1. Weak* Solutions: A Convergent Front Tracking Scheme
- Author
-
Bhatnagar, Manas and Young, Robin
- Subjects
Mathematics - Analysis of PDEs ,35L65, 35L67 - Abstract
We present a variation of the Front Tracking (FT) method for modeling solutions to hyperbolic systems in one space dimension, a Modified FT scheme. Instead of using non-entropic shocks, we approximate simple waves by jumps which exactly match the states, while approximating the wave speed. Our construction makes use of compression curve as well. We work with weak* solutions introduced in \cite{}. Consequently, we are able to analyze residuals rather than errors, and obtain cleaner convergence results. Through this paper, we intend to set up a scheme that is capable of handling strong shocks consistently. We develop this scheme primarily to prove (in a future work) existence of large amplitude solutions of the p-system. Therefore, we treat the p-system more carefully and construct a completely self-sufficient scheme, which has a limit as long as the approximate weak* solutions have uniformly bounded variation., Comment: 43 pages
- Published
- 2024