11 results on '"Manojkumar Puthenveedu"'
Search Results
2. Diversity and specificity in location-based signaling outputs of neuronal GPCRs
- Author
-
G Aditya Kumar and Manojkumar Puthenveedu
- Subjects
General Neuroscience ,Receptors, G-Protein-Coupled ,Signal Transduction - Abstract
The common mechanisms by which members of the G protein-coupled receptor (GPCR) family respond to neurotransmitters in the brain have been well studied. However, it is becoming increasingly clear that GPCRs show great diversity in their intracellular location, interacting partners and effectors, and signaling consequences. Here we will discuss recent studies on the diversity of location, effectors, and signaling of GPCRs, and how these could interact to generate specific spatiotemporal patterns of GPCR signaling in cells.
- Published
- 2022
- Full Text
- View/download PDF
3. Endocytosis of neurotransmitter receptors: location matters
- Author
-
Manojkumar Puthenveedu, Yudowski, Guillermo A., and Zastrow, Mark Von
- Subjects
FOS: Biological sciences ,69999 Biological Sciences not elsewhere classified - Abstract
Endocytosis of excitatory glutamate receptors from the postsynaptic plasma membrane plays a fundamental role in synaptic function and plasticity. In a recent study published in Neuron, Lu et al. (2007) describe protein interactions that link zones of receptor endocytosis directly to the postsynaptic scaffold and propose that local trafficking of receptors facilitated by these endocytic zones is required to maintain synaptic responsiveness.
- Published
- 2018
- Full Text
- View/download PDF
4. Subcompartmentalizing the Golgi apparatus
- Author
-
Manojkumar Puthenveedu and Linstedt, Adam
- Subjects
FOS: Biological sciences ,69999 Biological Sciences not elsewhere classified - Abstract
The subcompartmentalized structure of the Golgi apparatus contributes to efficient glycosylation in the secretory pathway. Subcompartmentalization driven by maturation relies primarily on constant and accurate vesicle-mediated local recycling of Golgi residents. The precision of this vesicle transport is dependent on the interplay between the key factors that mediate vesicle budding and fusion--the coat proteins and the SNARE fusion machinery. These alone, however, may not be sufficient to ensure establishment of compartments de novo, and additional regulatory mechanisms operate to modify their activity.
- Published
- 2018
- Full Text
- View/download PDF
5. Src Regulates Sequence-Dependent Beta-2 Adrenergic Receptor Recycling via Cortactin Phosphorylation
- Author
-
Vistein, Rachel and Manojkumar Puthenveedu
- Subjects
FOS: Biological sciences ,69999 Biological Sciences not elsewhere classified - Abstract
The recycling of internalized signaling receptors, which has direct functional consequences, is subject to multiple sequence and biochemical requirements. Why signaling receptors recycle via a specialized pathway, unlike many other proteins that recycle by bulk, is a fundamental unanswered question. Here, we show that these specialized pathways allow selective control of signaling receptor recycling by heterologous signaling. Using assays to visualize receptor recycling in living cells, we show that the recycling of the beta-2 adrenergic receptor (B2AR), a prototypic signaling receptor, is regulated by Src family kinases. The target of Src is cortactin, an essential factor for B2AR sorting into specialized recycling microdomains on the endosome. Phosphorylation of a single cortactin residue, Y466, regulates the rate of fission of B2AR recycling vesicles from these microdomains and, therefore, the rate of delivery of B2AR to the cell surface. Together, our results indicate that actin-stabilized microdomains that mediate signaling receptor recycling can serve as a functional point of convergence for crosstalk between signaling pathways.
- Published
- 2014
- Full Text
- View/download PDF
6. Divergent modes for cargo-mediated control of clathrin-coated pit dynamics
- Author
-
Soohoo, Amanda L and Manojkumar Puthenveedu
- Subjects
FOS: Biological sciences ,69999 Biological Sciences not elsewhere classified - Abstract
Clathrin-mediated endocytosis has long been viewed as a process driven by core endocytic proteins, with internalized cargo proteins being passive. In contrast, an emerging view suggests that signaling receptor cargo may actively control its fate by regulating the dynamics of clathrin-coated pits (CCPs) that mediate their internalization. Despite its physiological implications, very little is known about such "cargo-mediated regulation" of CCPs by signaling receptors. Here, using multicolor total internal reflection fluorescence microscopy imaging and quantitative analysis in live cells, we show that the μ-opioid receptor, a physiologically relevant G protein-coupled signaling receptor, delays the dynamics of CCPs in which it is localized. This delay is mediated by the interactions of two critical leucines on the receptor cytoplasmic tail. Unlike the previously known mechanism of cargo-mediated regulation, these residues regulate the lifetimes of dynamin, a key component of CCP scission. These results identify a novel means for selectively controlling the endocytosis of distinct cargo that share common trafficking components and indicate that CCP regulation by signaling receptors can operate via divergent modes.
- Published
- 2013
- Full Text
- View/download PDF
7. The WASH complex, an endosomal Arp2/3 activator, interacts with the Hermansky-Pudlak syndrome complex BLOC-1 and its cargo phosphatidylinositol-4-kinase type IIα
- Author
-
P V Ryder, Vistein, Rachel, A Gokhale, M. N. Seaman, Manojkumar Puthenveedu, and V. Faundez
- Subjects
FOS: Biological sciences ,macromolecular substances ,69999 Biological Sciences not elsewhere classified - Abstract
Vesicle biogenesis machinery components such as coat proteins can interact with the actin cytoskeleton for cargo sorting into multiple pathways. It is unknown, however, whether these interactions are a general requirement for the diverse endosome traffic routes. In this study, we identify actin cytoskeleton regulators as previously unrecognized interactors of complexes associated with the Hermansky-Pudlak syndrome. Two complexes mutated in the Hermansky-Pudlak syndrome, adaptor protein complex-3 and biogenesis of lysosome-related organelles complex-1 (BLOC-1), interact with and are regulated by the lipid kinase phosphatidylinositol-4-kinase type IIα (PI4KIIα). We therefore hypothesized that PI4KIIα interacts with novel regulators of these complexes. To test this hypothesis, we immunoaffinity purified PI4KIIα from isotope-labeled cell lysates to quantitatively identify interactors. Strikingly, PI4KIIα isolation preferentially coenriched proteins that regulate the actin cytoskeleton, including guanine exchange factors for Rho family GTPases such as RhoGEF1 and several subunits of the WASH complex. We biochemically confirmed several of these PI4KIIα interactions. Of importance, BLOC-1 complex, WASH complex, RhoGEF1, or PI4KIIα depletions altered the content and/or subcellular distribution of the BLOC-1-sensitive cargoes PI4KIIα, ATP7A, and VAMP7. We conclude that the Hermansky-Pudlak syndrome complex BLOC-1 and its cargo PI4KIIα interact with regulators of the actin cytoskeleton.
- Published
- 2013
- Full Text
- View/download PDF
8. Reprogramming of G protein-coupled receptor recycling and signaling by a kinase switch
- Author
-
Vistein, Rachel and Manojkumar Puthenveedu
- Subjects
FOS: Biological sciences ,69999 Biological Sciences not elsewhere classified - Abstract
The postendocytic recycling of signaling receptors is subject to multiple requirements. Why this is so, considering that many other proteins can recycle without apparent requirements, is a fundamental question. Here we show that cells can leverage these requirements to switch the recycling of the beta-2 adrenergic receptor (B2AR), a prototypic signaling receptor, between sequence-dependent and bulk recycling pathways, based on extracellular signals. This switch is determined by protein kinase A-mediated phosphorylation of B2AR on the cytoplasmic tail. The phosphorylation state of B2AR dictates its partitioning into spatially and functionally distinct endosomal microdomains mediating bulk and sequence-dependent recycling, and also regulates the rate of B2AR recycling and resensitization. Our results demonstrate that G protein-coupled receptor recycling is not always restricted to the sequence-dependent pathway, but may be reprogrammed as needed by physiological signals. Such flexible reprogramming might provide a versatile method for rapidly modulating cellular responses to extracellular signaling.
- Published
- 2013
- Full Text
- View/download PDF
9. Cargo regulates clathrin-coated pit dynamics
- Author
-
Manojkumar Puthenveedu and Zastrow, Mark Von
- Subjects
FOS: Biological sciences ,macromolecular substances ,environment and public health ,69999 Biological Sciences not elsewhere classified - Abstract
Clathrin-coated pits (CCPs) are generally considered a uniform population of endocytic machines containing mixed constitutive and regulated membrane cargo. Contrary to this view, we show that regulated endocytosis of G protein-coupled receptors (GPCRs) occurs preferentially through a subset of CCPs. Significantly, GPCR-containing CCPs are also functionally distinct, as their surface residence time is regulated locally by GPCR cargo via PDZ-dependent linkage to the actin cytoskeleton. Such cargo-regulated CCPs show delayed recruitment of dynamin and can undergo an abortive event in which clathrin coats separate from the plasma membrane without concomitant receptor endocytosis. Segregation of cargo into CCP subsets, combined with cargo-dependent control of CCP dynamics, suggests a simple kinetic mechanism to generate functional specialization early in the endocytic pathway and reduce competition between diverse endocytic cargo.
- Published
- 2006
- Full Text
- View/download PDF
10. Gene replacement reveals that p115/SNARE interactions are essential for Golgi biogenesis
- Author
-
Manojkumar Puthenveedu and Linstedt, Adam
- Subjects
FOS: Biological sciences ,69999 Biological Sciences not elsewhere classified - Abstract
Functional characterization of protein interactions in mammalian systems has been hindered by the inability to perform complementation analyses in vivo. Here, we use functional replacement of the vesicle docking protein p115 to separate its essential from its nonessential interactions. p115 is required for biogenesis of the Golgi apparatus, but it is unclear whether its mechanism of action requires its golgin and/or SNARE interactions. Short interfering RNA-mediated knockdown of p115 induced extensive Golgi fragmentation and impaired secretory traffic. Reassembly of a structurally and functionally normal Golgi occurred on expression of a p115 homologue not recognized by the short interfering RNA. Strikingly, versions of p115 lacking its phosphorylation site and the golgin-binding domains also restored the Golgi apparatus in cells lacking endogenous p115. In contrast, the p115 SNARE-interacting domain was required for Golgi biogenesis. This suggests that p115 acts directly, rather than via a tether, to catalyze trans-SNARE complex formation preceding membrane fusion.
- Published
- 2004
- Full Text
- View/download PDF
11. Basolateral cycling mediated by a lumenal domain targeting determinant
- Author
-
Manojkumar Puthenveedu, Bruns, Jennifer R., Weisz, Ora A., and Linstedt, Adam
- Subjects
FOS: Biological sciences ,69999 Biological Sciences not elsewhere classified - Abstract
All identified basolateral sorting signals of integral membrane proteins are cytoplasmically disposed, suggesting that basolateral targeting is mediated exclusively by direct interaction with vesicle coat components. Here, we report that GPP130, a cis-Golgi protein that undergoes endosome-to-Golgi retrieval using the late endosome-bypass pathway in nonpolarized cells, cycles via the basolateral membrane in polarized MDCK cells. Significantly, the membrane-proximal lumenal domain of GPP130, which mediates GPP130 localization and trafficking in nonpolarized cells, was both necessary and sufficient for basolateral cycling in MDCK cells. The use of lumenal determinants for both basolateral cycling and endosome-to-Golgi retrieval suggests that a novel receptor-mediated mechanism operates at both the trans-Golgi network and distal sites to sort GPP130 along the late-endosome-bypass retrieval pathway in polarized cells.
- Published
- 2003
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.