13 results on '"Manning DAC"'
Search Results
2. A method to evaluate enhanced rock weathering using intact soil monoliths under field conditions.
- Author
-
Zani CF, Barneze AS, De Deyn GB, Bakker JF, Stott K, and Manning DAC
- Abstract
Enhanced rock weathering (ERW) has attracted considerable attention as a carbon dioxide removal (CDR) strategy. However, a reliable method for accurately measuring, monitoring, and verifying carbon dioxide (CO
2 ) removal, particularly under field conditions, remains elusive. Here we describe a method for installing soil monoliths in an in situ buried apparatus that allows collection of water draining through a soil, undisturbed by external environmental factors that may affect similar apparatus located above ground. The method provides a robust, cost-effective means of collecting, developing, and establishing soil monoliths, allowing through drainage soil water sample collection and analysis, and so facilitating estimation of ERW CO2 removal. A 200 mm diameter polyvinyl chloride (PVC) pipe is inserted into the soil to extract intact monoliths from a site of interest, withdrawn and then fitted with a basal double socket coupling and end cap for leachate collection. It is buried to reproduce soil environmental conditions, and water is collected via a sampling tube to surface. Validity was confirmed through an experimental trial with 36 monoliths over 6 months. This method enables accurate chemical analysis of solute draining through the soil monolith, which can be used to validate models of ERW efficacy.•PVC pipes are inserted into the target soil and subsequently extracted to retrieve intact soil monoliths•PVC sockets, equipped with a mesh and a geotextile membrane in the middle to retain the collected intact soil monolith and prevent soil particle transport, are then attached to the PVC pipe•PVC caps, featuring a small drainage tube attached to its outer side, are used to collect the leachate at the bottom part of the system., Competing Interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Crown Copyright © 2024 Published by Elsevier B.V.)- Published
- 2024
- Full Text
- View/download PDF
3. Equipping for risk: Lessons learnt from the UK shale-gas experience on assessing environmental risks for the future geoenergy use of the deep subsurface.
- Author
-
Smedley PL, Allen G, Baptie BJ, Fraser-Harris AP, Ward RS, Chambers RM, Gilfillan SMV, Hall JA, Hughes AG, Manning DAC, McDermott CI, Nagheli S, Shaw JT, Werner MJ, and Worrall F
- Abstract
findings are presented from an investigation to improve understanding of the environmental risks associated with developing an unconventional-hydrocarbons industry in the UK. The EQUIPT4RISK project, funded by UK Research Councils, focused on investigations around Preston New Road (PNR), Fylde, Lancashire, and Kirby Misperton Site A (KMA), North Yorkshire, where operator licences to explore for shale gas by hydraulic fracturing (HF) were issued in 2016, although exploration only took place at PNR. EQUIPT4RISK considered atmospheric (greenhouse gases, air quality), water (groundwater quality) and solid-earth (seismicity) compartments to characterise and model local conditions and environmental responses to HF activities. Risk assessment was based on the source-pathway-receptor approach. Baseline monitoring of air around the two sites characterised the variability with meteorological conditions, and isotopic signatures were able to discriminate biogenic methane (cattle) from thermogenic (natural-gas) sources. Monitoring of a post-HF nitrogen-lift (well-cleaning) operation at PNR detected the release of atmospheric emissions of methane (4.2 ± 1.4 t CH
4 ). Groundwater monitoring around KMA identified high baseline methane concentrations and detected ethane and propane at some locations. Dissolved methane was inferred from stable-isotopic evidence as overwhelmingly of biogenic origin. Groundwater-quality monitoring around PNR found no evidence of HF-induced impacts. Two approaches for modelling induced seismicity and associated seismic risk were developed using observations of seismicity and operational parameters from PNR in 2018 and 2019. Novel methodologies developed for monitoring include use of machine learning to identify fugitive atmospheric methane, Bayesian statistics to assess changes to groundwater quality, a seismicity forecasting model seeded by the HF-fluid injection rate and high-resolution monitoring of soil-gas methane. The project developed a risk-assessment framework, aligned with ISO 31000 risk-management principles, to assess the theoretical combined and cumulative environmental risks from operations over time. This demonstrated the spatial and temporal evolution of risk profiles: seismic and atmospheric impacts from the shale-gas operations are modelled to be localised and short-lived, while risk to groundwater quality is longer-term., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF
4. Kinetics of maize cob and bean straw pyrolysis and combustion.
- Author
-
Okot DK, Bilsborrow PE, Phan AN, and Manning DAC
- Abstract
Kinetic studies are important for the design and optimisation of thermochemical processes. This study involved analysis of the pyrolysis and combustion behaviour of the agricultural residues (bean straw and maize cob) by non-isothermal thermogravimetric analysis. Increasing the heating rate from 10 to 40 K min
-1 during both combustion and pyrolysis increased the degradation rate of both feedstocks and the gaseous yields of H2 O, CO and CO2 . The activation energies determined by the Flynn-Wall-Ozawa and Kissinger-Akahira-Sunose methods varied which reveals that the pyrolysis and combustion of these agricultural residues are complex processes involving multiple reactions. The average activation energy of maize cob and bean straw were 214.15 and 252.09 kJ mol-1 for pyrolysis and 202.26 and 165.64 kJ mol-1 for combustion, respectively. The order of reaction ranged between 9.0-10.3 and 6.3-13.3 for both feedstocks in combustion and inert environments, respectively. Modelled data is important to enable the optimisation of reactor design for pyrolysis and combustion for energy generation from agricultural residues., Competing Interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (© 2023 The Authors. Published by Elsevier Ltd.)- Published
- 2023
- Full Text
- View/download PDF
5. Biochar benefits carbon off-setting in blue-green infrastructure soils - A lysimeter study.
- Author
-
Wang J, Manning DAC, Stirling R, Lopez-Capel E, and Werner D
- Subjects
- Carbon, Rain, Agriculture, Water Supply, Charcoal chemistry, Triticum, Water, Carbon Isotopes, Soil chemistry, Water Purification
- Abstract
Carbon sequestration with amendments in blue-green infrastructure soils could off-set anthropogenic greenhouse gas emissions to alleviate climate change. In this 3-year study, the effects of wheat straw and its biochar on carbon sequestration in an urban landscaping soil were investigated under realistic outdoor conditions using two large-scale lysimeters. Both amendments were carried out by incorporating pellets at 0-15 cm soil depth with an equivalent initial total carbon input of 2% of the dry soil weight. Soil carbon, carbon isotope ratios, dissolved carbon in leachates, CO
2 -C emissions, carbon fixed in above ground vegetation, soil water content, soil bulk electrical conductivity, and water infiltration rates, were then compared between the 2 lysimeters. After 3 years, we observed that, despite having a 17.2% lower vegetation growth, soil organic and inorganic carbon content was higher by 28.8% and 41.5%, respectively, in biochar as compared to wheat straw amended soil. Carbon isotope analysis confirmed the greater stability of the added carbon in the biochar amended soil. Water content was on average 23.2% and 13.0% in the straw pellet and biochar amended soil, respectively, whereas water infiltration rates were not significantly different between the two lysimeters. Overall, the incorporation of wheat straw biochar into soil could store an estimated 30 tonnes of carbon per hectare in city blue-green infrastructure spaces. Interviews involving institution stakeholders examined the feasibility of this biochar application. Stakeholders recognized the potential of biochar as an environment-friendly means for carbon offsetting, but were concerned about the practicality of biochar production and application into soil and increased maintenance work. Consequently, additional potential benefits of biochar for environmental management such as improving the quality of polluted run-off in stormwater treatment systems should be emphasized to make biochar an attractive proposition in sustainable urban development., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2022 The Authors. Published by Elsevier Ltd.. All rights reserved.)- Published
- 2023
- Full Text
- View/download PDF
6. Removal of atmospheric CO 2 by engineered soils in infrastructure projects.
- Author
-
Jorat ME, Kraavi KE, and Manning DAC
- Subjects
- Carbon, Carbon Sequestration, Carbonates chemistry, Minerals chemistry, Carbon Dioxide chemistry, Soil chemistry
- Abstract
The use of crushed basic igneous rock and crushed concrete for enhanced rock weathering and to facilitate pedogenic carbonate precipitation provides a promising method of carbon sequestration. However, many of the controls on precipitation and subsequent effects on soil properties remain poorly understood. In this study, engineered soil plots, with different ratios of concrete or dolerite combined with sand, have been used to investigate relationships between sequestered inorganic carbon and geotechnical properties, over a two-year period. Cone penetration tests with porewater pressure measurements (CPTu) were conducted to determine changes in tip resistance and pore pressure. C and O isotope analysis was carried out to confirm the pedogenic origin of carbonate minerals. TIC analysis shows greater precipitation of pedogenic carbonate in plots containing concrete than those with dolerite, with the highest sequestration values of plots containing each material being equivalent to 33.7 t C ha
-1 yr-1 and 17.5 t C ha-1 yr-1 , respectively, calculated from extrapolation of results derived from the TIC analysis. TIC content showed reduction or remained unchanged for the top 0.1 m of soil; at a depth of 0.2 m however, for dolerite plots, a pattern of seasonal accumulation and loss of TIC emerged. CPTu tip resistance measurements showed that the presence of carbonates had no observable effect on penetration resistance, and in the case of porewater pressure measurements, carbonate precipitation does not change the permeability of the substrate, and so does not affect drainage. The results of this study indicate that both the addition of dolerite and concrete serve to enhance CO2 removal in soils, that soil temperature appears to be a control on TIC precipitation, and that mineral carbonation in constructed soils does not lead to reduced drainage or an increased risk of flooding., (Copyright © 2022 The Authors. Published by Elsevier Ltd.. All rights reserved.)- Published
- 2022
- Full Text
- View/download PDF
7. Characterising the biophysical, economic and social impacts of soil carbon sequestration as a greenhouse gas removal technology.
- Author
-
Sykes AJ, Macleod M, Eory V, Rees RM, Payen F, Myrgiotis V, Williams M, Sohi S, Hillier J, Moran D, Manning DAC, Goglio P, Seghetta M, Williams A, Harris J, Dondini M, Walton J, House J, and Smith P
- Subjects
- Agriculture, Carbon, Carbon Sequestration, Greenhouse Effect, Social Change, Soil, Greenhouse Gases
- Abstract
To limit warming to well below 2°C, most scenario projections rely on greenhouse gas removal technologies (GGRTs); one such GGRT uses soil carbon sequestration (SCS) in agricultural land. In addition to their role in mitigating climate change, SCS practices play a role in delivering agroecosystem resilience, climate change adaptability and food security. Environmental heterogeneity and differences in agricultural practices challenge the practical implementation of SCS, and our analysis addresses the associated knowledge gap. Previous assessments have focused on global potentials, but there is a need among policymakers to operationalise SCS. Here, we assess a range of practices already proposed to deliver SCS, and distil these into a subset of specific measures. We provide a multidisciplinary summary of the barriers and potential incentives towards practical implementation of these measures. First, we identify specific practices with potential for both a positive impact on SCS at farm level and an uptake rate compatible with global impact. These focus on: (a) optimising crop primary productivity (e.g. nutrient optimisation, pH management, irrigation); (b) reducing soil disturbance and managing soil physical properties (e.g. improved rotations, minimum till); (c) minimising deliberate removal of C or lateral transport via erosion processes (e.g. support measures, bare fallow reduction); (d) addition of C produced outside the system (e.g. organic manure amendments, biochar addition); (e) provision of additional C inputs within the cropping system (e.g. agroforestry, cover cropping). We then consider economic and non-cost barriers and incentives for land managers implementing these measures, along with the potential externalised impacts of implementation. This offers a framework and reference point for holistic assessment of the impacts of SCS. Finally, we summarise and discuss the ability of extant scientific approaches to quantify the technical potential and externalities of SCS measures, and the barriers and incentives to their implementation in global agricultural systems., (© 2019 The Authors. Global Change Biology published by John Wiley & Sons Ltd.)
- Published
- 2020
- Full Text
- View/download PDF
8. Passive CO 2 removal in urban soils: Evidence from brownfield sites.
- Author
-
Jorat ME, Goddard MA, Manning P, Lau HK, Ngeow S, Sohi SP, and Manning DAC
- Abstract
Management of urban brownfield land can contribute to significant removal of atmospheric CO
2 through the development of soil carbonate minerals. However, the potential magnitude and stability of this carbon sink is poorly quantified as previous studies address a limited range of conditions and short durations. Furthermore, the suitability of carbonate-sequestering soils for construction has not been investigated. To address these issues we measured total inorganic carbon, permeability and ground strength in the top 20 cm of soil at 20 brownfield sites in northern England, between 2015 and 2017. Across all sites accumulation occurred at a rate of 1-16 t C ha-1 yr-1 , as calcite (CaCO3 ), corresponding to removal of approximately 4-59 t CO2 ha-1 yr-1 , with the highest rate in the first 15 years after demolition. C and O stable isotope analysis of calcite confirms the atmospheric origin of the measured inorganic carbon. Statistical modelling found that pH and the content of fine materials (combined silt and clay content) were the best predictors of the total inorganic carbon content of the samples. Measurement of permeability shows that sites with carbonated soils possess a similar risk of run-off or flooding to sandy soils. Soil strength, measured as in-situ bearing capacity, increased with carbonation. These results demonstrate that the management of urban brownfield land to retain fine material derived from concrete crushing on site following demolition will promote calcite precipitation in soils, and so offers an additional CO2 removal mechanism, with no detrimental effect on drainage and possible improvements in strength. Given the large area of brownfield land that is available for development, the contribution of this process to CO2 removal by urban soils needs to be recognised in CO2 mitigation policies., (Copyright © 2019 The Authors. Published by Elsevier B.V. All rights reserved.)- Published
- 2020
- Full Text
- View/download PDF
9. Evaluation of raw material extraction, processivng, construction and disposal of cement and concrete products: datasets and calculations.
- Author
-
Manning DAC, Tangtinthai N, and Heidrich O
- Abstract
To evaluate the material flows associated with construction and demolition in different countries it is necessary to have a consistent set of data. However, data collected by regulators and governments differ and this study used concrete as a case in point. Concrete is a significant man-made material in construction whose use reflects socio-economic variation between countries. Flows of natural components, cement and aggregates, are investigated from extraction to final disposal following demolition (Tangtinthai et al., 2019). The housing sector dominates the use of concrete in urbanized areas and greatly reflects socio-economic and resource extraction issues. To compare concrete stock, use and policies of contrasting countries the data from Thailand and Great Britain (GB) are considered, but as reported they differ for each country. We present here the results of the calculations required to generate an internally consistent database for Great Britain and for Thailand that enables an informed materials flow analysis to be undertaken on materials consumed and generated during construction and demolition of concrete structures. The research methodology and calculations for national cement and concrete production (including clinker, cement kiln dust, gypsum, and aggregates) and the resulting datasets help to make projections that shape policy requirements for Thailand and other emerging economies as reported in (Tangtinthai et al., 2019).
- Published
- 2019
- Full Text
- View/download PDF
10. Role of policy in managing mined resources for construction in Europe and emerging economies.
- Author
-
Tangtinthai N, Heidrich O, and Manning DAC
- Subjects
- Construction Materials, Europe, Industrial Waste, Recycling, Thailand, United Kingdom, Waste Management
- Abstract
Rapid urbanisation, with associated housing and infrastructure demands, leads to increased mining and use of non-renewable mineral raw materials needed for the construction industry including concrete and cement. In an emerging economy, like Thailand, which is part of Association of Southeast Asian Nations (ASEAN), current environmental management policies are insufficient to reduce raw material requirements or waste from demolition by generating inputs to construction through reuse or recycling. As part of the European Union (EU), Great Britain has successfully implemented integrated policies and achieved high rates of recycled aggregates in construction (29%) and a 70% reuse and recycling target for construction and demolition (C&D) waste. In this paper, Material Flow Analysis (MFA) of cement/concrete materials is combined with an interpretation of related policies to provide a deeper understanding how to achieve more sustainable management of natural resources. A comparative MFA for the construction industry in Great Britain and Thailand (representing an ASEAN country) has been developed that quantifies raw material inputs, buildings and infrastructure outputs, so that the practices in the two countries can be contrasted. We report domestic cement production and import/export data, and calculate the raw materials needed for cement and its calcination process for concrete production. Considering the most relevant policies and taxation in Great Britain, we identify possible ways forward for Thailand by introducing new policies and taxation that will have positive effects on raw material extraction, processing, construction and disposal practices and disposal behaviors. Following the MFA and policy analysis, we believe that similar benefits apply to other emerging economies., (Crown Copyright © 2019. Published by Elsevier Ltd. All rights reserved.)
- Published
- 2019
- Full Text
- View/download PDF
11. An in situ FTIR study of the plasma- and thermally-driven reaction of isopropyl alcohol at CeO 2 : evidence for a loose transition state involving Ce 3+ ?
- Author
-
Christensen PA, Mashhadani ZTAW, Md Ali AHB, Manning DAC, Carroll MA, and Martin PA
- Abstract
This paper reports on the thermally-driven and non-thermal plasma-driven reaction of IsoPropyl Alcohol (IPA) on ceria (CeO2) with the aim to investigate the differences between plasma catalytic interactions and the analogous thermal reactions. Both were studied by in situ infrared spectroscopy: using diffuse reflectance for the thermal reaction and reflectance infrared for the plasma. For the thermal reaction, the activity towards the formation of acetone and acetaldehyde and, at higher temperatures, CO2 was dependent upon the coverage of surface carbonates and bicarbonates, suggesting at least some of these species blocked the relevant active sites. However, for the first time, methane and cold CO was observed and this was interpreted in terms of a roaming mechanism taking place at the surface via a loose transition state. By contrast, the plasma-driven process was not inhibited by adsorbed carbonaceous species producing acetone followed by isophorone and a polymethylacetylene-like polymer. Comparisons are made between the equivalent thermal and plasma reactions of isopropyl alcohol on Macor and tin oxide surfaces. On Macor the plasma produced similar products whereas on tin oxide there was no reaction. This suggests that the selection of catalysts for plasma processing cannot necessarily be determined from the equivalent thermal process.
- Published
- 2019
- Full Text
- View/download PDF
12. Testing the ability of plants to access potassium from framework silicate minerals.
- Author
-
Manning DAC, Baptista J, Sanchez Limon M, and Brandt K
- Abstract
The availability of K, essential for plant growth, from syenite (a silicate rock in which potassium feldspar is the dominant mineral; >90wt%), and phlogopite mica has been demonstrated using carefully designed plant growth pot experiments in which the only added source of K was the mineral of interest, with no loss of nutrients through drainage. Using pure quartz sand as a soil, both growth (increase in diameter) of leek plants and K-content of the plant material showed a dose-dependent positive response to the application (114-43000mgK/pot) of milled syenite with increases in plant diameter of 0.5-0.7mm/week, increasing with application rate. Phlogopite mica (114-6000mgK/pot) supported the highest observed increase in diameter (approx. 1mm/week) and plant K-content, both similar to that observed for a positive control (KCl). These experiments demonstrate that plants can obtain K for growth from milled syenite, in which feldspar is the dominant K-bearing mineral, and confirm previous observations that micas can be an effective source of K., (Copyright © 2016 Elsevier B.V. All rights reserved.)
- Published
- 2017
- Full Text
- View/download PDF
13. Evaluating an anaerobic digestion (AD) feedstock derived from a novel non-source segregated municipal solid waste (MSW) product.
- Author
-
Blake LI, Halim FA, Gray C, Mair R, Manning DAC, Sallis P, Hutchinson H, and Gray ND
- Subjects
- Anaerobiosis, Biofuels, Cities, Escherichia coli, Europe, Gases, Methane chemistry, Salmonella, Solid Waste, Spectroscopy, Fourier Transform Infrared, Temperature, Refuse Disposal methods, Soil, Waste Disposal Facilities
- Abstract
In many nations industrial scale AD of non-agricultural waste materials (such as MSW) has not yet reached its full potential, often constrained by the lack of secure, inexpensive, high quality AD feedstocks, and markets for the resulting digestate material. We tested the output material of a high throughput novel industrial process to define its potential as an AD feedstock (based on quality and consistency). This process, designed to circumvent the constraints of source segregation while still generating segregated waste streams, resulted in the production of a temporally homogenous fibrous material with: an average moisture content of 44.2 (±2.33)%; C:N ratio of ∼32.9:1 (±3.46:1), C:P ratio of ∼228:1 and gross calorific value of 17.4 (±0.29)MJ/kg
(DM) . This material provided a CH4 yield of between 201 and 297m3 CH4 /tonne(DM) (271-401m3 CH4 /tonne(vs) ) comparable to commonly used AD feedstocks. Material contaminant levels were temporally consistent (P>0.05), (average values being Cd 0.63 (±0.19), Cu 56.3 (±7.45), Crtot 51.4 (±4.41), Hg<0.3, Ni 28.9 (±5.17), Pb 79.2 (±23.71), Zn 202 (±44.5), total polyaromatic hydrocarbons (PAH) 2.2 (±0.3), and total polychlorinated biphenyls (PCB) (<0.2)mg/kg(DM) ). Calculated digestate contaminant levels were below the median contaminant threshold limits for anaerobic digestates of all countries within the European Union i.e. of Cd 3.35, Cu 535, Crtot 535, Hg 8.15, Ni 185, Pb 397.5, Zn 2100mg/kg(DM) . We suggest that novel high throughput processes that produce high quality AD feedstocks, may have a place in further diversion of waste from landfill., (Copyright © 2016. Published by Elsevier Ltd.)- Published
- 2017
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.