, Leveille, Richard, Lopez-Reyes, Guillermo, Lorenz, Ralph, Manrique, Jose Antonio, Martinez-Frias, Jesus, McConnochie, Tim, Melikechi, Noureddine, Mimoun, David, Montmessin, Franck, Moros, Javier, Murdoch, Naomi, Pilleri, Paolo, Pilorget, Cedric, Pinet, Patrick, Rapin, William, Rull, Fernando, Schröder, Susanne, Shuster, David L., Smith, Rebecca J., Stott, Alexander E., Tarnas, Jesse, Turenne, Nathalie, Veneranda, Marco, Vogt, David S., Weiss, Benjamin P., Willis, Peter, Stack, Kathryn M., Williford, Kenneth H., Farley, Kenneth A., Wiens, Roger C., Udry, Arya, Beyssac, Olivier, Quantin-Nataf, Cathy, Mangold, Nicolas, Cousin, Agnès, Mandon, Lucia, Bosak, Tanja, Forni, Olivier, McLennan, Scott M., Sautter, Violaine, Brown, Adrian, Benzerara, Karim, Johnson, Jeffrey R., Mayhew, Lisa, Maurice, Sylvestre, Anderson, Ryan B., Clegg, Samuel M., Crumpler, Larry, Gabriel, Travis S. J., Gasda, Patrick, Hall, James, Horgan, Briony H. N., Kah, Linda, Legett, Carey, Madariaga, Juan Manuel, Meslin, Pierre-Yves, Ollila, Ann M., Poulet, Francois, Royer, Clement, Sharma, Shiv K., Siljeström, Sandra, Simon, Justin I., Acosta-Maeda, Tayro E., Alvarez-Llamas, Cesar, Angel, S. Michael, Arana, Gorka, Beck, Pierre, Bernard, Sylvain, Bertrand, Tanguy, Bousquet, Bruno, Castro, Kepa, Chide, Baptiste, Clavé, Elise, Cloutis, Ed, Connell, Stephanie, Dehouck, Erwin, Dromart, Gilles, Fischer, Woodward, Fouchet, Thierry, Francis, Raymond, Frydenvang, Jens, Gasnault, Olivier, Gibbons, Erin, Gupta, Sanjeev, Hausrath, Elisabeth M., Jacob, Xavier, Kalucha, Hemani, Kelly, Evan, Knutsen, Elise, Lanza, Nina, Laserna, Javier, Lasue, Jeremie, Le Mouélic, Stéphane, Leveille, Richard, Lopez-Reyes, Guillermo, Lorenz, Ralph, Manrique, Jose Antonio, Martinez-Frias, Jesus, McConnochie, Tim, Melikechi, Noureddine, Mimoun, David, Montmessin, Franck, Moros, Javier, Murdoch, Naomi, Pilleri, Paolo, Pilorget, Cedric, Pinet, Patrick, Rapin, William, Rull, Fernando, Schröder, Susanne, Shuster, David L., Smith, Rebecca J., Stott, Alexander E., Tarnas, Jesse, Turenne, Nathalie, Veneranda, Marco, Vogt, David S., Weiss, Benjamin P., Willis, Peter, Stack, Kathryn M., Williford, Kenneth H., and Farley, Kenneth A.
- Abstract
Before Perseverance, Jezero crater's floor was variably hypothesized to have a lacustrine, lava, volcanic airfall, or aeolian origin. SuperCam observations in the first 286 Mars days on Mars revealed a volcanic and intrusive terrain with compositional and density stratification. The dominant lithology along the traverse is basaltic, with plagioclase enrichment in stratigraphically higher locations. Stratigraphically lower, layered rocks are richer in normative pyroxene. The lowest observed unit has the highest inferred density and is olivine-rich with coarse (1.5 millimeters) euhedral, relatively unweathered grains, suggesting a cumulate origin. This is the first martian cumulate and shows similarities to martian meteorites, which also express olivine disequilibrium. Alteration materials including carbonates, sulfates, perchlorates, hydrated silicates, and iron oxides are pervasive but low in abundance, suggesting relatively brief lacustrine conditions. Orbital observations link the Jezero floor lithology to the broader Nili-Syrtis region, suggesting that density-driven compositional stratification is a regional characteristic.
- Published
- 2022
15. Raman Characterization of the CanMars Rover Field Campaign Samples Using the Raman Laser Spectrometer ExoMars Simulator: Implications for Mars and Planetary Exploration
- Author
-
Lalla, Emmanuel A., primary, Konstantinidis, Menelaos, additional, Veneranda, Marco, additional, Daly, Michael G., additional, Manrique, Jose Antonio, additional, Lymer, Elizabeth A., additional, Freemantle, James, additional, Cloutis, Edward A., additional, Stromberg, Jessica M., additional, Shkolyar, Svetlana, additional, Caudill, Christy, additional, Applin, Daniel, additional, Vago, Jorge L., additional, Rull, Fernando, additional, and Lopez-Reyes, Guillermo, additional
- Published
- 2022
- Full Text
- View/download PDF
16. The Raman Laser Spectrometer: A performance study using ExoMars representative crushed samples
- Author
-
Perez Canora, Carlos, primary, Rodriguez, Jose Antonio, additional, Musso, Fabio, additional, Moral, Andoni, additional, Seoane, Laura, additional, Zafra, Jesus, additional, Rodriguez, Pablo Rodriguez, additional, Ibarmia, Sergio, additional, Benito, Marina, additional, Veneranda, Marco, additional, Manrique, Jose Antonio, additional, Ramos, Gonzalo, additional, Charro, Elena, additional, Lopez, Jose Manuel, additional, Gonzalez, Manual Angel, additional, Hutchinson, Ian, additional, Prieto‐Ballesteros, Olga, additional, Rull, Fernando, additional, and Lopez‐Reyes, Guillermo, additional
- Published
- 2021
- Full Text
- View/download PDF
17. The Raman laser spectrometer ExoMars simulator (RLS Sim): A heavy‐duty Raman tool for ground testing on ExoMars
- Author
-
Lopez‐Reyes, Guillermo, primary, Veneranda, Marco, additional, Manrique, Jose Antonio, additional, González Martín, Álvaro, additional, Moral, Andoni, additional, Perez‐Canora, Carlos, additional, Rodríguez Prieto, Jose Antonio, additional, Sanz Arranz, Aurelio, additional, Saiz Cano, Jesús, additional, Lalla, Emmanuel, additional, Konstantinidis, Menelaos, additional, Prieto‐Ballesteros, Olga, additional, Medina, Jesús, additional, González, Manuel Ángel, additional, Charro, Elena, additional, Lopez, Jose Manuel, additional, and Rull, Fernando, additional
- Published
- 2021
- Full Text
- View/download PDF
18. SuperCam on the Perseverance Rover for Exploration of Jezero Crater: Remote LIBS, VISIR, Raman, and Time-Resolved Luminescence Spectroscopies Plus Micro-Imaging and Acoustics
- Author
-
Wiens, Roger C., Maurice, Sylvestre, Gasnault, O., Anderson, Ryan B., Beyssac, Olivier, Bonal, L., Clegg, Samuel M., DeFlores, Lauren, Dromart, G, Fischer, W. W., Forni, Olivier, Grotzinger, J. P., Johnson, J. R., Martinez-Frias, J., Mangold, Nicolas, McLennan, S., Montmessin, Franck, Rull, Fernando, Sharma, Shiv K., Cousin, Agnès, Pilleri, Paolo, Sautter, V, Lewin, E, Cloutis, E., Poulet, F., Bernard, Sylvain, McConnochie, T., Lanza, N., Newsom, H., Ollila, A., Leveille, R., Le Mouelic, S., Lasue, J, Melikechi, N., Meslin, P-Y, Grasset, O, Angel, S. M., Fouchet, T., Beck, Pierre, Bousquet, Bruno, Fabre, C., Pinet, P., Benzerara, K., Montagnac, Gilles, Arana, Gorka, Castro, Kepa, Laserna, Javier, Madariaga, Juan Manuel, Manrique, Jose Antonio, Lopez, G., Lorenz, R., Mimoun, D., Acosta-Maeda, T., Alvarez, C., Dehouck, E., Delory, G., Doressoundiram, A., Francis, R., Frydenvang, J., Gabriel, T. S. J., Jacob, Xavier, Madsen, M. B., Moros, J., Murdoch, N, Newell, Raymond T., Porter, J. M., Quantin-Nataf, C., Rapin, William, Schröder, Susanne, Sobron, Pablo, Toplis, M., Brown, A.J., Veneranda, M., Chide, Baptiste, Legett, Carey, Royer, Clement, Stott, A., Vogt, David, Robinson, Scott H., DeLapp, D., Clave, E., Connell, S., Essunfeld, A., Gallegos, Z., Garcia-Florentino, C., Gibbons, E., Huidobro, J., Kelly, E., Kalucha, H., Ruiz, P., Torre-Fdez, Imanol, Shkolyar, Svetlana, Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Los Alamos National Laboratory (LANL), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), United States Geological Survey (USGS), Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France, Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), California Institute of Technology (CALTECH), Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL), Instituto de Geociencias [Madrid] (IGEO), Universidad Complutense de Madrid = Complutense University of Madrid [Madrid] (UCM)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Stony Brook University [SUNY] (SBU), State University of New York (SUNY), PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Universidad de Valladolid [Valladolid] (UVa), University of Hawai‘i [Mānoa] (UHM), Université Grenoble Alpes (UGA), University of Winnipeg, Institut d'astrophysique spatiale (IAS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), NASA Goddard Space Flight Center (GSFC), The University of New Mexico [Albuquerque], McGill University = Université McGill [Montréal, Canada], University of Massachusetts [Lowell] (UMass Lowell), University of Massachusetts System (UMASS), University of South Carolina [Columbia], Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Pôle Planétologie du LESIA, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Université de Lorraine (UL), Universidad del Pais Vasco / Euskal Herriko Unibertsitatea [Espagne] (UPV/EHU), Universidad de Málaga [Málaga] = University of Málaga [Málaga], Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO), Université de Lyon, University of Copenhagen = Københavns Universitet (UCPH), University of Hawai'i [Honolulu] (UH), Deutsches Zentrum für Luft- und Raumfahrt (DLR), Search for Extraterrestrial Intelligence Institute (SETI), Plancius Research LLC, University of the Basque Country/Euskal Herriko Unibertsitatea (UPV/EHU), Cardon, Catherine, Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement [Lyon] (LGL-TPE), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École normale supérieure - Lyon (ENS Lyon), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC)-Universidad Complutense de Madrid = Complutense University of Madrid [Madrid] (UCM), Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), University of Málaga, and University of Copenhagen = Københavns Universitet (KU)
- Subjects
[SDU.ASTR.IM] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,[SDU]Sciences of the Universe [physics] ,Mars2020 SuperCam Perseverance Mars Planetenforschung Spektroskopie Kamera Laser ,ComputingMilieux_MISCELLANEOUS ,[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] - Abstract
International audience
- Published
- 2021
19. Analytical database of Martian minerals (ADaMM): Project synopsis and Raman data overview
- Author
-
Veneranda, Marco, primary, Sanz‐Arranz, Aurelio, additional, Manrique, Jose Antonio, additional, Saiz, Jesus, additional, Garcia‐Prieto, Clara, additional, Pascual‐Sánchez, Elena, additional, Medina, Jesus, additional, Konstantinidis, Menelaos, additional, Lalla, Emmanuel, additional, Moral, Andoni, additional, Nieto, Luis Miguel, additional, Rull, Fernando, additional, and Lopez‐Reyes, Guillermo, additional
- Published
- 2021
- Full Text
- View/download PDF
20. Planetary Terrestrial Analogues Library (PTAL): online database platform and spectroscopic tools
- Author
-
Veneranda, Marco, primary, Saiz, Jesus, additional, Lopez-Reyes, Guillermo, additional, Sanz-Arranz, Aurelio, additional, Manrique, Jose Antonio, additional, Medina, Jesus, additional, Loizeau, Damien, additional, Lantz, Cateline, additional, Poulet, Francois, additional, Cousin, Agnes, additional, Krzesińska, Agata M., additional, Dypvik, Henning, additional, Werner, Stephanie C., additional, and Rull, Fernando, additional
- Published
- 2021
- Full Text
- View/download PDF
21. The SuperCam Instrument Suite on the NASA Mars 2020 Rover:Body Unit and Combined System Tests
- Author
-
Wiens, Roger C., Maurice, Sylvestre, Robinson, Scott H., Nelson, Anthony E., Cais, Philippe, Bernardi, Pernelle, Newell, Raymond T., Clegg, Sam, Sharma, Shiv K., Storms, Steven, Deming, Jonathan, Beckman, Darrel, Ollila, Ann M., Gasnault, Olivier, Anderson, Ryan B., André, Yves, Michael Angel, S., Arana, Gorka, Auden, Elizabeth, Beck, Pierre, Becker, Joseph, Benzerara, Karim, Bernard, Sylvain, Beyssac, Olivier, Borges, Louis, Bousquet, Bruno, Boyd, Kerry, Caffrey, Michael, Carlson, Jeffrey, Castro, Kepa, Celis, Jorden, Chide, Baptiste, Clark, Kevin, Cloutis, Edward, Cordoba, Elizabeth C., Cousin, Agnes, Dale, Magdalena, Deflores, Lauren, Delapp, Dorothea, Deleuze, Muriel, Dirmyer, Matthew, Donny, Christophe, Dromart, Gilles, George Duran, M., Egan, Miles, Ervin, Joan, Fabre, Cecile, Fau, Amaury, Fischer, Woodward, Forni, Olivier, Fouchet, Thierry, Fresquez, Reuben, Frydenvang, Jens, Gasway, Denine, Gontijo, Ivair, Grotzinger, John, Jacob, Xavier, Jacquinod, Sophie, Johnson, Jeffrey R., Klisiewicz, Roberta A., Lake, James, Lanza, Nina, Laserna, Javier, Lasue, Jeremie, Le Mouélic, Stéphane, Legett, Carey, Leveille, Richard, Lewin, Eric, Lopez-Reyes, Guillermo, Lorenz, Ralph, Lorigny, Eric, Love, Steven P., Lucero, Briana, Madariaga, Juan Manuel, Madsen, Morten, Madsen, Soren, Mangold, Nicolas, Manrique, Jose Antonio, Martinez, J. P., Martinez-Frias, Jesus, McCabe, Kevin P., McConnochie, Timothy H., McGlown, Justin M., McLennan, Scott M., Melikechi, Noureddine, Meslin, Pierre-Yves, Michel, John M., Mimoun, David, Misra, Anupam, Montagnac, Gilles, Montmessin, Franck, Mousset, Valerie, Murdoch, Naomi, Newsom, Horton, Ott, Logan A., Ousnamer, Zachary R., Pares, Laurent, Parot, Yann, Pawluczyk, Rafal, Glen Peterson, C., Pilleri, Paolo, Pinet, Patrick, Pont, Gabriel, Poulet, Francois, Provost, Cheryl, Quertier, Benjamin, Quinn, Heather, Rapin, William, Reess, Jean Michel, Regan, Amy H., Reyes-Newell, Adriana L., Romano, Philip J., Royer, Clement, Rull, Fernando, Sandoval, Benigno, Sarrao, Joseph H., Sautter, Violaine, Schoppers, Marcel J., Schröder, Susanne, Seitz, Daniel, Shepherd, Terra, Sobron, Pablo, Dubois, Bruno, Sridhar, Vishnu, Toplis, Michael J., Torre-Fdez, Imanol, Trettel, Ian A., Underwood, Mark, Valdez, Andres, Valdez, Jacob, Venhaus, Dawn, Willis, Peter, Wiens, Roger C., Maurice, Sylvestre, Robinson, Scott H., Nelson, Anthony E., Cais, Philippe, Bernardi, Pernelle, Newell, Raymond T., Clegg, Sam, Sharma, Shiv K., Storms, Steven, Deming, Jonathan, Beckman, Darrel, Ollila, Ann M., Gasnault, Olivier, Anderson, Ryan B., André, Yves, Michael Angel, S., Arana, Gorka, Auden, Elizabeth, Beck, Pierre, Becker, Joseph, Benzerara, Karim, Bernard, Sylvain, Beyssac, Olivier, Borges, Louis, Bousquet, Bruno, Boyd, Kerry, Caffrey, Michael, Carlson, Jeffrey, Castro, Kepa, Celis, Jorden, Chide, Baptiste, Clark, Kevin, Cloutis, Edward, Cordoba, Elizabeth C., Cousin, Agnes, Dale, Magdalena, Deflores, Lauren, Delapp, Dorothea, Deleuze, Muriel, Dirmyer, Matthew, Donny, Christophe, Dromart, Gilles, George Duran, M., Egan, Miles, Ervin, Joan, Fabre, Cecile, Fau, Amaury, Fischer, Woodward, Forni, Olivier, Fouchet, Thierry, Fresquez, Reuben, Frydenvang, Jens, Gasway, Denine, Gontijo, Ivair, Grotzinger, John, Jacob, Xavier, Jacquinod, Sophie, Johnson, Jeffrey R., Klisiewicz, Roberta A., Lake, James, Lanza, Nina, Laserna, Javier, Lasue, Jeremie, Le Mouélic, Stéphane, Legett, Carey, Leveille, Richard, Lewin, Eric, Lopez-Reyes, Guillermo, Lorenz, Ralph, Lorigny, Eric, Love, Steven P., Lucero, Briana, Madariaga, Juan Manuel, Madsen, Morten, Madsen, Soren, Mangold, Nicolas, Manrique, Jose Antonio, Martinez, J. P., Martinez-Frias, Jesus, McCabe, Kevin P., McConnochie, Timothy H., McGlown, Justin M., McLennan, Scott M., Melikechi, Noureddine, Meslin, Pierre-Yves, Michel, John M., Mimoun, David, Misra, Anupam, Montagnac, Gilles, Montmessin, Franck, Mousset, Valerie, Murdoch, Naomi, Newsom, Horton, Ott, Logan A., Ousnamer, Zachary R., Pares, Laurent, Parot, Yann, Pawluczyk, Rafal, Glen Peterson, C., Pilleri, Paolo, Pinet, Patrick, Pont, Gabriel, Poulet, Francois, Provost, Cheryl, Quertier, Benjamin, Quinn, Heather, Rapin, William, Reess, Jean Michel, Regan, Amy H., Reyes-Newell, Adriana L., Romano, Philip J., Royer, Clement, Rull, Fernando, Sandoval, Benigno, Sarrao, Joseph H., Sautter, Violaine, Schoppers, Marcel J., Schröder, Susanne, Seitz, Daniel, Shepherd, Terra, Sobron, Pablo, Dubois, Bruno, Sridhar, Vishnu, Toplis, Michael J., Torre-Fdez, Imanol, Trettel, Ian A., Underwood, Mark, Valdez, Andres, Valdez, Jacob, Venhaus, Dawn, and Willis, Peter
- Abstract
The SuperCam instrument suite provides the Mars 2020 rover, Perseverance, with a number of versatile remote-sensing techniques that can be used at long distance as well as within the robotic-arm workspace. These include laser-induced breakdown spectroscopy (LIBS), remote time-resolved Raman and luminescence spectroscopies, and visible and infrared (VISIR; separately referred to as VIS and IR) reflectance spectroscopy. A remote micro-imager (RMI) provides high-resolution color context imaging, and a microphone can be used as a stand-alone tool for environmental studies or to determine physical properties of rocks and soils from shock waves of laser-produced plasmas. SuperCam is built in three parts: The mast unit (MU), consisting of the laser, telescope, RMI, IR spectrometer, and associated electronics, is described in a companion paper. The on-board calibration targets are described in another companion paper. Here we describe SuperCam’s body unit (BU) and testing of the integrated instrument. The BU, mounted inside the rover body, receives light from the MU via a 5.8 m optical fiber. The light is split into three wavelength bands by a demultiplexer, and is routed via fiber bundles to three optical spectrometers, two of which (UV and violet; 245–340 and 385–465 nm) are crossed Czerny-Turner reflection spectrometers, nearly identical to their counterparts on ChemCam. The third is a high-efficiency transmission spectrometer containing an optical intensifier capable of gating exposures to 100 ns or longer, with variable delay times relative to the laser pulse. This spectrometer covers 535–853 nm (105–7070cm−1 Raman shift relative to the 532 nm green laser beam) with 12cm−1 full-width at half-maximum peak resolution in the Raman fingerprint region. The BU electronics boards interface with the rover and control the instrument, returning data to the rover. Thermal systems maintain a warm temperature during cruise to Mars to avoid contamination on the optics, and cool t
- Published
- 2021
22. Planetary Terrestrial Analogues Library (PTAL) a novel database to support rover missions to Mars
- Author
-
Veneranda, Marco, primary, Saiz, Jesus, additional, Lopez-Reyes, Guillermo, additional, Manrique, Jose Antonio, additional, Medina, Jesus, additional, Poulet, Francois, additional, Werner, Stephanie C., additional, and Rull, Fernando, additional
- Published
- 2021
- Full Text
- View/download PDF
23. The SuperCam Instrument Suite on the NASA Mars 2020 Rover: Body Unit and Combined System Tests
- Author
-
Wiens, Roger C., primary, Maurice, Sylvestre, additional, Robinson, Scott H., additional, Nelson, Anthony E., additional, Cais, Philippe, additional, Bernardi, Pernelle, additional, Newell, Raymond T., additional, Clegg, Sam, additional, Sharma, Shiv K., additional, Storms, Steven, additional, Deming, Jonathan, additional, Beckman, Darrel, additional, Ollila, Ann M., additional, Gasnault, Olivier, additional, Anderson, Ryan B., additional, André, Yves, additional, Michael Angel, S., additional, Arana, Gorka, additional, Auden, Elizabeth, additional, Beck, Pierre, additional, Becker, Joseph, additional, Benzerara, Karim, additional, Bernard, Sylvain, additional, Beyssac, Olivier, additional, Borges, Louis, additional, Bousquet, Bruno, additional, Boyd, Kerry, additional, Caffrey, Michael, additional, Carlson, Jeffrey, additional, Castro, Kepa, additional, Celis, Jorden, additional, Chide, Baptiste, additional, Clark, Kevin, additional, Cloutis, Edward, additional, Cordoba, Elizabeth C., additional, Cousin, Agnes, additional, Dale, Magdalena, additional, Deflores, Lauren, additional, Delapp, Dorothea, additional, Deleuze, Muriel, additional, Dirmyer, Matthew, additional, Donny, Christophe, additional, Dromart, Gilles, additional, George Duran, M., additional, Egan, Miles, additional, Ervin, Joan, additional, Fabre, Cecile, additional, Fau, Amaury, additional, Fischer, Woodward, additional, Forni, Olivier, additional, Fouchet, Thierry, additional, Fresquez, Reuben, additional, Frydenvang, Jens, additional, Gasway, Denine, additional, Gontijo, Ivair, additional, Grotzinger, John, additional, Jacob, Xavier, additional, Jacquinod, Sophie, additional, Johnson, Jeffrey R., additional, Klisiewicz, Roberta A., additional, Lake, James, additional, Lanza, Nina, additional, Laserna, Javier, additional, Lasue, Jeremie, additional, Le Mouélic, Stéphane, additional, Legett, Carey, additional, Leveille, Richard, additional, Lewin, Eric, additional, Lopez-Reyes, Guillermo, additional, Lorenz, Ralph, additional, Lorigny, Eric, additional, Love, Steven P., additional, Lucero, Briana, additional, Madariaga, Juan Manuel, additional, Madsen, Morten, additional, Madsen, Soren, additional, Mangold, Nicolas, additional, Manrique, Jose Antonio, additional, Martinez, J. P., additional, Martinez-Frias, Jesus, additional, McCabe, Kevin P., additional, McConnochie, Timothy H., additional, McGlown, Justin M., additional, McLennan, Scott M., additional, Melikechi, Noureddine, additional, Meslin, Pierre-Yves, additional, Michel, John M., additional, Mimoun, David, additional, Misra, Anupam, additional, Montagnac, Gilles, additional, Montmessin, Franck, additional, Mousset, Valerie, additional, Murdoch, Naomi, additional, Newsom, Horton, additional, Ott, Logan A., additional, Ousnamer, Zachary R., additional, Pares, Laurent, additional, Parot, Yann, additional, Pawluczyk, Rafal, additional, Glen Peterson, C., additional, Pilleri, Paolo, additional, Pinet, Patrick, additional, Pont, Gabriel, additional, Poulet, Francois, additional, Provost, Cheryl, additional, Quertier, Benjamin, additional, Quinn, Heather, additional, Rapin, William, additional, Reess, Jean-Michel, additional, Regan, Amy H., additional, Reyes-Newell, Adriana L., additional, Romano, Philip J., additional, Royer, Clement, additional, Rull, Fernando, additional, Sandoval, Benigno, additional, Sarrao, Joseph H., additional, Sautter, Violaine, additional, Schoppers, Marcel J., additional, Schröder, Susanne, additional, Seitz, Daniel, additional, Shepherd, Terra, additional, Sobron, Pablo, additional, Dubois, Bruno, additional, Sridhar, Vishnu, additional, Toplis, Michael J., additional, Torre-Fdez, Imanol, additional, Trettel, Ian A., additional, Underwood, Mark, additional, Valdez, Andres, additional, Valdez, Jacob, additional, Venhaus, Dawn, additional, and Willis, Peter, additional
- Published
- 2020
- Full Text
- View/download PDF
24. The Raman Laser Spectrometer: A performance study using ExoMars representative crushed samples.
- Author
-
Perez Canora, Carlos, Rodriguez, Jose Antonio, Musso, Fabio, Moral, Andoni, Seoane, Laura, Zafra, Jesus, Rodriguez, Pablo Rodriguez, Ibarmia, Sergio, Benito, Marina, Veneranda, Marco, Manrique, Jose Antonio, Ramos, Gonzalo, Charro, Elena, Lopez, Jose Manuel, González, Manuel Ángel, Hutchinson, Ian, Prieto‐Ballesteros, Olga, Rull, Fernando, and Lopez‐Reyes, Guillermo
- Subjects
RAMAN lasers ,SPECTROMETERS ,ENGINEERING models ,PERFORMANCE theory ,LABORATORY equipment & supplies - Abstract
The Raman Laser Spectrometer (RLS) is one of three key analytical instruments incorporated within the body of the ExoMars 2022 rover. The rover will collect samples from different sites on the Oxia Planum plain, using a drill capable of penetrating the near subsurface and rocky outcrops to a depth of 2 m. Samples are passed to the Analytical Laboratory Drawer (ALD) in the heart of the rover vehicle, where the Sample Preparation and Distribution System (SPDS) processes and transports the crushed material into a refillable container (RC), which is then presented to the analytical instruments for exobiology and geological investigation. The final sample grain distribution of the powder sample following the crushing and flattening processes is a critical aspect of the RLS instrument that has a direct impact on its overall performance, related to its mineral identification and operational capabilities. This paper provides a comparative overview of the performance of a set of Raman instruments, the RLS micro‐Raman Laboratory Equipment, the RLS ExoMars Simulator, and the RLS Engineering and Qualification Model (EQM) using Martian representative crushed samples, along with an evaluation of instrument performance as a function of the operational scenario. The results from the work performed by the RLS team confirm the capability of the RLS instrument performances, by acquiring good‐quality spectra from crushed samples provided by the SPDS, whose science return can be further optimized when improving the RLS instrument operation sequence. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
25. The Raman laser spectrometer ExoMars simulator (RLS Sim): A heavy‐duty Raman tool for ground testing on ExoMars.
- Author
-
Lopez‐Reyes, Guillermo, Veneranda, Marco, Manrique, Jose Antonio, González Martín, Álvaro, Moral, Andoni, Perez‐Canora, Carlos, Rodríguez Prieto, Jose Antonio, Sanz Arranz, Aurelio, Saiz Cano, Jesús, Lalla, Emmanuel, Konstantinidis, Menelaos, Prieto‐Ballesteros, Olga, Medina, Jesús, González, Manuel Ángel, Charro, Elena, Lopez, Jose Manuel, and Rull, Fernando
- Subjects
SPECTROMETERS ,SIGNAL-to-noise ratio ,RESEARCH teams - Abstract
The Raman laser spectrometer (RLS) instrument onboard the Rosalind Franklin rover of the ExoMars 2022 mission will analyze powdered samples on Mars to search for traces of life. To prepare for the mission, the RLS scientific team has developed the RLS ExoMars Simulator (RLS Sim), a flexible model of RLS that operates similarly to the actual instrument, both in laboratory and field conditions, while also emulating the rover operational constraints in terms of sample distribution that are relevant to the Raman analysis. This system can operate autonomously to perform RLS‐representative analysis in one or several samples, making it very useful to perform heavy experimental tasks that would otherwise be impossible using a flight‐representative model of the instrument. In this work, we introduce the current configuration of the RLS Sim that has incorporated new hardware elements such as the RAman Demonstrator 1 (RAD1) spectrometer with the objective of approaching its performance to that of the actual RLS instrument. To evaluate the scientific capability of the RLS Sim, we have compared it with a replica model of RLS, the RLS Flight Spare (FS). Several acquisition aspects have been evaluated based on the analysis of select samples, assessing the performance in terms of spectral range and resolution and also studying several issues related to the evolution of signal‐to‐noise ratio (SNR) with different acquisition parameters, especially the number of accumulations. This performance analysis has shown that the RLS Sim in its updated configuration will be a key model to perform support science for the ExoMars mission and the RLS instrument on the Rosalind Franklin rover. Designed to work intensively, the use of the RLS Sim in combination with the RLS FS will facilitate maximizing the scientific return of the RLS spectrometer during Martian operations. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
26. Analytical database of Martian minerals (ADaMM): Project synopsis and Raman data overview.
- Author
-
Veneranda, Marco, Sanz‐Arranz, Aurelio, Manrique, Jose Antonio, Saiz, Jesus, Garcia‐Prieto, Clara, Pascual‐Sánchez, Elena, Medina, Jesus, Konstantinidis, Menelaos, Lalla, Emmanuel, Moral, Andoni, Nieto, Luis Miguel, Rull, Fernando, and Lopez‐Reyes, Guillermo
- Subjects
MINERALS ,PLANETARY surfaces ,RAMAN spectroscopy ,SPACE exploration ,DATABASES - Abstract
The Mars2020/Perseverance and ExoMars/Rosalind Franklin rovers are both slated to return the first Raman spectra ever collected from another planetary surface, Mars. In order to optimize the rovers scientific outcome, the scientific community needs to be provided with tailored tools for data treatment and interpretation. Responding to this need, the purpose of the Analytical Database of Martian Minerals (ADaMM) project is to build an extended multianalytical database of mineral phases that have been detected on Mars or are expected to be found at the landing sites where the two rovers will operate. Besides the use of conventional spectrometers, the main objective of the ADaMM database is to provide access to data collected by means of laboratory prototypes simulating the analytical performances of the spectroscopic systems onboard the Mars 2020 and ExoMars rovers. Planned to be released to the public in 2022, ADaMM will also provide access to data treatment and visualization tools developed in the framework of the mentioned space exploration missions. As such, the present work seeks to provide an overview of the ADaMM online platform, spectral tools, and mineral collection. In addition to that, the manuscript describes the Raman spectrometers used to analyze the mineral collection and presents a representative example of the analytical performance ensured by the Raman prototypes assembled to simulate the Raman Laser Spectrometer (RLS) and SuperCam systems. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
27. The Raman Spectrometer for the ExoMars-ESA 2022 Mission to Mars
- Author
-
Rull, Fernando, primary, Moral, Andoni, additional, Lopez-Reyes, Guillermo, additional, Perez, Carlos, additional, Rodriguez, Jose Antonio, additional, Rodriguez, Pablo, additional, Veneranda, Marco, additional, Manrique, Jose Antonio, additional, saiz, Jesus, additional, Sanz, Aurelio, additional, and Medina, Jesus, additional
- Published
- 2020
- Full Text
- View/download PDF
28. PTAL, ADAMM and SpectPro: novel tools to support ExoMars and Mars 2020 science operations
- Author
-
Veneranda, Marco, primary, Saiz, Jesus, additional, Lopez-Reyes, Guillermo, additional, Manrique, Jose Antonio, additional, Sanz Arranz, Aurelio, additional, Garcia-Prieto, Clara, additional, Werner, Stephanie C., additional, Moral, Andoni, additional, Madariaga, Juan Manuel, additional, Medina, Jesus, additional, and Rull, Fernando, additional
- Published
- 2020
- Full Text
- View/download PDF
29. Raman Laser Spectrometer (RLS) calibration target design to allow onboard combined science between the RLS and MicrOmega instruments on the ExoMars rover
- Author
-
Lopez‐Reyes, Guillermo, primary, Pilorget, Cedric, additional, Moral, Andoni G., additional, Manrique, Jose Antonio, additional, Sanz, Aurelio, additional, Berrocal, Alicia, additional, Veneranda, Marco, additional, Rull, Fernando, additional, Medina, Jesús, additional, Hamm, Vincent, additional, Bibring, Jean‐Pierre, additional, Rodriguez, Jose Antonio, additional, Perez Canora, Carlos, additional, Mateo‐Marti, Eva, additional, Prieto‐Ballesteros, Olga, additional, Lalla, Emmanuel, additional, and Vago, Jorge L., additional
- Published
- 2020
- Full Text
- View/download PDF
30. Planetary Terrestrial Analogues Library (PTAL) project: Raman data overview
- Author
-
Veneranda, Marco, primary, Sáiz, Jesús, additional, Sanz‐Arranz, Aurelio, additional, Manrique, Jose Antonio, additional, Lopez‐Reyes, Guillermo, additional, Medina, Jesús, additional, Dypvik, Henning, additional, Werner, Stephanie C., additional, and Rull, Fernando, additional
- Published
- 2019
- Full Text
- View/download PDF
31. Planetary Terrestrial Analogues Library (PTAL) project: Raman data overview.
- Author
-
Veneranda, Marco, Sáiz, Jesús, Sanz‐Arranz, Aurelio, Manrique, Jose Antonio, Lopez‐Reyes, Guillermo, Medina, Jesús, Dypvik, Henning, Werner, Stephanie C., and Rull, Fernando
- Subjects
LASER-induced breakdown spectroscopy ,MULTISPECTRAL imaging ,RAMAN spectroscopy ,RAMAN lasers ,SPACE exploration ,MARS (Planet) - Abstract
The multianalytical study of terrestrial analogues is a useful strategy to deepen the knowledge about the geological and environmental evolution of Mars and other extraterrestrial bodies. In spite of the increasing importance that laser‐induced breakdown spectroscopy (LIBS), near‐infrared spectroscopy (NIR), and Raman techniques are acquiring in the field of space exploration, there is a lack Web‐based platform providing free access to a wide multispectral database of terrestrial analogue materials. The Planetary Terrestrial Analogues Library (PTAL) project aims at responding to this critical need by developing and providing free Web accessibility to LIBS, NIR, and Raman data from more than 94 terrestrial analogues selected according to their congruence with Martian geological contexts. In this framework, the present manuscript provides the scientific community with a complete overview of the over 4,500 Raman spectra collected to feed the PTAL database. Raman data, obtained through the complementary use of laboratory and spacecraft‐simulator systems, confirmed the effectiveness of this spectroscopic technique for the detection of major and minor mineralogical phases of the samples, the latter being of critical importance for the recognition of geological processes that could have occurred on Mars and other planets. In light of the forthcoming missions to Mars, the results obtained through the Raman Laser Spectrometer (RLS) ExoMars Simulator offer a valuable insight on the scientific outcome that could derive from the RLS spectrometer that will soon land on Mars as part of the ExoMars rover payload. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
32. Automated sample identification with SpectPro and PTAL database for the analysis of spectra from planetary missions.
- Author
-
Saiz, Jesus, Lopez-Reyes, Guillermo, Veneranda, Marco, Manrique, Jose Antonio, Guzmán, Alvaro, Moreno-Dominguez, David, Werner, Stephanie, Poulet, Francois, Medina, Jesus, and Rull, Fernando
- Published
- 2019
33. Compositionally and density stratified igneous terrain in Jezero crater, Mars.
- Author
-
Wiens RC, Udry A, Beyssac O, Quantin-Nataf C, Mangold N, Cousin A, Mandon L, Bosak T, Forni O, McLennan SM, Sautter V, Brown A, Benzerara K, Johnson JR, Mayhew L, Maurice S, Anderson RB, Clegg SM, Crumpler L, Gabriel TSJ, Gasda P, Hall J, Horgan BHN, Kah L, Legett C 4th, Madariaga JM, Meslin PY, Ollila AM, Poulet F, Royer C, Sharma SK, Siljeström S, Simon JI, Acosta-Maeda TE, Alvarez-Llamas C, Angel SM, Arana G, Beck P, Bernard S, Bertrand T, Bousquet B, Castro K, Chide B, Clavé E, Cloutis E, Connell S, Dehouck E, Dromart G, Fischer W, Fouchet T, Francis R, Frydenvang J, Gasnault O, Gibbons E, Gupta S, Hausrath EM, Jacob X, Kalucha H, Kelly E, Knutsen E, Lanza N, Laserna J, Lasue J, Le Mouélic S, Leveille R, Lopez Reyes G, Lorenz R, Manrique JA, Martinez-Frias J, McConnochie T, Melikechi N, Mimoun D, Montmessin F, Moros J, Murdoch N, Pilleri P, Pilorget C, Pinet P, Rapin W, Rull F, Schröder S, Shuster DL, Smith RJ, Stott AE, Tarnas J, Turenne N, Veneranda M, Vogt DS, Weiss BP, Willis P, Stack KM, Williford KH, and Farley KA
- Abstract
Before Perseverance, Jezero crater's floor was variably hypothesized to have a lacustrine, lava, volcanic airfall, or aeolian origin. SuperCam observations in the first 286 Mars days on Mars revealed a volcanic and intrusive terrain with compositional and density stratification. The dominant lithology along the traverse is basaltic, with plagioclase enrichment in stratigraphically higher locations. Stratigraphically lower, layered rocks are richer in normative pyroxene. The lowest observed unit has the highest inferred density and is olivine-rich with coarse (1.5 millimeters) euhedral, relatively unweathered grains, suggesting a cumulate origin. This is the first martian cumulate and shows similarities to martian meteorites, which also express olivine disequilibrium. Alteration materials including carbonates, sulfates, perchlorates, hydrated silicates, and iron oxides are pervasive but low in abundance, suggesting relatively brief lacustrine conditions. Orbital observations link the Jezero floor lithology to the broader Nili-Syrtis region, suggesting that density-driven compositional stratification is a regional characteristic.
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.