869 results on '"Malhi, Y."'
Search Results
2. Detecting vulnerability of humid tropical forests to multiple stressors
- Author
-
Saatchi, S, Longo, M, Xu, L, Yang, Y, Abe, H, André, M, Aukema, JE, Carvalhais, N, Cadillo-Quiroz, H, Cerbu, GA, Chernela, JM, Covey, K, Sánchez-Clavijo, LM, Cubillos, IV, Davies, SJ, De Sy, V, De Vleeschouwer, F, Duque, A, Sybille Durieux, AM, De Avila Fernandes, K, Fernandez, LE, Gammino, V, Garrity, DP, Gibbs, DA, Gibbon, L, Gowae, GY, Hansen, M, Lee Harris, N, Healey, SP, Hilton, RG, Johnson, CM, Kankeu, RS, Laporte-Goetz, NT, Lee, H, Lovejoy, T, Lowman, M, Lumbuenamo, R, Malhi, Y, Albert Martinez, JMM, Nobre, C, Pellegrini, A, Radachowsky, J, Román, F, Russell, D, Sheil, D, Smith, TB, Spencer, RGM, Stolle, F, Tata, HL, Torres, DDC, Tshimanga, RM, Vargas, R, Venter, M, West, J, Widayati, A, Wilson, SN, Brumby, S, and Elmore, AC
- Abstract
Humid tropical forests play a dominant role in the functioning of Earth but are under increasing threat from changes in land use and climate. How forest vulnerability varies across space and time and what level of stress forests can tolerate before facing a tipping point are poorly understood. Here, we develop a tropical forest vulnerability index (TFVI) to detect and evaluate the vulnerability of global tropical forests to threats across space and time. We show that climate change together with land-use change have slowed the recovery rate of forest carbon cycling. Temporal autocorrelation, as an indicator of this slow recovery, increases substantially for above-ground biomass, gross primary production, and evapotranspiration when climate stress reaches a critical level. Forests in the Americas exhibit extensive vulnerability to these stressors, while in Africa, forests show relative resilience to climate, and in Asia reveal more vulnerability to land use and fragmentation. TFVI can systematically track the response of tropical forests to multiple stressors and provide early-warning signals for regions undergoing critical transitions.
- Published
- 2021
3. Assessing trait-based scaling theory in tropical forests spanning a broad temperature gradient
- Author
-
Enquist, BJ, Bentley, LP, Shenkin, A, Maitner, B, Savage, V, Michaletz, S, Blonder, B, Buzzard, V, Espinoza, TEB, Farfan-Rios, W, Doughty, CE, Goldsmith, GR, Martin, RE, Salinas, N, Silman, M, Díaz, S, Asner, GP, and Malhi, Y
- Subjects
Amazon ,Andes ,ecosystem function ,elevation gradient ,metabolic scaling theory ,scaling ,stoichiometry ,trait-based ecology ,Ecology ,Physical Geography and Environmental Geoscience ,Ecological Applications - Abstract
Aim: Tropical elevation gradients are natural laboratories to assess how changing climate can influence tropical forests. However, there is a need for theory and integrated data collection to scale from traits to ecosystems. We assess predictions of a novel trait-based scaling theory, including whether observed shifts in forest traits across a broad tropical temperature gradient are consistent with local phenotypic optima and adaptive compensation for temperature. Location: An elevation gradient spanning 3,300 m and consisting of thousands of tropical tree trait measures taken from 16 1-ha tropical forest plots in southern Perú, where gross and net primary productivity (GPP and NPP) were measured. Time period: April to November 2013. Major taxa studied: Plants; tropical trees. Methods: We developed theory to scale from traits to communities and ecosystems and tested several predictions. We assessed the covariation between climate, traits, biomass and GPP and NPP. We measured multiple traits linked to variation in tree growth and assessed their frequency distributions within and across the elevation gradient. We paired these trait measures across individuals within 16 forests with simultaneous measures of ecosystem net and gross primary productivity. Results: Consistent with theory, variation in forest NPP and GPP primarily scaled with forest biomass, but the secondary effect of temperature on productivity was much less than expected. This weak temperature dependence appears to reflect directional shifts in several mean community traits that underlie tree growth with decreases in site temperature. Main conclusions: The observed shift in traits of trees that dominate in more cold environments is consistent with an ‘adaptive/acclimatory’ compensation for the kinetic effects of temperature on leaf photosynthesis and tree growth. Forest trait distributions across the gradient showed overly peaked and skewed distributions, consistent with the importance of local filtering of optimal growth traits and recent shifts in species composition and dominance attributable to warming from climate change. Trait-based scaling theory provides a basis to predict how shifts in climate have and will influence the trait composition and ecosystem functioning of tropical forests.
- Published
- 2017
4. Can Leaf Spectroscopy Predict Leaf and Forest Traits Along a Peruvian Tropical Forest Elevation Gradient?
- Author
-
Doughty, Christopher E, Santos‐Andrade, PE, Goldsmith, GR, Blonder, B, Shenkin, A, Bentley, LP, Chavana‐Bryant, C, Huaraca‐Huasco, W, Díaz, S, Salinas, N, Enquist, BJ, Martin, R, Asner, GP, and Malhi, Y
- Subjects
PLS regression ,spectroscopy ,tropical forests ,Geophysics - Abstract
High-resolution spectroscopy can be used to measure leaf chemical and structural traits. Such leaf traits are often highly correlated to other traits, such as photosynthesis, through the leaf economics spectrum. We measured VNIR (visible-near infrared) leaf reflectance (400–1,075 nm) of sunlit and shaded leaves in ~150 dominant species across ten, 1 ha plots along a 3,300 m elevation gradient in Peru (on 4,284 individual leaves). We used partial least squares (PLS) regression to compare leaf reflectance to chemical traits, such as nitrogen and phosphorus, structural traits, including leaf mass per area (LMA), branch wood density and leaf venation, and “higher-level” traits such as leaf photosynthetic capacity, leaf water repellency, and woody growth rates. Empirical models using leaf reflectance predicted leaf N and LMA (r2 > 30% and %RMSE
- Published
- 2017
5. Consistent patterns of common species across tropical tree communities
- Author
-
Cooper, DLM, Lewis, SL, Sullivan, MJP, Prado, PI, ter Steege, H, Barbier, N, Slik, F, Sonké, B, Ewango, CEN, Adu-Bredu, S, Affum-Baffoe, K, de Aguiar, DPP, Reategui, MAA, Aiba, SI, Albuquerque, BW, Matos, FDD, Alonso, A, Amani, CA, do Amaral, DD, do Amaral, IL, Andrade, A, Miranda, IPD, Angoboy, IB, Araujo-Murakami, A, Arboleda, NC, Arroyo, L, Ashton, P, Aymard, CGA, Baider, C, Baker, TR, Balinga, MPB, Balslev, H, Banin, LF, Bánki, OS, Baraloto, C, Barbosa, EM, Barbosa, FR, Barlow, J, Bastin, JF, Beeckman, H, Begne, S, Bengone, NN, Berenguer, E, Berry, N, Bitariho, R, Boeckx, P, Bogaert, J, Bonyoma, B, Boundja, P, Bourland, N, Bosela, FB, Brambach, F, Brienen, R, Burslem, DFRP, Camargo, JL, Campelo, W, Cano, A, Cárdenas, S, López, DC, Carpanedo, RD, Márquez, YAC, Carvalho, FA, Casas, LF, Castellanos, H, Castilho, CV, Cerón, C, Chapman, CA, Chave, J, Chhang, P, Chutipong, W, Chuyong, GB, Cintra, BBL, Clark, CJ, de Souza, FC, Comiskey, JA, Coomes, DA, Valverde, FC, Correa, DF, Costa, FRC, Costa, JBP, Couteron, P, Culmsee, H, Cuni-Sanchez, A, Dallmeier, F, Damasco, G, Dauby, G, Dávila, N, Doza, HPD, De Alban, JDT, de Assis, RL, De Canniere, C, De Haulleville, T, Carim, MDV, Demarchi, LO, Dexter, KG, Di Fiore, A, Din, HHM, Disney, MI, Djiofack, BY, Djuikouo, MNK, Van Do, T, Doucet, JL, Draper, FC, Droissart, V, Duivenvoorden, JF, Engel, J, Estienne, V, Farfan-Rios, W, Fauset, S, Feeley, KJ, Feitosa, YO, Feldpausch, TR, Ferreira, C, Ferreira, J, Ferreira, LV, Fletcher, CD, Flores, BM, Fofanah, A, Foli, EG, Fonty, E, Fredriksson, GM, Fuentes, A, Galbraith, D, Gonzales, GPG, Garcia-Cabrera, K, García-Villacorta, R, Gomes, VHF, Gómez, RZ, Gonzales, T, Gribel, R, Guedes, MC, Guevara, JE, Hakeem, KR, Hall, JS, Hamer, KC, Harrison, RD, Harris, DJ, Hart, TB, Hector, A, Henkel, TW, Herbohn, J, Hockemba, MBN, Hoffman, B, Holmgren, M, Coronado, ENH, Huamantupa-Chuquimaco, I, Hubau, W, Imai, N, Irume, MV, Jansen, PA, Jeffery, KJ, Jimenez, EM, Jucker, T, Junqueira, AB, Kalamandeen, M, Kamdem, NG, Kartawinata, K, Yakusu, EK, Katembo, JM, Kearsley, E, Kenfack, D, Kessler, M, Khaing, TT, Killeen, TJ, Kitayama, K, Klitgaard, B, Labriere, N, Laumonier, Y, Laurance, SGW, Laurance, WF, Laurent, F, Le, TC, Leal, ME, Novo, EMLD, Levesley, A, Libalah, MB, Licona, JC, Lima, DD, Lindsell, JA, Lopes, A, Lopes, MA, Lovett, JC, Lowe, R, Lozada, JR, Lu, XH, Luambua, NK, Luize, BG, Maas, P, Magalhaes, JLL, Magnusson, WE, Mahayani, NPD, Makana, JR, Malhi, Y, Rincón, LM, Mansor, A, Manzatto, AG, Marimon, BS, Marimon, BH Jr, Marshall, AR, Martins, MP, Mbayu, FM, de Medeiros, MB, Mesones, I, Metali, F, Mihindou, V, Millet, J, Milliken, W, Mogollon, HF, Molino, JF, Said, MNM, Mendoza, AM, Montero, JC, Moore, S, Mostacedo, B, Pinto, LFM, Mukul, SA, Munishi, PKT, Nagamasu, H, Nascimento, HEM, Nascimento, MT, Neill, D, Nilus, R, Noronha, JC, Nsenga, L, Vargas, PN, Ojo, L, Oliveira, AA, de Oliveira, EA, Ondo, FE, Cuenca, WP, Pansini, S, Pansonato, MP, Paredes, MR, Paudel, E, Pauletto, D, Pearson, RG, Pena, JLM, Pennington, RT, Peres, CA, Permana, A, Petronelli, P, Mora, MCP, Phillips, JF, Phillips, OL, Pickavance, G, Piedade, MTF, Pitman, NCA, Ploton, P, Popelier, A, Poulsen, JR, Prieto, A, Primack, RB, Priyadi, H, Qie, L, Quaresma, AC, de Queiroz, HL, Ramirez-Angulo, H, Ramos, JF, Reis, NFC, Reitsma, J, Revilla, JDC, Riutta, T, Rivas-Torres, G, Robiansyah, I, Rocha, M, Rodrigues, DD, Rodriguez-Ronderos, ME, Rovero, F, Rozak, AH, Rudas, A, Rutishauser, E, Sabatier, D, Sagang, L, Sampaio, AF, Samsoedin, I, Satdichanh, M, Schietti, J, Schöngart, J, Scudeller, VV, Seuaturien, N, Sheil, D, Sierra, R, Silman, MR, Silva, TSF, Guimaraes, JRD, Simo-Droissart, M, Simon, MF, Sist, P, Sousa, TR, Farias, ED, Coelho, LD, Spracklen, DV, Stas, SM, Steinmetz, R, Stevenson, PR, Stropp, J, Sukri, RS, Sunderland, TCH, Suzuki, E, Swaine, MD, Tang, JW, Taplin, J, Taylor, DM, Tello, JS, Terborgh, J, Texier, N, Theilade, I, Thomas, DW, Thomas, R, Thomas, SC, Tirado, M, Toirambe, B, de Toledo, JJ, Tomlinson, KW, Torres-Lezama, A, Tran, HD, Mukendi, JT, Tumaneng, RD, Umaña, MN, Umunay, PM, Giraldo, LEU, Sandoval, EHV, Gamarra, LV, Van Andel, TR, van de Bult, M, van de Pol, J, van der Heijden, G, Vasquez, R, Vela, CIA, Venticinque, EM, Verbeeck, H, Veridiano, RKA, Vicentini, A, Vieira, ICG, Torre, EV, Villarroel, D, Zegarra, BEV, Vleminckx, J, von Hildebrand, P, Vos, VA, Vriesendorp, C, Webb, EL, White, LJT, Wich, S, Wittmann, F, Zagt, R, Zang, RG, Zartman, CE, Zemagho, L, Zent, EL, Zent, S, Cooper, DLM, Lewis, SL, Sullivan, MJP, Prado, PI, ter Steege, H, Barbier, N, Slik, F, Sonké, B, Ewango, CEN, Adu-Bredu, S, Affum-Baffoe, K, de Aguiar, DPP, Reategui, MAA, Aiba, SI, Albuquerque, BW, Matos, FDD, Alonso, A, Amani, CA, do Amaral, DD, do Amaral, IL, Andrade, A, Miranda, IPD, Angoboy, IB, Araujo-Murakami, A, Arboleda, NC, Arroyo, L, Ashton, P, Aymard, CGA, Baider, C, Baker, TR, Balinga, MPB, Balslev, H, Banin, LF, Bánki, OS, Baraloto, C, Barbosa, EM, Barbosa, FR, Barlow, J, Bastin, JF, Beeckman, H, Begne, S, Bengone, NN, Berenguer, E, Berry, N, Bitariho, R, Boeckx, P, Bogaert, J, Bonyoma, B, Boundja, P, Bourland, N, Bosela, FB, Brambach, F, Brienen, R, Burslem, DFRP, Camargo, JL, Campelo, W, Cano, A, Cárdenas, S, López, DC, Carpanedo, RD, Márquez, YAC, Carvalho, FA, Casas, LF, Castellanos, H, Castilho, CV, Cerón, C, Chapman, CA, Chave, J, Chhang, P, Chutipong, W, Chuyong, GB, Cintra, BBL, Clark, CJ, de Souza, FC, Comiskey, JA, Coomes, DA, Valverde, FC, Correa, DF, Costa, FRC, Costa, JBP, Couteron, P, Culmsee, H, Cuni-Sanchez, A, Dallmeier, F, Damasco, G, Dauby, G, Dávila, N, Doza, HPD, De Alban, JDT, de Assis, RL, De Canniere, C, De Haulleville, T, Carim, MDV, Demarchi, LO, Dexter, KG, Di Fiore, A, Din, HHM, Disney, MI, Djiofack, BY, Djuikouo, MNK, Van Do, T, Doucet, JL, Draper, FC, Droissart, V, Duivenvoorden, JF, Engel, J, Estienne, V, Farfan-Rios, W, Fauset, S, Feeley, KJ, Feitosa, YO, Feldpausch, TR, Ferreira, C, Ferreira, J, Ferreira, LV, Fletcher, CD, Flores, BM, Fofanah, A, Foli, EG, Fonty, E, Fredriksson, GM, Fuentes, A, Galbraith, D, Gonzales, GPG, Garcia-Cabrera, K, García-Villacorta, R, Gomes, VHF, Gómez, RZ, Gonzales, T, Gribel, R, Guedes, MC, Guevara, JE, Hakeem, KR, Hall, JS, Hamer, KC, Harrison, RD, Harris, DJ, Hart, TB, Hector, A, Henkel, TW, Herbohn, J, Hockemba, MBN, Hoffman, B, Holmgren, M, Coronado, ENH, Huamantupa-Chuquimaco, I, Hubau, W, Imai, N, Irume, MV, Jansen, PA, Jeffery, KJ, Jimenez, EM, Jucker, T, Junqueira, AB, Kalamandeen, M, Kamdem, NG, Kartawinata, K, Yakusu, EK, Katembo, JM, Kearsley, E, Kenfack, D, Kessler, M, Khaing, TT, Killeen, TJ, Kitayama, K, Klitgaard, B, Labriere, N, Laumonier, Y, Laurance, SGW, Laurance, WF, Laurent, F, Le, TC, Leal, ME, Novo, EMLD, Levesley, A, Libalah, MB, Licona, JC, Lima, DD, Lindsell, JA, Lopes, A, Lopes, MA, Lovett, JC, Lowe, R, Lozada, JR, Lu, XH, Luambua, NK, Luize, BG, Maas, P, Magalhaes, JLL, Magnusson, WE, Mahayani, NPD, Makana, JR, Malhi, Y, Rincón, LM, Mansor, A, Manzatto, AG, Marimon, BS, Marimon, BH Jr, Marshall, AR, Martins, MP, Mbayu, FM, de Medeiros, MB, Mesones, I, Metali, F, Mihindou, V, Millet, J, Milliken, W, Mogollon, HF, Molino, JF, Said, MNM, Mendoza, AM, Montero, JC, Moore, S, Mostacedo, B, Pinto, LFM, Mukul, SA, Munishi, PKT, Nagamasu, H, Nascimento, HEM, Nascimento, MT, Neill, D, Nilus, R, Noronha, JC, Nsenga, L, Vargas, PN, Ojo, L, Oliveira, AA, de Oliveira, EA, Ondo, FE, Cuenca, WP, Pansini, S, Pansonato, MP, Paredes, MR, Paudel, E, Pauletto, D, Pearson, RG, Pena, JLM, Pennington, RT, Peres, CA, Permana, A, Petronelli, P, Mora, MCP, Phillips, JF, Phillips, OL, Pickavance, G, Piedade, MTF, Pitman, NCA, Ploton, P, Popelier, A, Poulsen, JR, Prieto, A, Primack, RB, Priyadi, H, Qie, L, Quaresma, AC, de Queiroz, HL, Ramirez-Angulo, H, Ramos, JF, Reis, NFC, Reitsma, J, Revilla, JDC, Riutta, T, Rivas-Torres, G, Robiansyah, I, Rocha, M, Rodrigues, DD, Rodriguez-Ronderos, ME, Rovero, F, Rozak, AH, Rudas, A, Rutishauser, E, Sabatier, D, Sagang, L, Sampaio, AF, Samsoedin, I, Satdichanh, M, Schietti, J, Schöngart, J, Scudeller, VV, Seuaturien, N, Sheil, D, Sierra, R, Silman, MR, Silva, TSF, Guimaraes, JRD, Simo-Droissart, M, Simon, MF, Sist, P, Sousa, TR, Farias, ED, Coelho, LD, Spracklen, DV, Stas, SM, Steinmetz, R, Stevenson, PR, Stropp, J, Sukri, RS, Sunderland, TCH, Suzuki, E, Swaine, MD, Tang, JW, Taplin, J, Taylor, DM, Tello, JS, Terborgh, J, Texier, N, Theilade, I, Thomas, DW, Thomas, R, Thomas, SC, Tirado, M, Toirambe, B, de Toledo, JJ, Tomlinson, KW, Torres-Lezama, A, Tran, HD, Mukendi, JT, Tumaneng, RD, Umaña, MN, Umunay, PM, Giraldo, LEU, Sandoval, EHV, Gamarra, LV, Van Andel, TR, van de Bult, M, van de Pol, J, van der Heijden, G, Vasquez, R, Vela, CIA, Venticinque, EM, Verbeeck, H, Veridiano, RKA, Vicentini, A, Vieira, ICG, Torre, EV, Villarroel, D, Zegarra, BEV, Vleminckx, J, von Hildebrand, P, Vos, VA, Vriesendorp, C, Webb, EL, White, LJT, Wich, S, Wittmann, F, Zagt, R, Zang, RG, Zartman, CE, Zemagho, L, Zent, EL, and Zent, S
- Abstract
Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations 1–6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories 7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees.
- Published
- 2024
6. Intercomparison of global foliar trait maps reveals fundamental differences and limitations of upscaling approaches
- Author
-
Dechant, B., Kattge, J., Pavlick, R., Schneider, F.D., Sabatini, F.M., Moreno-Martínez, Á., Butler, E.E., van Bodegom, P.M., Vallicrosa, H., Kattenborn, T., Boonman, C.C.F., Madani, N., Wright, I.J., Dong, N., Feilhauer, Hannes, Peñuelas, J., Sardans, J., Aguirre-Gutiérrez, J., Reich, P.B., Leitão, P.J., Cavender-Bares, J., Myers-Smith, I.H., Durán, S.M., Croft, H., Prentice, I.C., Huth, Andreas, Rebel, K., Zaehle, S., Šímová, I., Díaz, S., Reichstein, M., Schiller, C., Bruelheide, H., Mahecha, Miguel Dario, Wirth, C., Malhi, Y., Townsend, P.A., Dechant, B., Kattge, J., Pavlick, R., Schneider, F.D., Sabatini, F.M., Moreno-Martínez, Á., Butler, E.E., van Bodegom, P.M., Vallicrosa, H., Kattenborn, T., Boonman, C.C.F., Madani, N., Wright, I.J., Dong, N., Feilhauer, Hannes, Peñuelas, J., Sardans, J., Aguirre-Gutiérrez, J., Reich, P.B., Leitão, P.J., Cavender-Bares, J., Myers-Smith, I.H., Durán, S.M., Croft, H., Prentice, I.C., Huth, Andreas, Rebel, K., Zaehle, S., Šímová, I., Díaz, S., Reichstein, M., Schiller, C., Bruelheide, H., Mahecha, Miguel Dario, Wirth, C., Malhi, Y., and Townsend, P.A.
- Abstract
Foliar traits such as specific leaf area (SLA), leaf nitrogen (N), and phosphorus (P) concentrations play important roles in plant economic strategies and ecosystem functioning. Various global maps of these foliar traits have been generated using statistical upscaling approaches based on in-situ trait observations. Here, we intercompare such global upscaled foliar trait maps at 0.5° spatial resolution (six maps for SLA, five for N, three for P), categorize the upscaling approaches used to generate them, and evaluate the maps with trait estimates from a global database of vegetation plots (sPlotOpen). We disentangled the contributions from different plant functional types (PFTs) to the upscaled maps and quantified the impacts of using different plot-level trait metrics on the evaluation with sPlotOpen: community weighted mean (CWM) and top-of-canopy weighted mean (TWM). We found that the global foliar trait maps of SLA and N differ drastically and fall into two groups that are almost uncorrelated (for P only maps from one group were available). The primary factor explaining the differences between these groups is the use of PFT information combined with remote sensing-derived land cover products in one group while the other group mostly relied on environmental predictors alone. The maps that used PFT and corresponding land cover information exhibit considerable similarities in spatial patterns that are strongly driven by land cover. The maps not using PFTs show a lower level of similarity and tend to be strongly driven by individual environmental variables. Upscaled maps of both groups were moderately correlated to sPlotOpen data aggregated to the grid-cell level (R = 0.2–0.6) when processing sPlotOpen in a way that is consistent with the respective trait upscaling approaches, including the plot-level trait metric (CWM or TWM) and the scaling to the grid cells with or without accounting for fractional land cover. The impact of using TWM or CWM was r
- Published
- 2024
7. Dominance and rarity in tree communities across the globe: Patterns, predictors and threats
- Author
-
Hordijk, I., Bialic‐Murphy, L., Lauber, T., Routh, D., Poorter, L., Rivers, M., ter Steege, H., Liang, J., Reich, P., de‐Miguel, S., Nabuurs, G.-J., Gamarra, J., Chen, H., Zhou, M., Wiser, S., Pretzsch, H., Paquette, A., Picard, N., Hérault, B., Bastin, J.-F., Alberti, G., Abegg, M., Adou Yao, Y., Almeyda Zambrano, A., Alvarado, B., Alvarez‐Davila, E., Alvarez‐Loayza, P., Alves, L., Ammer, C., Antón‐Fernández, C., Araujo‐Murakami, A., Arroyo, L., Avitabile, V., Aymard Corredor, G., Baker, T., Banki, O., Barroso, J., Bastian, M., Birigazzi, L., Birnbaum, P., Bitariho, R., Boeckx, P., Bongers, F., Bouriaud, O., Brancalion, P., Brandl, S., Brienen, R., Broadbent, E., Bruelheide, H., Bussotti, F., Gatti, R., Cesar, R., Cesljar, G., Chazdon, R., Chisholm, C., Cienciala, E., Clark, C., Clar, D., Colletta, G., Coomes, D., Valverde, F., Corral‐Rivas, J., Crim, P., Cumming, J., Dayanandan, S., de Gasper, A., Decuyper, M., Derroire, G., DeVries, B., Djordjevic, I., Iêda, A., Dourdain, A., Dolezal, J., Obiang, N., Enquist, B., Eyre, T., Fandohan, A., Fayle, T., Ferreira, L., Feldpausch, T., Finér, L., Fischer, M., Fletcher, C., Frizzera, L., Gianelle, D., Glick, H., Harris, D., Hector, A., Hemp, A., Hengeveld, G., Herbohn, J., Hillers, A., Honorio Coronado, E., Hui, C., Cho, H., Ibanez, T., Jung, I., Imai, N., Jagodzinski, A., Jaroszewicz, B., Johannsen, V., Joly, C., Jucker, T., Karminov, V., Kartawinata, K., Kearsley, E., Kenfack, D., Kennard, D., Kepfer‐Rojas, S., Keppel, G., Khan, M., Killeen, T., Kim, H., Kitayama, K., Köhl, M., Korjus, H., Kraxner, F., Laarmann, D., Lang, M., Lewis, S., Lu, H., Lukina, N., Maitner, B., Malhi, Y., Marcon, E., Marimon, B., Marimon‐Junior, B., Marshall, A., Martin, E., Martynenko, O., Meave, J., Melo‐Cruz, O., Mendoza, C., Merow, C., Miscicki, S., Mendoza, A., Moreno, V., Mukul, S., Mundhenk, P., Nava‐Miranda, M., Neill, D., Neldner, V., Nevenic, R., Ngugi, M., Niklaus, P., Oleksyn, J., Ontikov, P., Ortiz‐Malavasi, E., Pan, Y., Parada‐Gutierrez, A., Parfenova, E., Park, M., Parren, M., Parthasarathy, N., Peri, P., Pfautsch, S., Phillips, O., Piedade, M., Piotto, D., Pitman, N., Polo, I., Poulsen, A., Poulsen, J., Arevalo, F., Restrepo‐Correa, Z., Rodeghiero, M., Rolim, S., Roopsind, A., Rovero, F., Rutishauser, E., Saikia, P., Salas‐Eljatib, C., Schall, P., Shchepashchenko, D., Scherer‐Lorenzen, M., Schmid, B., Schöngart, J., Searle, E., Seben, V., Serra‐Diaz, J., Sheil, D., Shvidenko, A., Silva‐Espejo, J., Silveira, M., Singh, J., Sist, P., Slik, F., Sonké, B., Souza, A., Stereńczak, K., Svenning, J.-C., Svoboda, M., Swanepoel, B., Targhetta, N., Tchebakova, N., Thomas, R., Tikhonova, E., Umunay, P., Usoltsev, V., Valencia, R., Valladares, F., van der Plas, F., Van Do, T., Van Nuland, M., Martinez, R., Verbeeck, H., Viana, H., Vibrans, A., Vieira, S., von Gadow, K., Wang, H.-F., Watson, J., Werner, G., Wittmann, F., Wortel, V., Zagt, R., Zawila‐Niedzwiecki, T., Zhang, C., Zhao, X., Zhu, Z.-X., Zo‐Bi, I., Maynard, D., Crowther, T., Hordijk, I., Bialic‐Murphy, L., Lauber, T., Routh, D., Poorter, L., Rivers, M., ter Steege, H., Liang, J., Reich, P., de‐Miguel, S., Nabuurs, G.-J., Gamarra, J., Chen, H., Zhou, M., Wiser, S., Pretzsch, H., Paquette, A., Picard, N., Hérault, B., Bastin, J.-F., Alberti, G., Abegg, M., Adou Yao, Y., Almeyda Zambrano, A., Alvarado, B., Alvarez‐Davila, E., Alvarez‐Loayza, P., Alves, L., Ammer, C., Antón‐Fernández, C., Araujo‐Murakami, A., Arroyo, L., Avitabile, V., Aymard Corredor, G., Baker, T., Banki, O., Barroso, J., Bastian, M., Birigazzi, L., Birnbaum, P., Bitariho, R., Boeckx, P., Bongers, F., Bouriaud, O., Brancalion, P., Brandl, S., Brienen, R., Broadbent, E., Bruelheide, H., Bussotti, F., Gatti, R., Cesar, R., Cesljar, G., Chazdon, R., Chisholm, C., Cienciala, E., Clark, C., Clar, D., Colletta, G., Coomes, D., Valverde, F., Corral‐Rivas, J., Crim, P., Cumming, J., Dayanandan, S., de Gasper, A., Decuyper, M., Derroire, G., DeVries, B., Djordjevic, I., Iêda, A., Dourdain, A., Dolezal, J., Obiang, N., Enquist, B., Eyre, T., Fandohan, A., Fayle, T., Ferreira, L., Feldpausch, T., Finér, L., Fischer, M., Fletcher, C., Frizzera, L., Gianelle, D., Glick, H., Harris, D., Hector, A., Hemp, A., Hengeveld, G., Herbohn, J., Hillers, A., Honorio Coronado, E., Hui, C., Cho, H., Ibanez, T., Jung, I., Imai, N., Jagodzinski, A., Jaroszewicz, B., Johannsen, V., Joly, C., Jucker, T., Karminov, V., Kartawinata, K., Kearsley, E., Kenfack, D., Kennard, D., Kepfer‐Rojas, S., Keppel, G., Khan, M., Killeen, T., Kim, H., Kitayama, K., Köhl, M., Korjus, H., Kraxner, F., Laarmann, D., Lang, M., Lewis, S., Lu, H., Lukina, N., Maitner, B., Malhi, Y., Marcon, E., Marimon, B., Marimon‐Junior, B., Marshall, A., Martin, E., Martynenko, O., Meave, J., Melo‐Cruz, O., Mendoza, C., Merow, C., Miscicki, S., Mendoza, A., Moreno, V., Mukul, S., Mundhenk, P., Nava‐Miranda, M., Neill, D., Neldner, V., Nevenic, R., Ngugi, M., Niklaus, P., Oleksyn, J., Ontikov, P., Ortiz‐Malavasi, E., Pan, Y., Parada‐Gutierrez, A., Parfenova, E., Park, M., Parren, M., Parthasarathy, N., Peri, P., Pfautsch, S., Phillips, O., Piedade, M., Piotto, D., Pitman, N., Polo, I., Poulsen, A., Poulsen, J., Arevalo, F., Restrepo‐Correa, Z., Rodeghiero, M., Rolim, S., Roopsind, A., Rovero, F., Rutishauser, E., Saikia, P., Salas‐Eljatib, C., Schall, P., Shchepashchenko, D., Scherer‐Lorenzen, M., Schmid, B., Schöngart, J., Searle, E., Seben, V., Serra‐Diaz, J., Sheil, D., Shvidenko, A., Silva‐Espejo, J., Silveira, M., Singh, J., Sist, P., Slik, F., Sonké, B., Souza, A., Stereńczak, K., Svenning, J.-C., Svoboda, M., Swanepoel, B., Targhetta, N., Tchebakova, N., Thomas, R., Tikhonova, E., Umunay, P., Usoltsev, V., Valencia, R., Valladares, F., van der Plas, F., Van Do, T., Van Nuland, M., Martinez, R., Verbeeck, H., Viana, H., Vibrans, A., Vieira, S., von Gadow, K., Wang, H.-F., Watson, J., Werner, G., Wittmann, F., Wortel, V., Zagt, R., Zawila‐Niedzwiecki, T., Zhang, C., Zhao, X., Zhu, Z.-X., Zo‐Bi, I., Maynard, D., and Crowther, T.
- Abstract
Aim Ecological and anthropogenic factors shift the abundances of dominant and rare tree species within local forest communities, thus affecting species composition and ecosystem functioning. To inform forest and conservation management it is important to understand the drivers of dominance and rarity in local tree communities. We answer the following research questions: (1) What are the patterns of dominance and rarity in tree communities? (2) Which ecological and anthropogenic factors predict these patterns? And (3) what is the extinction risk of locally dominant and rare tree species? Location Global. Time period 1990–2017. Major taxa studied Trees. Methods We used 1.2 million forest plots and quantified local tree dominance as the relative plot basal area of the single most dominant species and local rarity as the percentage of species that contribute together to the least 10% of plot basal area. We mapped global community dominance and rarity using machine learning models and evaluated the ecological and anthropogenic predictors with linear models. Extinction risk, for example threatened status, of geographically widespread dominant and rare species was evaluated. Results Community dominance and rarity show contrasting latitudinal trends, with boreal forests having high levels of dominance and tropical forests having high levels of rarity. Increasing annual precipitation reduces community dominance, probably because precipitation is related to an increase in tree density and richness. Additionally, stand age is positively related to community dominance, due to stem diameter increase of the most dominant species. Surprisingly, we find that locally dominant and rare species, which are geographically widespread in our data, have an equally high rate of elevated extinction due to declining populations through large-scale land degradation. Main conclusions By linking patterns and predictors of community dominance and rarity to extinction risk, our results suggest tha
- Published
- 2024
- Full Text
- View/download PDF
8. Optimizing restoration: A holistic spatial approach to deliver Nature’s Contributions to People with minimal tradeoffs and maximal equity
- Author
-
Gopalakrishna, T., Visconti, P., Lomax, G., Boere, E., Malhi, Y., Roy, P.S., Joshi, P.K., Fedele, G., Yowargana, P., Gopalakrishna, T., Visconti, P., Lomax, G., Boere, E., Malhi, Y., Roy, P.S., Joshi, P.K., Fedele, G., and Yowargana, P.
- Abstract
Ecosystem restoration is inherently a complex activity with inevitable tradeoffs in environmental and societal outcomes. These tradeoffs can potentially be large when policies and practices are focused on single outcomes versus joint achievement of multiple outcomes. Few studies have assessed the tradeoffs in Nature’s Contributions to People (NCP) and the distributional equity of NCP from forest restoration strategies. Here, we optimized a defined forest restoration area across India with systematic conservation planning to assess the tradeoffs between three NCP: i) climate change mitigation NCP, ii) biodiversity value NCP (habitat created for forest-dependent mammals), and iii) societal NCP (human direct use of restored forests for livelihoods, housing construction material, and energy). We show that restoration plans aimed at a single-NCP tend not to deliver other NCP outcomes efficiently. In contrast, integrated spatial forest restoration plans aimed at achievement of multiple outcomes deliver on average 83.3% (43.2 to 100%) of climate change mitigation NCP, 89.9% (63.8 to 100%) of biodiversity value NCP, and 93.9% (64.5 to 100%) of societal NCP delivered by single-objective plans. Integrated plans deliver NCP more evenly across the restoration area when compared to other plans that identify certain regions such as the Western Ghats and north-eastern India. Last, 38 to 41% of the people impacted by integrated spatial plans belong to socioeconomically disadvantaged groups, greater than their overall representation in India’s population. Moving ahead, effective policy design and evaluation integrating ecosystem protection and restoration strategies can benefit from the blueprint we provide in this study for India.
- Published
- 2024
- Full Text
- View/download PDF
9. Consistent patterns of common species across tropical tree communities
- Author
-
Sub Ecology and Biodiversity, Ecology and Biodiversity, Cooper, DLM, Lewis, SL, Sullivan, MJP, Prado, PI, ter Steege, H, Barbier, N, Slik, F, Sonké, B, Ewango, CEN, Adu-Bredu, S, Affum-Baffoe, K, de Aguiar, DPP, Reategui, MAA, Aiba, SI, Albuquerque, BW, Matos, FDD, Alonso, A, Amani, CA, do Amaral, DD, do Amaral, IL, Andrade, A, Miranda, IPD, Angoboy, IB, Araujo-Murakami, A, Arboleda, NC, Arroyo, L, Ashton, P, Aymard, CGA, Baider, C, Baker, TR, Balinga, MPB, Balslev, H, Banin, LF, Bánki, OS, Baraloto, C, Barbosa, EM, Barbosa, FR, Barlow, J, Bastin, JF, Beeckman, H, Begne, S, Bengone, NN, Berenguer, E, Berry, N, Bitariho, R, Boeckx, P, Bogaert, J, Bonyoma, B, Boundja, P, Bourland, N, Bosela, FB, Brambach, F, Brienen, R, Burslem, DFRP, Camargo, JL, Campelo, W, Cano, A, Cárdenas, S, López, DC, Carpanedo, RD, Márquez, YAC, Carvalho, FA, Casas, LF, Castellanos, H, Castilho, CV, Cerón, C, Chapman, CA, Chave, J, Chhang, P, Chutipong, W, Chuyong, GB, Cintra, BBL, Clark, CJ, de Souza, FC, Comiskey, JA, Coomes, DA, Valverde, FC, Correa, DF, Costa, FRC, Costa, JBP, Couteron, P, Culmsee, H, Cuni-Sanchez, A, Dallmeier, F, Damasco, G, Dauby, G, Dávila, N, Doza, HPD, De Alban, JDT, de Assis, RL, De Canniere, C, De Haulleville, T, Carim, MDV, Demarchi, LO, Dexter, KG, Di Fiore, A, Din, HHM, Disney, MI, Djiofack, BY, Djuikouo, MNK, Van Do, T, Doucet, JL, Draper, FC, Droissart, V, Duivenvoorden, JF, Engel, J, Estienne, V, Farfan-Rios, W, Fauset, S, Feeley, KJ, Feitosa, YO, Feldpausch, TR, Ferreira, C, Ferreira, J, Ferreira, LV, Fletcher, CD, Flores, BM, Fofanah, A, Foli, EG, Fonty, E, Fredriksson, GM, Fuentes, A, Galbraith, D, Gonzales, GPG, Garcia-Cabrera, K, García-Villacorta, R, Gomes, VHF, Gómez, RZ, Gonzales, T, Gribel, R, Guedes, MC, Guevara, JE, Hakeem, KR, Hall, JS, Hamer, KC, Harrison, RD, Harris, DJ, Hart, TB, Hector, A, Henkel, TW, Herbohn, J, Hockemba, MBN, Hoffman, B, Holmgren, M, Coronado, ENH, Huamantupa-Chuquimaco, I, Hubau, W, Imai, N, Irume, MV, Jansen, PA, Jeffery, KJ, Jimenez, EM, Jucker, T, Junqueira, AB, Kalamandeen, M, Kamdem, NG, Kartawinata, K, Yakusu, EK, Katembo, JM, Kearsley, E, Kenfack, D, Kessler, M, Khaing, TT, Killeen, TJ, Kitayama, K, Klitgaard, B, Labriere, N, Laumonier, Y, Laurance, SGW, Laurance, WF, Laurent, F, Le, TC, Leal, ME, Novo, EMLD, Levesley, A, Libalah, MB, Licona, JC, Lima, DD, Lindsell, JA, Lopes, A, Lopes, MA, Lovett, JC, Lowe, R, Lozada, JR, Lu, XH, Luambua, NK, Luize, BG, Maas, P, Magalhaes, JLL, Magnusson, WE, Mahayani, NPD, Makana, JR, Malhi, Y, Rincón, LM, Mansor, A, Manzatto, AG, Marimon, BS, Marimon, BH Jr, Marshall, AR, Martins, MP, Mbayu, FM, de Medeiros, MB, Mesones, I, Metali, F, Mihindou, V, Millet, J, Milliken, W, Mogollon, HF, Molino, JF, Said, MNM, Mendoza, AM, Montero, JC, Moore, S, Mostacedo, B, Pinto, LFM, Mukul, SA, Munishi, PKT, Nagamasu, H, Nascimento, HEM, Nascimento, MT, Neill, D, Nilus, R, Noronha, JC, Nsenga, L, Vargas, PN, Ojo, L, Oliveira, AA, de Oliveira, EA, Ondo, FE, Cuenca, WP, Pansini, S, Pansonato, MP, Paredes, MR, Paudel, E, Pauletto, D, Pearson, RG, Pena, JLM, Pennington, RT, Peres, CA, Permana, A, Petronelli, P, Mora, MCP, Phillips, JF, Phillips, OL, Pickavance, G, Piedade, MTF, Pitman, NCA, Ploton, P, Popelier, A, Poulsen, JR, Prieto, A, Primack, RB, Priyadi, H, Qie, L, Quaresma, AC, de Queiroz, HL, Ramirez-Angulo, H, Ramos, JF, Reis, NFC, Reitsma, J, Revilla, JDC, Riutta, T, Rivas-Torres, G, Robiansyah, I, Rocha, M, Rodrigues, DD, Rodriguez-Ronderos, ME, Rovero, F, Rozak, AH, Rudas, A, Rutishauser, E, Sabatier, D, Sagang, L, Sampaio, AF, Samsoedin, I, Satdichanh, M, Schietti, J, Schöngart, J, Scudeller, VV, Seuaturien, N, Sheil, D, Sierra, R, Silman, MR, Silva, TSF, Guimaraes, JRD, Simo-Droissart, M, Simon, MF, Sist, P, Sousa, TR, Farias, ED, Coelho, LD, Spracklen, DV, Stas, SM, Steinmetz, R, Stevenson, PR, Stropp, J, Sukri, RS, Sunderland, TCH, Suzuki, E, Swaine, MD, Tang, JW, Taplin, J, Taylor, DM, Tello, JS, Terborgh, J, Texier, N, Theilade, I, Thomas, DW, Thomas, R, Thomas, SC, Tirado, M, Toirambe, B, de Toledo, JJ, Tomlinson, KW, Torres-Lezama, A, Tran, HD, Mukendi, JT, Tumaneng, RD, Umaña, MN, Umunay, PM, Giraldo, LEU, Sandoval, EHV, Gamarra, LV, Van Andel, TR, van de Bult, M, van de Pol, J, van der Heijden, G, Vasquez, R, Vela, CIA, Venticinque, EM, Verbeeck, H, Veridiano, RKA, Vicentini, A, Vieira, ICG, Torre, EV, Villarroel, D, Zegarra, BEV, Vleminckx, J, von Hildebrand, P, Vos, VA, Vriesendorp, C, Webb, EL, White, LJT, Wich, S, Wittmann, F, Zagt, R, Zang, RG, Zartman, CE, Zemagho, L, Zent, EL, Zent, S, Sub Ecology and Biodiversity, Ecology and Biodiversity, Cooper, DLM, Lewis, SL, Sullivan, MJP, Prado, PI, ter Steege, H, Barbier, N, Slik, F, Sonké, B, Ewango, CEN, Adu-Bredu, S, Affum-Baffoe, K, de Aguiar, DPP, Reategui, MAA, Aiba, SI, Albuquerque, BW, Matos, FDD, Alonso, A, Amani, CA, do Amaral, DD, do Amaral, IL, Andrade, A, Miranda, IPD, Angoboy, IB, Araujo-Murakami, A, Arboleda, NC, Arroyo, L, Ashton, P, Aymard, CGA, Baider, C, Baker, TR, Balinga, MPB, Balslev, H, Banin, LF, Bánki, OS, Baraloto, C, Barbosa, EM, Barbosa, FR, Barlow, J, Bastin, JF, Beeckman, H, Begne, S, Bengone, NN, Berenguer, E, Berry, N, Bitariho, R, Boeckx, P, Bogaert, J, Bonyoma, B, Boundja, P, Bourland, N, Bosela, FB, Brambach, F, Brienen, R, Burslem, DFRP, Camargo, JL, Campelo, W, Cano, A, Cárdenas, S, López, DC, Carpanedo, RD, Márquez, YAC, Carvalho, FA, Casas, LF, Castellanos, H, Castilho, CV, Cerón, C, Chapman, CA, Chave, J, Chhang, P, Chutipong, W, Chuyong, GB, Cintra, BBL, Clark, CJ, de Souza, FC, Comiskey, JA, Coomes, DA, Valverde, FC, Correa, DF, Costa, FRC, Costa, JBP, Couteron, P, Culmsee, H, Cuni-Sanchez, A, Dallmeier, F, Damasco, G, Dauby, G, Dávila, N, Doza, HPD, De Alban, JDT, de Assis, RL, De Canniere, C, De Haulleville, T, Carim, MDV, Demarchi, LO, Dexter, KG, Di Fiore, A, Din, HHM, Disney, MI, Djiofack, BY, Djuikouo, MNK, Van Do, T, Doucet, JL, Draper, FC, Droissart, V, Duivenvoorden, JF, Engel, J, Estienne, V, Farfan-Rios, W, Fauset, S, Feeley, KJ, Feitosa, YO, Feldpausch, TR, Ferreira, C, Ferreira, J, Ferreira, LV, Fletcher, CD, Flores, BM, Fofanah, A, Foli, EG, Fonty, E, Fredriksson, GM, Fuentes, A, Galbraith, D, Gonzales, GPG, Garcia-Cabrera, K, García-Villacorta, R, Gomes, VHF, Gómez, RZ, Gonzales, T, Gribel, R, Guedes, MC, Guevara, JE, Hakeem, KR, Hall, JS, Hamer, KC, Harrison, RD, Harris, DJ, Hart, TB, Hector, A, Henkel, TW, Herbohn, J, Hockemba, MBN, Hoffman, B, Holmgren, M, Coronado, ENH, Huamantupa-Chuquimaco, I, Hubau, W, Imai, N, Irume, MV, Jansen, PA, Jeffery, KJ, Jimenez, EM, Jucker, T, Junqueira, AB, Kalamandeen, M, Kamdem, NG, Kartawinata, K, Yakusu, EK, Katembo, JM, Kearsley, E, Kenfack, D, Kessler, M, Khaing, TT, Killeen, TJ, Kitayama, K, Klitgaard, B, Labriere, N, Laumonier, Y, Laurance, SGW, Laurance, WF, Laurent, F, Le, TC, Leal, ME, Novo, EMLD, Levesley, A, Libalah, MB, Licona, JC, Lima, DD, Lindsell, JA, Lopes, A, Lopes, MA, Lovett, JC, Lowe, R, Lozada, JR, Lu, XH, Luambua, NK, Luize, BG, Maas, P, Magalhaes, JLL, Magnusson, WE, Mahayani, NPD, Makana, JR, Malhi, Y, Rincón, LM, Mansor, A, Manzatto, AG, Marimon, BS, Marimon, BH Jr, Marshall, AR, Martins, MP, Mbayu, FM, de Medeiros, MB, Mesones, I, Metali, F, Mihindou, V, Millet, J, Milliken, W, Mogollon, HF, Molino, JF, Said, MNM, Mendoza, AM, Montero, JC, Moore, S, Mostacedo, B, Pinto, LFM, Mukul, SA, Munishi, PKT, Nagamasu, H, Nascimento, HEM, Nascimento, MT, Neill, D, Nilus, R, Noronha, JC, Nsenga, L, Vargas, PN, Ojo, L, Oliveira, AA, de Oliveira, EA, Ondo, FE, Cuenca, WP, Pansini, S, Pansonato, MP, Paredes, MR, Paudel, E, Pauletto, D, Pearson, RG, Pena, JLM, Pennington, RT, Peres, CA, Permana, A, Petronelli, P, Mora, MCP, Phillips, JF, Phillips, OL, Pickavance, G, Piedade, MTF, Pitman, NCA, Ploton, P, Popelier, A, Poulsen, JR, Prieto, A, Primack, RB, Priyadi, H, Qie, L, Quaresma, AC, de Queiroz, HL, Ramirez-Angulo, H, Ramos, JF, Reis, NFC, Reitsma, J, Revilla, JDC, Riutta, T, Rivas-Torres, G, Robiansyah, I, Rocha, M, Rodrigues, DD, Rodriguez-Ronderos, ME, Rovero, F, Rozak, AH, Rudas, A, Rutishauser, E, Sabatier, D, Sagang, L, Sampaio, AF, Samsoedin, I, Satdichanh, M, Schietti, J, Schöngart, J, Scudeller, VV, Seuaturien, N, Sheil, D, Sierra, R, Silman, MR, Silva, TSF, Guimaraes, JRD, Simo-Droissart, M, Simon, MF, Sist, P, Sousa, TR, Farias, ED, Coelho, LD, Spracklen, DV, Stas, SM, Steinmetz, R, Stevenson, PR, Stropp, J, Sukri, RS, Sunderland, TCH, Suzuki, E, Swaine, MD, Tang, JW, Taplin, J, Taylor, DM, Tello, JS, Terborgh, J, Texier, N, Theilade, I, Thomas, DW, Thomas, R, Thomas, SC, Tirado, M, Toirambe, B, de Toledo, JJ, Tomlinson, KW, Torres-Lezama, A, Tran, HD, Mukendi, JT, Tumaneng, RD, Umaña, MN, Umunay, PM, Giraldo, LEU, Sandoval, EHV, Gamarra, LV, Van Andel, TR, van de Bult, M, van de Pol, J, van der Heijden, G, Vasquez, R, Vela, CIA, Venticinque, EM, Verbeeck, H, Veridiano, RKA, Vicentini, A, Vieira, ICG, Torre, EV, Villarroel, D, Zegarra, BEV, Vleminckx, J, von Hildebrand, P, Vos, VA, Vriesendorp, C, Webb, EL, White, LJT, Wich, S, Wittmann, F, Zagt, R, Zang, RG, Zartman, CE, Zemagho, L, Zent, EL, and Zent, S
- Published
- 2024
10. Positive feedbacks and alternative stable states in forest leaf types
- Author
-
Zou, Y., Zohner, C., Averill, C., Ma, H., Merder, J., Berdugo, M., Bialic-Murphy, L., Mo, L., Brun, P., Zimmermann, N., Liang, J., de-Miguel, S., Nabuurs, G.-J., Reich, P., Niinements, U., Dahlgren, J., Kändler, G., Ratcliffe, S., Ruiz-Benito, P., de Zavala, M., Abegg, M., Adou Yao, Y., Alberti, G., Almeyda Zambrano, A., Alvarado, B., Alvarez-Dávila, E., Alvarez-Loayza, P., Alves, L., Ammer, C., Antón-Fernández, C., Araujo-Murakami, A., Arroyo, L., Avitabile, V., Aymard, G., Baker, T., Bałazy, R., Banki, O., Barroso, J., Bastian, M., Bastin, J.-F., Birigazzi, L., Birnbaum, P., Bitariho, R., Boeckx, P., Bongers, F., Bouriaud, O., Brancalion, P., Brandl, S., Brearley, F., Brienen, R., Broadbent, E., Bruelheide, H., Bussotti, F., Gatti, R., César, R., Cesljar, G., Chazdon, R., Chen, H., Chisholm, C., Cho, H., Cienciala, E., Clark, C., Clark, D., Colletta, G., Coomes, D., Valverde, F., Corral-Rivas, J., Crim, P., Cumming, J., Dayanandan, S., de Gasper, A., Decuyper, M., Derroire, G., DeVries, B., Djordjevic, I., Dolezal, J., Dourdain, A., Obiang, N., Enquist, B., Eyre, T., Fandohan, A., Fayle, T., Feldpausch, T., Ferreira, L., Finér, L., Fischer, M., Fletcher, C., Fridman, J., Frizzera, L., Gamarra, J., Gianelle, D., Glick, H., Harris, D., Hector, A., Hemp, A., Hengeveld, G., Hérault, B., Herbohn, J., Herold, M., Hillers, A., Honorio Coronado, E., Hui, C., Ibanez, T., Iêda, A., Imai, N., Jagodziński, A., Jaroszewicz, B., Johannsen, V., Joly, C., Jucker, T., Jung, I., Karminov, V., Kartawinata, K., Kearsley, E., Kenfack, D., Kennard, D., Kepfer-Rojas, S., Keppel, G., Khan, M., Killeen, T., Kim, H., Kitayama, K., Köhl, M., Korjus, H., Kraxner, F., Laarmann, D., Lang, M., Lewis, S., Lu, H., Lukina, N., Maitner, B., Malhi, Y., Marcon, E., Marimon, B., Marimon-Junior, B., Marshall, A., Martin, E., Kucher, D., Meave, J., Melo-Cruz, O., Mendoza, C., Merow, C., Mendoza, A., Moreno, V., Mukul, S., Mundhenk, P., Nava-Miranda, M., Neill, D., Neldner, V., Nevenic, R., Ngugi, M., Niklaus, P., Oleksyn, J., Ontikov, P., Ortiz-Malavasi, E., Pan, Y., Paquette, A., Parada-Gutierrez, A., Parfenova, E., Park, M., Parren, M., Parthasarathy, N., Peri, P., Pfautsch, S., Phillips, O., Picard, N., Piedade, M., Piotto, D., Pitman, N., Polo, I., Poorter, L., Poulsen, A., Poulsen, J., Pretzsch, H., Arevalo, F., Restrepo-Correa, Z., Rodeghiero, M., Rolim, S., Roopsind, A., Rovero, F., Rutishauser, E., Saikia, P., Salas-Eljatib, C., Saner, P., Schall, P., Schelhaas, M., Shchepashchenko, D., Scherer-Lorenzen, M., Schmid, B., Schöngart, J., Searle, E., Seben, V., Serra-Diaz, J., Sheil, D., Shvidenko, A., Silva-Espejo, J., Silveira, M., Singh, J., Sist, P., Slik, F., Sonké, B., Souza, A., Miscicki, S., Stereńczak, K., Svenning, J., Svoboda, M., Swanepoel, B., Targhetta, N., Tchebakova, N., ter Steege, H., Thomas, R., Tikhonova, E., Umunay, P., Usoltsev, V., Valencia, R., Valladares, F., van der Plas, F., Van Do, T., van Nuland, M., Vasquez, R., Verbeeck, H., Viana, H., Vibrans, A., Vieira, S., von Gadow, K., Wang, H., Watson, J., Werner, G., Westerlund, B., Wiser, S., Wittmann, F., Woell, H., Wortel, V., Zagt, R., Zawiła-Niedźwiecki, T., Zhang, C., Zhao, X., Zhou, M., Zhu, Z., Zo-Bi, I., Crowther, T., Zou, Y., Zohner, C., Averill, C., Ma, H., Merder, J., Berdugo, M., Bialic-Murphy, L., Mo, L., Brun, P., Zimmermann, N., Liang, J., de-Miguel, S., Nabuurs, G.-J., Reich, P., Niinements, U., Dahlgren, J., Kändler, G., Ratcliffe, S., Ruiz-Benito, P., de Zavala, M., Abegg, M., Adou Yao, Y., Alberti, G., Almeyda Zambrano, A., Alvarado, B., Alvarez-Dávila, E., Alvarez-Loayza, P., Alves, L., Ammer, C., Antón-Fernández, C., Araujo-Murakami, A., Arroyo, L., Avitabile, V., Aymard, G., Baker, T., Bałazy, R., Banki, O., Barroso, J., Bastian, M., Bastin, J.-F., Birigazzi, L., Birnbaum, P., Bitariho, R., Boeckx, P., Bongers, F., Bouriaud, O., Brancalion, P., Brandl, S., Brearley, F., Brienen, R., Broadbent, E., Bruelheide, H., Bussotti, F., Gatti, R., César, R., Cesljar, G., Chazdon, R., Chen, H., Chisholm, C., Cho, H., Cienciala, E., Clark, C., Clark, D., Colletta, G., Coomes, D., Valverde, F., Corral-Rivas, J., Crim, P., Cumming, J., Dayanandan, S., de Gasper, A., Decuyper, M., Derroire, G., DeVries, B., Djordjevic, I., Dolezal, J., Dourdain, A., Obiang, N., Enquist, B., Eyre, T., Fandohan, A., Fayle, T., Feldpausch, T., Ferreira, L., Finér, L., Fischer, M., Fletcher, C., Fridman, J., Frizzera, L., Gamarra, J., Gianelle, D., Glick, H., Harris, D., Hector, A., Hemp, A., Hengeveld, G., Hérault, B., Herbohn, J., Herold, M., Hillers, A., Honorio Coronado, E., Hui, C., Ibanez, T., Iêda, A., Imai, N., Jagodziński, A., Jaroszewicz, B., Johannsen, V., Joly, C., Jucker, T., Jung, I., Karminov, V., Kartawinata, K., Kearsley, E., Kenfack, D., Kennard, D., Kepfer-Rojas, S., Keppel, G., Khan, M., Killeen, T., Kim, H., Kitayama, K., Köhl, M., Korjus, H., Kraxner, F., Laarmann, D., Lang, M., Lewis, S., Lu, H., Lukina, N., Maitner, B., Malhi, Y., Marcon, E., Marimon, B., Marimon-Junior, B., Marshall, A., Martin, E., Kucher, D., Meave, J., Melo-Cruz, O., Mendoza, C., Merow, C., Mendoza, A., Moreno, V., Mukul, S., Mundhenk, P., Nava-Miranda, M., Neill, D., Neldner, V., Nevenic, R., Ngugi, M., Niklaus, P., Oleksyn, J., Ontikov, P., Ortiz-Malavasi, E., Pan, Y., Paquette, A., Parada-Gutierrez, A., Parfenova, E., Park, M., Parren, M., Parthasarathy, N., Peri, P., Pfautsch, S., Phillips, O., Picard, N., Piedade, M., Piotto, D., Pitman, N., Polo, I., Poorter, L., Poulsen, A., Poulsen, J., Pretzsch, H., Arevalo, F., Restrepo-Correa, Z., Rodeghiero, M., Rolim, S., Roopsind, A., Rovero, F., Rutishauser, E., Saikia, P., Salas-Eljatib, C., Saner, P., Schall, P., Schelhaas, M., Shchepashchenko, D., Scherer-Lorenzen, M., Schmid, B., Schöngart, J., Searle, E., Seben, V., Serra-Diaz, J., Sheil, D., Shvidenko, A., Silva-Espejo, J., Silveira, M., Singh, J., Sist, P., Slik, F., Sonké, B., Souza, A., Miscicki, S., Stereńczak, K., Svenning, J., Svoboda, M., Swanepoel, B., Targhetta, N., Tchebakova, N., ter Steege, H., Thomas, R., Tikhonova, E., Umunay, P., Usoltsev, V., Valencia, R., Valladares, F., van der Plas, F., Van Do, T., van Nuland, M., Vasquez, R., Verbeeck, H., Viana, H., Vibrans, A., Vieira, S., von Gadow, K., Wang, H., Watson, J., Werner, G., Westerlund, B., Wiser, S., Wittmann, F., Woell, H., Wortel, V., Zagt, R., Zawiła-Niedźwiecki, T., Zhang, C., Zhao, X., Zhou, M., Zhu, Z., Zo-Bi, I., and Crowther, T.
- Abstract
The emergence of alternative stable states in forest systems has significant implications for the functioning and structure of the terrestrial biosphere, yet empirical evidence remains scarce. Here, we combine global forest biodiversity observations and simulations to test for alternative stable states in the presence of evergreen and deciduous forest types. We reveal a bimodal distribution of forest leaf types across temperate regions of the Northern Hemisphere that cannot be explained by the environment alone, suggesting signatures of alternative forest states. Moreover, we empirically demonstrate the existence of positive feedbacks in tree growth, recruitment and mortality, with trees having 4–43% higher growth rates, 14–17% higher survival rates and 4–7 times higher recruitment rates when they are surrounded by trees of their own leaf type. Simulations show that the observed positive feedbacks are necessary and sufficient to generate alternative forest states, which also lead to dependency on history (hysteresis) during ecosystem transition from evergreen to deciduous forests and vice versa. We identify hotspots of bistable forest types in evergreen-deciduous ecotones, which are likely driven by soil-related positive feedbacks. These findings are integral to predicting the distribution of forest biomes, and aid to our understanding of biodiversity, carbon turnover, and terrestrial climate feedbacks.
- Published
- 2024
- Full Text
- View/download PDF
11. Author Correction: Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity
- Author
-
Grantham, H. S., Duncan, A., Evans, T. D., Jones, K. R., Beyer, H. L., Schuster, R., Walston, J., Ray, J. C., Robinson, J. G., Callow, M., Clements, T., Costa, H. M., DeGemmis, A., Elsen, P. R., Ervin, J., Franco, P., Goldman, E., Goetz, S., Hansen, A., Hofsvang, E., Jantz, P., Jupiter, S., Kang, A., Langhammer, P., Laurance, W. F., Lieberman, S., Linkie, M., Malhi, Y., Maxwell, S., Mendez, M., Mittermeier, R., Murray, N. J., Possingham, H., Radachowsky, J., Saatchi, S., Samper, C., Silverman, J., Shapiro, A., Strassburg, B., Stevens, T., Stokes, E., Taylor, R., Tear, T., Tizard, R., Venter, O., Visconti, P., Wang, S., and Watson, J. E. M.
- Published
- 2021
- Full Text
- View/download PDF
12. Finite element analysis of trees in the wind based on terrestrial laser scanning data
- Author
-
Jackson, T., Shenkin, A., Wellpott, A., Calders, K., Origo, N., Disney, M., Burt, A., Raumonen, P., Gardiner, B., Herold, M., Fourcaud, T., and Malhi, Y.
- Published
- 2019
- Full Text
- View/download PDF
13. Understanding Poverty in Cash-crop Agro-forestry Systems: Evidence from Ghana and Ethiopia
- Author
-
Hirons, M., Robinson, E., McDermott, C., Morel, A., Asare, R., Boyd, E., Gonfa, T., Gole, T.W., Malhi, Y., Mason, J., and Norris, K.
- Published
- 2018
- Full Text
- View/download PDF
14. Inter-comparison and assessment of gridded climate products over tropical forests during the 2015/2016 El Niño
- Author
-
Burton, C., Rifai, S., and Malhi, Y.
- Published
- 2018
15. Understanding climate resilience in Ghanaian cocoa communities – Advancing a biocultural perspective
- Author
-
Hirons, M., Boyd, E., McDermott, C., Asare, R., Morel, A., Mason, J., Malhi, Y., and Norris, K.
- Published
- 2018
- Full Text
- View/download PDF
16. Illegality and inequity in Ghana’s cocoa-forest landscape: How formalization can undermine farmers control and benefits from trees on their farms
- Author
-
Hirons, M., McDermott, C., Asare, R., Morel, A., Robinson, E., Mason, J., Boyd, E., Malhi, Y., and Norris, K
- Published
- 2018
- Full Text
- View/download PDF
17. Pursuing climate resilient coffee in Ethiopia – A critical review
- Author
-
Hirons, M., Mehrabi, Z., Gonfa, T.A., Morel, A., Gole, T.W., McDermott, C., Boyd, E., Robinson, E., Sheleme, D., Malhi, Y., Mason, J., and Norris, K.
- Published
- 2018
- Full Text
- View/download PDF
18. A Method for Extracting Plant Roots from Soil which Facilitates Rapid Sample Processing without Compromising Measurement Accuracy
- Author
-
Williams, M., Malhi, Y., and Meir, P.
- Published
- 2007
19. Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate
- Author
-
Quesada, C. A, Phillips, O. L, Schwarz, M., Czimczik, C. I, Baker, T. R, Patiño, S., Fyllas, N. M, Hodnett, M. G, Herrera, R., Almeida, S., Alvarez Dávila, E., Arneth, A., Arroyo, L., Chao, K. J, Dezzeo, N., Erwin, T., di Fiore, A., Higuchi, N., Honorio Coronado, E., Jimenez, E. M, Killeen, T., Lezama, A. T, Lloyd, G., López-González, G., Luizão, F. J, Malhi, Y., Monteagudo, A., Neill, D. A, Núñez Vargas, P., Paiva, R., Peacock, J., Peñuela, M. C, Peña Cruz, A., Pitman, N., Priante Filho, N., Prieto, A., RamÃrez, H., Rudas, A., Salomão, R., Santos, A. J. B, Schmerler, J., Silva, N., Silveira, M., Vásquez, R., Vieira, I., Terborgh, J., and Lloyd, J.
- Subjects
tropical rain-forest ,plant-growth responses ,ecological field experiments ,net primary productivity ,wood specific-gravity ,branch xylem density ,stem water storage ,long term plots ,geographical ecology ,use efficiency - Abstract
Forest structure and dynamics vary across the Amazon Basin in an east-west gradient coincident with variations in soil fertility and geology. This has resulted in the hypothesis that soil fertility may play an important role in explaining Basin-wide variations in forest biomass, growth and stem turnover rates. Soil samples were collected in a total of 59 different forest plots across the Amazon Basin and analysed for exchangeable cations, carbon, nitrogen and pH, with several phosphorus fractions of likely different plant availability also quantified. Physical properties were additionally examined and an index of soil physical quality developed. Bivariate relationships of soil and climatic properties with above-ground wood productivity, stand-level tree turnover rates, above-ground wood biomass and wood density were first examined with multivariate regression models then applied. Both forms of analysis were undertaken with and without considerations regarding the underlying spatial structure of the dataset. Despite the presence of autocorrelated spatial structures complicating many analyses, forest structure and dynamics were found to be strongly and quantitatively related to edaphic as well as climatic conditions. Basin-wide differences in stand-level turnover rates are mostly influenced by soil physical properties with variations in rates of coarse wood production mostly related to soil phosphorus status. Total soil P was a better predictor of wood production rates than any of the fractionated organic- or inorganic-P pools. This suggests that it is not only the immediately available P forms, but probably the entire soil phosphorus pool that is interacting with forest growth on longer timescales. A role for soil potassium in modulating Amazon forest dynamics through its effects on stand-level wood density was also detected. Taking this into account, otherwise enigmatic variations in stand-level biomass across the Basin were then accounted for through the interacting effects of soil physical and chemical properties with climate. A hypothesis of self-maintaining forest dynamic feedback mechanisms initiated by edaphic conditions is proposed. It is further suggested that this is a major factor determining endogenous disturbance levels, species composition, and forest productivity across the Amazon Basin.
- Published
- 2012
20. Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity
- Author
-
Grantham, H. S., Duncan, A., Evans, T. D., Jones, K. R., Beyer, H. L., Schuster, R., Walston, J., Ray, J. C., Robinson, J. G., Callow, M., Clements, T., Costa, H. M., DeGemmis, A., Elsen, P. R., Ervin, J., Franco, P., Goldman, E., Goetz, S., Hansen, A., Hofsvang, E., Jantz, P., Jupiter, S., Kang, A., Langhammer, P., Laurance, W. F., Lieberman, S., Linkie, M., Malhi, Y., Maxwell, S., Mendez, M., Mittermeier, R., Murray, N. J., Possingham, H., Radachowsky, J., Saatchi, S., Samper, C., Silverman, J., Shapiro, A., Strassburg, B., Stevens, T., Stokes, E., Taylor, R., Tear, T., Tizard, R., Venter, O., Visconti, P., Wang, S., and Watson, J. E. M.
- Published
- 2020
- Full Text
- View/download PDF
21. Concerted Changes in Tropical Forest Structure and Dynamics: Evidence from 50 South American Long-Term Plots
- Author
-
Lewis, S. L., Phillips, O. L., Baker, T. R., Lloyd, J., Malhi, Y., Almeida, S., Higuchi, N., Laurance, W. F., Terborgh, J., Martínez, R. Vásquez, Brown, S., Vargas, P. Núñez, and Vinceti, B.
- Published
- 2004
22. Pattern and Process in Amazon Tree Turnover, 1976-2001
- Author
-
Phillips, O. L., Baker, T. R., Arroyo, L., Higuchi, N., Killeen, T. J., Laurance, W. F., Lewis, S. L., Lloyd, J., Malhi, Y., Monteagudo, A., Vargas, P. Núñez, Terborgh, J., Martínez, R. Vásquez, Almeida, S., Brown, S., Comiskey, J. A., Patiño, S., Quesada, C. A., and Vinceti, B.
- Published
- 2004
23. Persistent effects of pre-Columbian plant domestication on Amazonian forest composition
- Author
-
Levis, C., Costa, F. R. C., Bongers, F., Peña-Claros, M., Clement, C. R., Junqueira, A. B., Neves, E. G., Tamanaha, E. K., Figueiredo, F. O. G., Salomão, R. P., Castilho, C. V., Magnusson, W. E., Phillips, O. L., Guevara, J. E., Sabatier, D., Molino, J.-F., López, D. Cárdenas, Mendoza, A. M., Pitman, N. C. A., Duque, A., Vargas, P. Núñez, Zartman, C. E., Vasquez, R., Andrade, A., Camargo, J. L., Feldpausch, T. R., Laurance, S. G. W., Laurance, W. F., Killeen, T. J., Nascimento, H. E. Mendonça, Montero, J. C., Mostacedo, B., Amaral, I. L., Vieira, I. C. Guimarães, Brienen, R., Castellanos, H., Terborgh, J., de Jesus Veiga Carim, M., da Silva Guimarães, J. R., de Souza Coelho, L., de Almeida Matos, F. D., Wittmann, F., Mogollón, H. F., Damasco, G., Dávila, N., García-Villacorta, R., Coronado, E. N. H., Emilio, T., de Andrade Lima Filho, D., Schietti, J., Souza, P., Targhetta, N., Comiskey, J. A., Marimon, B. S., Marimon, B.-H., Neill, D., Alonso, A., Arroyo, L., Carvalho, F. A., de Souza, F. C., Dallmeier, F., Pansonato, M. P., Duivenvoorden, J. F., Fine, P. V. A., Stevenson, P. R., Araujo-Murakami, A., Aymard C., G. A., Baraloto, C., do Amaral, D. D., Engel, J., Henkel, T. W., Maas, P., Petronelli, P., Revilla, J. D. Cardenas, Stropp, J., Daly, D., Gribel, R., Paredes, M. Ríos, Silveira, M., Thomas-Caesar, R., Baker, T. R., da Silva, N. F., Ferreira, L. V., Peres, C. A., Silman, M. R., Cerón, C., Valverde, F. C., Di Fiore, A., Jimenez, E. M., Mora, M. C. Peñuela, Toledo, M., Barbosa, E. M., de Matos Bonates, L. C., Arboleda, N. C., de Sousa Farias, E., Fuentes, A., Guillaumet, J.-L., Jørgensen, P. Møller, Malhi, Y., de Andrade Miranda, I. P., Phillips, J. F., Prieto, A., Rudas, A., Ruschel, A. R., Silva, N., von Hildebrand, P., Vos, V. A., Zent, E. L., Zent, S., Cintra, B. B. L., Nascimento, M. T., Oliveira, A. A., Ramirez-Angulo, H., Ramos, J. F., Rivas, G., Schöngart, J., Sierra, R., Tirado, M., van der Heijden, G., Torre, E. V., Wang, O., Young, K. R., Baider, C., Cano, A., Farfan-Rios, W., Ferreira, C., Hoffman, B., Mendoza, C., Mesones, I., Torres-Lezama, A., Medina, M. N. U., van Andel, T. R., Villarroel, D., Zagt, R., Alexiades, M. N., Balslev, H., Garcia-Cabrera, K., Gonzales, T., Hernandez, L., Huamantupa-Chuquimaco, I., Manzatto, A. G., Milliken, W., Cuenca, W. P., Pansini, S., Pauletto, D., Arevalo, F. R., Reis, N. F. Costa, Sampaio, A. F., Giraldo, L. E. Urrego, Sandoval, E. H. Valderrama, Gamarra, L. Valenzuela, Vela, C. I. A., and ter Steege, H.
- Published
- 2017
24. The land-atmosphere water flux in the tropics
- Author
-
Fisher, JB, Malhi, Y, Bonal, D, Da Rocha, HR, De Araújo, AC, Gamo, M, Goulden, ML, Rano, TH, Huete, AR, Kondo, H, Kumagai, T, Loescher, HW, Miller, S, Nobre, AD, Nouvellon, Y, Oberbauer, SF, Panuthai, S, Roupsard, O, Saleska, S, Tanaka, K, Tanaka, N, Tu, KP, and Von Randow, C
- Subjects
Amazon ,eddy covariance ,evaporation ,evapotranspiration ,ISLSCP-II ,LBA ,model ,remote sensing ,tropical ,Ecology ,Biological Sciences ,Environmental Sciences - Abstract
Tropical vegetation is a major source of global land surface evapotranspiration, and can thus play a major role in global hydrological cycles and global atmospheric circulation. Accurate prediction of tropical evapotranspiration is critical to our understanding of these processes under changing climate. We examined the controls on evapotranspiration in tropical vegetation at 21 pan-tropical eddy covariance sites, conducted a comprehensive and systematic evaluation of 13 evapotranspiration models at these sites, and assessed the ability to scale up model estimates of evapotranspiration for the test region of Amazonia. Net radiation was the strongest determinant of evapotranspiration (mean evaporative fraction was 0.72) and explained 87% of the variance in monthly evapotranspiration across the sites. Vapor pressure deficit was the strongest residual predictor (14%), followed by normalized difference vegetation index (9%), precipitation (6%) and wind speed (4%). The radiation-based evapotranspiration models performed best overall for three reasons: (1) the vegetation was largely decoupled from atmospheric turbulent transfer (calculated from Ω decoupling factor), especially at the wetter sites; (2) the resistance-based models were hindered by difficulty in consistently characterizing canopy (and stomatal) resistance in the highly diverse vegetation; (3) the temperature-based models inadequately captured the variability in tropical evapotranspiration. We evaluated the potential to predict regional evapotranspiration for one test region: Amazonia. We estimated an Amazonia-wide evapotranspiration of 1370mmyr-1, but this value is dependent on assumptions about energy balance closure for the tropical eddy covariance sites; a lower value (1096mmyr-1) is considered in discussion on the use of flux data to validate and interpolate models. © 2009 The Authors Journal compilation © 2009 Blackwell Publishing Ltd.
- Published
- 2009
25. Branch xylem density variations across the Amazon Basin
- Author
-
Patiño, S., Lloyd, J., Paiva, R., Baker, T. R, Quesada, C. A, Mercado, L. M, Schmerler, J., Schwarz, M., Santos, A. J. B, Aguilar, A., Czimczik, C. I, Gallo, J., Horna, V., Hoyos, E. J, Jimenez, E. M, Palomino, W., Peacock, J., Peña-Cruz, A., Sarmiento, C., Sota, A., Turriago, J. D, Villanueva, B., Vitzthum, P., Alvarez, E., Arroyo, L., Baraloto, C., Bonal, D., Chave, J., Costa, A. C. L, Herrera, R., Higuchi, N., Killeen, T., Leal, E., Luizão, F., Meir, P., Monteagudo, A., Neil, D., Núñez-Vargas, P., Peñuela, M. C, Pitman, N., Priante Filho, N., Prieto, A., Panfil, S. N, Rudas, A., Salomão, R., Silva, N., Silveira, M., Soares deAlmeida, S., Torres-Lezama, A., Vásquez-Martínez, R., Vieira, I., Malhi, Y., and Phillips, O. L
- Subjects
wood specific-gravity ,tropical rain-forest ,long-term plots ,hydraulic architecture ,cavitation resistance ,carbon gain ,functional-significance ,water transport ,savanna trees ,canopy trees - Abstract
Xylem density is a physical property of wood that varies between individuals, species and environments. It reflects the physiological strategies of trees that lead to growth, survival and reproduction. Measurements of branch xylem density, ρx, were made for 1653 trees representing 598 species, sampled from 87 sites across the Amazon basin. Measured values ranged from 218 kg m−3for a Cordia sagotii (Boraginaceae) from Mountagne de Tortue, French Guiana to 1130 kg m−3 for an Aiouea sp. (Lauraceae) from Caxiuana, Central Pará, Brazil. Analysis of variance showed significant differences in average ρx across regions and sampled plots as well as significant differences between families, genera and species. A partitioning of the total variance in the dataset showed that species identity (family, genera and species) accounted for 33% with environment (geographic location and plot) accounting for an additional 26%; the remaining "residual" variance accounted for 41% of the total variance. Variations in plot means, were, however, not only accountable by differences in species composition because xylem density of the most widely distributed species in our dataset varied systematically from plot to plot. Thus, as well as having a genetic component, branch xylem density is a plastic trait that, for any given species, varies according to where the tree is growing in a predictable manner. Within the analysed taxa, exceptions to this general rule seem to be pioneer species belonging for example to the Urticaceae whose branch xylem density is more constrained than most species sampled in this study. These patterns of variation of branch xylem density across Amazonia suggest a large functional diversity amongst Amazonian trees which is not well understood.
- Published
- 2009
26. An International Network to Monitor the Structure, Composition and Dynamics of Amazonian Forests (RAINFOR)
- Author
-
Malhi, Y., Phillips, O. L., Lloyd, J., Baker, T., Wright, J., Almeida, S., Arroyo, L., Frederiksen, T., Grace, J., Higuchi, N., Killeen, T., Laurance, W. F., Leaño, C., Lewis, S., Meir, P., Monteagudo, A., Neill, D., Vargas, P. Núñez, Panfil, S. N., Patiño, S., Pitman, N., Quesada, C. A., Rudas-Ll., A., Salomão, R., Saleska, S., Silva, N., Silveira, M., Sombroek, W. G., Valencia, R., Martínez, R. Vásquez, Vieira, I. C. G., and Vinceti, B.
- Published
- 2002
27. Changes in Growth of Tropical Forests: Evaluating Potential Biases
- Author
-
Phillips, O. L., Malhi, Y., Vinceti, B., Baker, T., Lewis, S. L., Higuchi, N., Laurance, W. F., Vargas, P. Núñez, Martinez, R. Vásquez, Laurance, S., Ferreira, L. V., Stern, M., Brown, S., and Grace, J.
- Published
- 2002
- Full Text
- View/download PDF
28. CO2 balance of boreal, temperate, and tropical forests derived from a global database
- Author
-
LUYSSAERT, S, INGLIMA, I, JUNG, M, RICHARDSON, AD, REICHSTEIN, M, PAPALE, D, PIAO, SL, SCHULZE, E‐D, WINGATE, L, MATTEUCCI, G, ARAGAO, L, AUBINET, M, BEER, C, BERNHOFER, C, BLACK, KG, BONAL, D, BONNEFOND, J‐M, CHAMBERS, J, CIAIS, P, COOK, B, DAVIS, KJ, DOLMAN, AJ, GIELEN, B, GOULDEN, M, GRACE, J, GRANIER, A, GRELLE, A, GRIFFIS, T, GRÜNWALD, T, GUIDOLOTTI, G, HANSON, PJ, HARDING, R, HOLLINGER, DY, HUTYRA, LR, KOLARI, P, KRUIJT, B, KUTSCH, W, LAGERGREN, F, LAURILA, T, LAW, BE, LE MAIRE, G, LINDROTH, A, LOUSTAU, D, MALHI, Y, MATEUS, J, MIGLIAVACCA, M, MISSON, L, MONTAGNANI, L, MONCRIEFF, J, MOORS, E, MUNGER, JW, NIKINMAA, E, OLLINGER, SV, PITA, G, REBMANN, C, ROUPSARD, O, SAIGUSA, N, SANZ, MJ, SEUFERT, G, SIERRA, C, SMITH, M‐L, TANG, J, VALENTINI, R, VESALA, T, and JANSSENS, IA
- Subjects
Climate Action ,carbon cycle ,CO2 ,forest ecosystems ,global database ,gross primary productivity ,net ecosystem productivity ,net primary productivity ,Environmental Sciences ,Biological Sciences ,Ecology - Abstract
Terrestrial ecosystems sequester 2.1 Pg of atmospheric carbon annually. A large amount of the terrestrial sink is realized by forests. However, considerable uncertainties remain regarding the fate of this carbon over both short and long timescales. Relevant data to address these uncertainties are being collected at many sites around the world, but syntheses of these data are still sparse. To facilitate future synthesis activities, we have assembled a comprehensive global database for forest ecosystems, which includes carbon budget variables (fluxes and stocks), ecosystem traits (e.g. leaf area index, age), as well as ancillary site information such as management regime, climate, and soil characteristics. This publicly available database can be used to quantify global, regional or biome-specific carbon budgets; to re-examine established relationships; to test emerging hypotheses about ecosystem functioning [e.g. a constant net ecosystem production (NEP) to gross primary production (GPP) ratio]; and as benchmarks for model evaluations. In this paper, we present the first analysis of this database. We discuss the climatic influences on GPP, net primary production (NPP) and NEP and present the CO2 balances for boreal, temperate, and tropical forest biomes based on micrometeorological, ecophysiological, and biometric flux and inventory estimates. Globally, GPP of forests benefited from higher temperatures and precipitation whereas NPP saturated above either a threshold of 1500 mm precipitation or a mean annual temperature of 10 °C. The global pattern in NEP was insensitive to climate and is hypothesized to be mainly determined by nonclimatic conditions such as successional stage, management, site history, and site disturbance. In all biomes, closing the CO2 balance required the introduction of substantial biome-specific closure terms. Nonclosure was taken as an indication that respiratory processes, advection, and non-CO2 carbon fluxes are not presently being adequately accounted for. © 2007 Blackwell Publishing Ltd.
- Published
- 2007
29. Carbon Dioxide Measurements in the Nocturnal Boundary Layer over Amazonian Tropical Forest
- Author
-
Fisch, G., primary, Culf, A.D., additional, Malhi, Y., additional, Nobre, C.A., additional, and Nobre, A.D., additional
- Published
- 2019
- Full Text
- View/download PDF
30. Effect of drought on isoprene emission rates from leaves of Quercus virginiana Mill.
- Author
-
Pegoraro, E, Rey, A, Greenberg, J, Harley, P, Grace, J, Malhi, Y, and Guenther, A
- Subjects
photosynthesis ,stomatal conductance ,live oak ,water-stress ,leaf water potential ,Environmental Engineering ,Atmospheric Sciences ,Statistics ,Meteorology & Atmospheric Sciences - Abstract
Leaf isoprene emission rates (F iso) were studied in 2-year old trees of live oak (Quercus virginiana Mill.) during two drying-rewatering cycles. During the first drying-rewatering cycle, photosynthesis (A) and stomatal conductance (g s) decreased by 92%(±7%) and 91%(±8%), respectively, while F iso remained essentially constant for 8 days of treatment. After 12 days under severe drought conditions, F iso was reduced by 64%(±6%). Similar values were found during the second drying-rewatering cycle. During the recovery phase of both cycles, F iso recovered more quickly than A and g s. The lower drought sensitivity of F iso compared with that of A resulted in a higher percentage of fixed C lost as isoprene (C iso/C A) as plants became more stressed, reaching peaks of 50% when A was almost zero. F iso showed a strong negative linear relationship with pre-dawn leaf water potential (ψ PD) that could be a useful parameter to include in isoprene emission models to account for effects of drought stress on leaf F iso. © 2004 Elsevier Ltd. All rights reserved.
- Published
- 2004
31. The above-ground coarse wood productivity of 104 Neotropical forest plots.
- Author
-
Malhi, Y, Baker, TR, Phillips, OL, Almeida, S, Alvarez, E, Arroyo, L, Chave, J, Czimczik, CI, Di Fiore, A, and Higuchi, N
- Subjects
Amazonia ,carbon ,coarse wood productivity ,GPP ,growth ,NPP ,soil fertility ,tropical forests ,Biological Sciences ,Environmental Sciences ,Ecology - Abstract
The net primary production of tropical forests and its partitioning between long-lived carbon pools (wood) and shorter-lived pools (leaves, fine roots) are of considerable importance in the global carbon cycle. However, these terms have only been studied at a handful of field sites, and with no consistent calculation methodology. Here we calculate above-ground coarse wood carbon productivity for 104 forest plots in lowland New World humid tropical forests, using a consistent calculation methodology that incorporates corrections for spatial variations in tree-size distributions and wood density, and for census interval length. Mean wood density is found to be lower in more productive forests. We estimate that above-ground coarse wood productivity varies by more than a factor of three (between 1.5 and 5.5 Mg C ha-1a-1) across the Neotropical plots, with a mean value of 3.1 Mg C ha-a-1. There appear to be no obvious relationships between wood productivity and rainfall, dry season length or sunshine, but there is some hint of increased productivity at lower temperatures. There is, however, also strong evidence for a positive relationship between wood productivity and soil fertility. Fertile soils tend to become more common towards the Andes and at slightly higher than average elevations, so the apparent temperature/productivity relationship is probably not a direct one. Coarse wood productivity accounts for only a fraction of overall tropical forest net primary productivity, but the available data indicate that it is approximately proportional to total above-ground productivity. We speculate that the large variation in wood productivity is unlikely to directly imply an equivalent variation in gross primary production. Instead a shifting balance in carbon allocation between respiration, wood carbon and fine root production seems the more likely explanation. © 2004 Blackwell Publishing Ltd.
- Published
- 2004
32. Variation in potential for isoprene emissions among Neotropical forest sites
- Author
-
Harley, P, Vasconcellos, P, Vierling, L, Pinheiro, CCDS, Greenberg, J, Guenther, A, Klinger, L, De Almeida, SS, Neill, D, Baker, T, Phillips, O, and Malhi, Y
- Subjects
atmospheric chemistry ,forest inventory ,isoprene ,Neotropical forests ,VOC ,Biological Sciences ,Environmental Sciences ,Ecology - Abstract
As part of the Large Scale Biosphere-Atmosphere Experiment in Amazônia (LBA), we have developed a bottom-up approach for estimating canopy-scale fluxes of isoprene. Estimating isoprene fluxes for a given forest ecosystem requires knowledge of foliar biomass, segregated by species, and the isoprene emission characteristics of the individual tree species comprising the forest. In this study, approximately 38% of 125 tree species examined at six sites in the Brazilian Amazon emitted isoprene. Given logistical difficulties and extremely high species diversity, it was possible to screen only a small percentage of tree species, and we propose a protocol for estimating the emission capacity of unmeasured taxa using a taxonomic approach, in which we assign to an unmeasured genus a value based on the percentage of genera within its plant family which have been shown to emit isoprene. Combining this information with data obtained from 14 tree censuses at four Neotropical forest sites, we have estimated the percentage of isoprene-emitting biomass at each site. The relative contribution of each genus of tree is estimated as the basal area of all trees of that genus divided by the total basal area of the plot. Using this technique, the percentage of isoprene-emitting biomass varied from 20% to 42% (mean = 31%; SD = 8%). Responses of isoprene emission to varying light and temperature, measured on a sun-adapted leaf of mango (Mangifera indica L.), suggest that existing algorithms developed for temperate species are adequate for tropical species as well. Incorporating these algorithms, estimates of isoprene-emitting biomass, isoprene emission capacity, and site foliar biomass into a canopy flux model, canopy-scale fluxes of isoprene were predicted and compared with the above-canopy fluxes measured at two sites. Our bottom-up approach overestimates fluxes by about 50%, but variations in measured fluxes between the two sites are largely explained by observed variation in the amount of isoprene-emitting biomass. © 2004 Blackwell Publishing Ltd.
- Published
- 2004
33. Pattern and process in Amazon tree turnover, 19762001
- Author
-
Phillips, OL, Baker, TR, Arroyo, L, Higuchi, N, Killeen, TJ, Laurance, WF, Lewis, SL, Lloyd, J, Malhi, Y, Monteagudo, A, Neill, DA, Vargas, P Nez, Silva, JNM, Terborgh, J, Martnez, R Vsquez, Alexiades, M, Almeida, S, Brown, S, Chave, J, Comiskey, JA, Czimczik, CI, Di Fiore, A, Erwin, T, Kuebler, C, Laurance, SG, Nascimento, HEM, Olivier, J, Palacios, W, Patio, S, Pitman, NCA, Quesada, CA, Saldias, M, Lezama, A Torres, and Vinceti, B
- Subjects
Biological Sciences ,Biodiversity ,Biomass ,Carbon ,Environmental Monitoring ,Geography ,Longitudinal Studies ,Mortality ,Population Dynamics ,Rain ,Reproduction ,Soil ,South America ,Trees ,Tropical Climate ,recruitment ,mortality ,tree turnover ,dynamics ,Amazonia ,forest ,Medical and Health Sciences ,Evolutionary Biology ,Biological sciences ,Biomedical and clinical sciences - Abstract
Previous work has shown that tree turnover, tree biomass and large liana densities have increased in mature tropical forest plots in the late twentieth century. These results point to a concerted shift in forest ecological processes that may already be having significant impacts on terrestrial carbon stocks, fluxes and biodiversity. However, the findings have proved controversial, partly because a rather limited number of permanent plots have been monitored for rather short periods. The aim of this paper is to characterize regional-scale patterns of 'tree turnover' (the rate with which trees die and recruit into a population) by using improved datasets now available for Amazonia that span the past 25 years. Specifically, we assess whether concerted changes in turnover are occurring, and if so whether they are general throughout the Amazon or restricted to one region or environmental zone. In addition, we ask whether they are driven by changes in recruitment, mortality or both. We find that: (i) trees 10 cm or more in diameter recruit and die twice as fast on the richer soils of southern and western Amazonia than on the poorer soils of eastern and central Amazonia; (ii) turnover rates have increased throughout Amazonia over the past two decades; (iii) mortality and recruitment rates have both increased significantly in every region and environmental zone, with the exception of mortality in eastern Amazonia; (iv) recruitment rates have consistently exceeded mortality rates; (v) absolute increases in recruitment and mortality rates are greatest in western Amazonian sites; and (vi) mortality appears to be lagging recruitment at regional scales. These spatial patterns and temporal trends are not caused by obvious artefacts in the data or the analyses. The trends cannot be directly driven by a mortality driver (such as increased drought or fragmentation-related death) because the biomass in these forests has simultaneously increased. Our findings therefore indicate that long-acting and widespread environmental changes are stimulating the growth and productivity of Amazon forests.
- Published
- 2004
34. Contribution and stability of forest-derived soil organic carbon during woody encroachment in a tropical savanna. A case study in Gabon
- Author
-
Chiti, T., Rey, A., Jeffery, K., Lauteri, M., Mihindou, V., Malhi, Y., Marzaioli, F., White, L. J. T., and Valentini, R.
- Published
- 2018
- Full Text
- View/download PDF
35. The global biogeography of tree leaf form and habit
- Author
-
Ma, H., Crowther, T., Mo, L., Maynard, D., Renner, S., van den Hoogen, J., Zou, Y., Liang, J., de-Miguel, S., Nabuurs, G.-J., Reich, P., Niinemets, Ü., Abegg, M., Adou Yao, Y., Alberti, G., Almeyda Zambrano, A., Alvarado, B., Alvarez-Dávila, E., Alvarez-Loayza, P., Alves, L., Ammer, C., Antón-Fernández, C., Araujo-Murakami, A., Arroyo, L., Avitabile, V., Aymard, G., Baker, T., Bałazy, R., Banki, O., Barroso, J., Bastian, M., Bastin, J.-F., Birigazzi, L., Birnbaum, P., Bitariho, R., Boeckx, P., Bongers, F., Bouriaud, O., Brancalion, P., Brandl, S., Brearley, F., Brienen, R., Broadbent, E., Bruelheide, H., Bussotti, F., Cazzolla Gatti, R., César, R., Cesljar, G., Chazdon, R., Chen, H., Chisholm, C., Cho, H., Cienciala, E., Clark, C., Clark, D., Colletta, G., Coomes, D., Valverde, F., Corral-Rivas, J., Crim, P., Cumming, J., Dayanandan, S., de Gasper, A., Decuyper, M., Derroire, G., DeVries, B., Djordjevic, I., Dolezal, J., Dourdain, A., Engone Obiang, N., Enquist, B., Eyre, T., Fandohan, A., Fayle, T., Feldpausch, T., Ferreira, L., Finér, L., Fischer, M., Fletcher, C., Fridman, J., Frizzera, L., Gamarra, J., Gianelle, D., Glick, H., Harris, D., Hector, A., Hemp, A., Hengeveld, G., Hérault, B., Herbohn, J., Herold, M., Hillers, A., Honorio Coronado, E., Hui, C., Ibanez, T., Amaral, I., Imai, N., Jagodziński, A., Jaroszewicz, B., Johannsen, V., Joly, C., Jucker, T., Jung, I., Karminov, V., Kartawinata, K., Kearsley, E., Kenfack, D., Kennard, D., Kepfer-Rojas, S., Keppel, G., Khan, M., Killeen, T., Kim, H., Kitayama, K., Köhl, M., Korjus, H., Kraxner, F., Kucher, D., Laarmann, D., Lang, M., Lewis, S., Lu, H., Lukina, N., Maitner, B., Malhi, Y., Marcon, E., Marimon, B., Marimon-Junior, B., Marshall, A., Martin, E., Meave, J., Melo-Cruz, O., Mendoza, C., Merow, C., Monteagudo Mendoza, A., Moreno, V., Mukul, S., Mundhenk, P., Nava-Miranda, M., Neill, D., Neldner, V., Nevenic, R., Ngugi, M., Niklaus, P., Oleksyn, J., Ontikov, P., Ortiz-Malavasi, E., Pan, Y., Paquette, A., Parada-Gutierrez, A., Parfenova, E., Park, M., Parren, M., Parthasarathy, N., Peri, P., Pfautsch, S., Phillips, O., Picard, N., Piedade, M., Piotto, D., Pitman, N., Mendoza-Polo, I., Poulsen, A., Poulsen, J., Pretzsch, H., Ramirez Arevalo, F., Restrepo-Correa, Z., Rodeghiero, M., Rolim, S., Roopsind, A., Rovero, F., Rutishauser, E., Saikia, P., Salas-Eljatib, C., Saner, P., Schall, P., Schelhaas, M.-J., Shchepashchenko, D., Scherer-Lorenzen, M., Schmid, B., Schöngart, J., Searle, E., Seben, V., Serra-Diaz, J., Sheil, D., Shvidenko, A., Silva-Espejo, J., Silveira, M., Singh, J., Sist, P., Slik, F., Sonké, B., Souza, A., Miścicki, S., Stereńczak, K., Svenning, J.-C., Svoboda, M., Swanepoel, B., Targhetta, N., Tchebakova, N., ter Steege, H., Thomas, R., Tikhonova, E., Umunay, P., Usoltsev, V., Valencia, R., Valladares, F., van der Plas, F., Van Do, T., van Nuland, M., Vasquez, R., Verbeeck, H., Viana, H., Vibrans, A., Vieira, S., von Gadow, K., Wang, H.-F., Watson, J., Werner, G., Westerlund, B., Wiser, S., Wittmann, F., Woell, H., Wortel, V., Zagt, R., Zawiła-Niedźwiecki, T., Zhang, C., Zhao, X., Zhou, M., Zhu, Z.-X., Zo-Bi, I., Zohner, C., Ma, H., Crowther, T., Mo, L., Maynard, D., Renner, S., van den Hoogen, J., Zou, Y., Liang, J., de-Miguel, S., Nabuurs, G.-J., Reich, P., Niinemets, Ü., Abegg, M., Adou Yao, Y., Alberti, G., Almeyda Zambrano, A., Alvarado, B., Alvarez-Dávila, E., Alvarez-Loayza, P., Alves, L., Ammer, C., Antón-Fernández, C., Araujo-Murakami, A., Arroyo, L., Avitabile, V., Aymard, G., Baker, T., Bałazy, R., Banki, O., Barroso, J., Bastian, M., Bastin, J.-F., Birigazzi, L., Birnbaum, P., Bitariho, R., Boeckx, P., Bongers, F., Bouriaud, O., Brancalion, P., Brandl, S., Brearley, F., Brienen, R., Broadbent, E., Bruelheide, H., Bussotti, F., Cazzolla Gatti, R., César, R., Cesljar, G., Chazdon, R., Chen, H., Chisholm, C., Cho, H., Cienciala, E., Clark, C., Clark, D., Colletta, G., Coomes, D., Valverde, F., Corral-Rivas, J., Crim, P., Cumming, J., Dayanandan, S., de Gasper, A., Decuyper, M., Derroire, G., DeVries, B., Djordjevic, I., Dolezal, J., Dourdain, A., Engone Obiang, N., Enquist, B., Eyre, T., Fandohan, A., Fayle, T., Feldpausch, T., Ferreira, L., Finér, L., Fischer, M., Fletcher, C., Fridman, J., Frizzera, L., Gamarra, J., Gianelle, D., Glick, H., Harris, D., Hector, A., Hemp, A., Hengeveld, G., Hérault, B., Herbohn, J., Herold, M., Hillers, A., Honorio Coronado, E., Hui, C., Ibanez, T., Amaral, I., Imai, N., Jagodziński, A., Jaroszewicz, B., Johannsen, V., Joly, C., Jucker, T., Jung, I., Karminov, V., Kartawinata, K., Kearsley, E., Kenfack, D., Kennard, D., Kepfer-Rojas, S., Keppel, G., Khan, M., Killeen, T., Kim, H., Kitayama, K., Köhl, M., Korjus, H., Kraxner, F., Kucher, D., Laarmann, D., Lang, M., Lewis, S., Lu, H., Lukina, N., Maitner, B., Malhi, Y., Marcon, E., Marimon, B., Marimon-Junior, B., Marshall, A., Martin, E., Meave, J., Melo-Cruz, O., Mendoza, C., Merow, C., Monteagudo Mendoza, A., Moreno, V., Mukul, S., Mundhenk, P., Nava-Miranda, M., Neill, D., Neldner, V., Nevenic, R., Ngugi, M., Niklaus, P., Oleksyn, J., Ontikov, P., Ortiz-Malavasi, E., Pan, Y., Paquette, A., Parada-Gutierrez, A., Parfenova, E., Park, M., Parren, M., Parthasarathy, N., Peri, P., Pfautsch, S., Phillips, O., Picard, N., Piedade, M., Piotto, D., Pitman, N., Mendoza-Polo, I., Poulsen, A., Poulsen, J., Pretzsch, H., Ramirez Arevalo, F., Restrepo-Correa, Z., Rodeghiero, M., Rolim, S., Roopsind, A., Rovero, F., Rutishauser, E., Saikia, P., Salas-Eljatib, C., Saner, P., Schall, P., Schelhaas, M.-J., Shchepashchenko, D., Scherer-Lorenzen, M., Schmid, B., Schöngart, J., Searle, E., Seben, V., Serra-Diaz, J., Sheil, D., Shvidenko, A., Silva-Espejo, J., Silveira, M., Singh, J., Sist, P., Slik, F., Sonké, B., Souza, A., Miścicki, S., Stereńczak, K., Svenning, J.-C., Svoboda, M., Swanepoel, B., Targhetta, N., Tchebakova, N., ter Steege, H., Thomas, R., Tikhonova, E., Umunay, P., Usoltsev, V., Valencia, R., Valladares, F., van der Plas, F., Van Do, T., van Nuland, M., Vasquez, R., Verbeeck, H., Viana, H., Vibrans, A., Vieira, S., von Gadow, K., Wang, H.-F., Watson, J., Werner, G., Westerlund, B., Wiser, S., Wittmann, F., Woell, H., Wortel, V., Zagt, R., Zawiła-Niedźwiecki, T., Zhang, C., Zhao, X., Zhou, M., Zhu, Z.-X., Zo-Bi, I., and Zohner, C.
- Abstract
Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records. We found that global variation in leaf habit is primarily driven by isothermality and soil characteristics, while leaf form is predominantly driven by temperature. Given these relationships, we estimate that 38% of global tree individuals are needle-leaved evergreen, 29% are broadleaved evergreen, 27% are broadleaved deciduous and 5% are needle-leaved deciduous. The aboveground biomass distribution among these tree types is approximately 21% (126.4 Gt), 54% (335.7 Gt), 22% (136.2 Gt) and 3% (18.7 Gt), respectively. We further project that, depending on future emissions pathways, 17-34% of forested areas will experience climate conditions by the end of the century that currently support a different forest type, highlighting the intensification of climatic stress on existing forests. By quantifying the distribution of tree leaf types and their corresponding biomass, and identifying regions where climate change will exert greatest pressure on current leaf types, our results can help improve predictions of future terrestrial ecosystem functioning and carbon cycling.
- Published
- 2023
- Full Text
- View/download PDF
36. Integrated global assessment of the natural forest carbon potential
- Author
-
Mo, L., Zohner, C., Reich, P., Liang, J., de Miguel, S., Nabuurs, G., Renner, S., van den Hoogen, J., Araza, A., Herold, M., Mirzagholi, L., Ma, H., Averill, C., Phillips, O., Gamarra, J., Hordijk, I., Routh, D., Abegg, M., Adou Yao, Y., Alberti, G., Almeyda Zambrano, A., Alvarado, B., Alvarez-Dávila, E., Alvarez-Loayza, P., Alves, L., Amaral, I., Ammer, C., Antón-Fernández, C., Araujo-Murakami, A., Arroyo, L., Avitabile, V., Aymard, G., Baker, T., Bałazy, R., Banki, O., Barroso, J., Bastian, M., Bastin, J., Birigazzi, L., Birnbaum, P., Bitariho, R., Boeckx, P., Bongers, F., Bouriaud, O., Brancalion, P., Brandl, S., Brearley, F., Brienen, R., Broadbent, E., Bruelheide, H., Bussotti, F., Cazzolla Gatti, R., César, R., Cesljar, G., Chazdon, R., Chen, H., Chisholm, C., Cho, H., Cienciala, E., Clark, C., Clark, D., Colletta, G., Coomes, D., Cornejo Valverde, F., Corral-Rivas, J., Crim, P., Cumming, J., Dayanandan, S., de Gasper, A., Decuyper, M., Derroire, G., DeVries, B., Djordjevic, I., Dolezal, J., Dourdain, A., Engone Obiang, N., Enquist, B., Eyre, T., Fandohan, A., Fayle, T., Feldpausch, T., Ferreira, L., Finér, L., Fischer, M., Fletcher, C., Frizzera, L., Gianelle, D., Glick, H., Harris, D., Hector, A., Hemp, A., Hengeveld, G., Hérault, B., Herbohn, J., Hillers, A., Honorio Coronado, E., Hui, C., Ibanez, T., Imai, N., Jagodziński, A., Jaroszewicz, B., Johannsen, V., Joly, C., Jucker, T., Jung, I., Karminov, V., Kartawinata, K., Kearsley, E., Kenfack, D., Kennard, D., Kepfer-Rojas, S., Keppel, G., Khan, M., Killeen, T., Kim, H., Kitayama, K., Köhl, M., Korjus, H., Kraxner, F., Kucher, D., Laarmann, D., Lang, M., Lu, H., Lukina, N., Maitner, B., Malhi, Y., Marcon, E., Marimon, B., Marimon-Junior, B., Marshall, A., Martin, E., Meave, J., Melo-Cruz, O., Mendoza, C., Mendoza-Polo, I., Miscicki, S., Merow, C., Monteagudo Mendoza, A., Moreno, V., Mukul, S., Mundhenk, P., Nava-Miranda, M., Neill, D., Neldner, V., Nevenic, R., Ngugi, M., Niklaus, P., Oleksyn, J., Ontikov, P., Ortiz-Malavasi, E., Pan, Y., Paquette, A., Parada-Gutierrez, A., Parfenova, E., Park, M., Parren, M., Parthasarathy, N., Peri, P., Pfautsch, S., Picard, N., Piedade, M., Piotto, D., Pitman, N., Poulsen, A., Poulsen, J., Pretzsch, H., Ramirez Arevalo, F., Restrepo-Correa, Z., Rodeghiero, M., Rolim, S., Roopsind, A., Rovero, F., Rutishauser, E., Saikia, P., Salas-Eljatib, C., Saner, P., Schall, P., Schelhaas, M., Shchepashchenko, D., Scherer-Lorenzen, M., Schmid, B., Schöngart, J., Searle, E., Seben, V., Serra-Diaz, J., Sheil, D., Shvidenko, A., Silva-Espejo, J., Silveira, M., Singh, J., Sist, P., Slik, F., Sonké, B., Souza, A., Stereńczak, K., Svenning, J., Svoboda, M., Swanepoel, B., Targhetta, N., Tchebakova, N., ter Steege, H., Thomas, R., Tikhonova, E., Umunay, P., Usoltsev, V., Valencia, R., Valladares, F., van der Plas, F., Van Do, T., van Nuland, M., Vasquez, R., Verbeeck, H., Viana, H., Vibrans, A., Vieira, S., von Gadow, K., Wang, H., Watson, J., Werner, G., Wiser, S., Wittmann, F., Woell, H., Wortel, V., Zagt, R., Zawiła-Niedźwiecki, T., Zhang, C., Zhao, X., Zhou, M., Zhu, Z., Zo-Bi, I., Gann, G., Crowther, T., Mo, L., Zohner, C., Reich, P., Liang, J., de Miguel, S., Nabuurs, G., Renner, S., van den Hoogen, J., Araza, A., Herold, M., Mirzagholi, L., Ma, H., Averill, C., Phillips, O., Gamarra, J., Hordijk, I., Routh, D., Abegg, M., Adou Yao, Y., Alberti, G., Almeyda Zambrano, A., Alvarado, B., Alvarez-Dávila, E., Alvarez-Loayza, P., Alves, L., Amaral, I., Ammer, C., Antón-Fernández, C., Araujo-Murakami, A., Arroyo, L., Avitabile, V., Aymard, G., Baker, T., Bałazy, R., Banki, O., Barroso, J., Bastian, M., Bastin, J., Birigazzi, L., Birnbaum, P., Bitariho, R., Boeckx, P., Bongers, F., Bouriaud, O., Brancalion, P., Brandl, S., Brearley, F., Brienen, R., Broadbent, E., Bruelheide, H., Bussotti, F., Cazzolla Gatti, R., César, R., Cesljar, G., Chazdon, R., Chen, H., Chisholm, C., Cho, H., Cienciala, E., Clark, C., Clark, D., Colletta, G., Coomes, D., Cornejo Valverde, F., Corral-Rivas, J., Crim, P., Cumming, J., Dayanandan, S., de Gasper, A., Decuyper, M., Derroire, G., DeVries, B., Djordjevic, I., Dolezal, J., Dourdain, A., Engone Obiang, N., Enquist, B., Eyre, T., Fandohan, A., Fayle, T., Feldpausch, T., Ferreira, L., Finér, L., Fischer, M., Fletcher, C., Frizzera, L., Gianelle, D., Glick, H., Harris, D., Hector, A., Hemp, A., Hengeveld, G., Hérault, B., Herbohn, J., Hillers, A., Honorio Coronado, E., Hui, C., Ibanez, T., Imai, N., Jagodziński, A., Jaroszewicz, B., Johannsen, V., Joly, C., Jucker, T., Jung, I., Karminov, V., Kartawinata, K., Kearsley, E., Kenfack, D., Kennard, D., Kepfer-Rojas, S., Keppel, G., Khan, M., Killeen, T., Kim, H., Kitayama, K., Köhl, M., Korjus, H., Kraxner, F., Kucher, D., Laarmann, D., Lang, M., Lu, H., Lukina, N., Maitner, B., Malhi, Y., Marcon, E., Marimon, B., Marimon-Junior, B., Marshall, A., Martin, E., Meave, J., Melo-Cruz, O., Mendoza, C., Mendoza-Polo, I., Miscicki, S., Merow, C., Monteagudo Mendoza, A., Moreno, V., Mukul, S., Mundhenk, P., Nava-Miranda, M., Neill, D., Neldner, V., Nevenic, R., Ngugi, M., Niklaus, P., Oleksyn, J., Ontikov, P., Ortiz-Malavasi, E., Pan, Y., Paquette, A., Parada-Gutierrez, A., Parfenova, E., Park, M., Parren, M., Parthasarathy, N., Peri, P., Pfautsch, S., Picard, N., Piedade, M., Piotto, D., Pitman, N., Poulsen, A., Poulsen, J., Pretzsch, H., Ramirez Arevalo, F., Restrepo-Correa, Z., Rodeghiero, M., Rolim, S., Roopsind, A., Rovero, F., Rutishauser, E., Saikia, P., Salas-Eljatib, C., Saner, P., Schall, P., Schelhaas, M., Shchepashchenko, D., Scherer-Lorenzen, M., Schmid, B., Schöngart, J., Searle, E., Seben, V., Serra-Diaz, J., Sheil, D., Shvidenko, A., Silva-Espejo, J., Silveira, M., Singh, J., Sist, P., Slik, F., Sonké, B., Souza, A., Stereńczak, K., Svenning, J., Svoboda, M., Swanepoel, B., Targhetta, N., Tchebakova, N., ter Steege, H., Thomas, R., Tikhonova, E., Umunay, P., Usoltsev, V., Valencia, R., Valladares, F., van der Plas, F., Van Do, T., van Nuland, M., Vasquez, R., Verbeeck, H., Viana, H., Vibrans, A., Vieira, S., von Gadow, K., Wang, H., Watson, J., Werner, G., Wiser, S., Wittmann, F., Woell, H., Wortel, V., Zagt, R., Zawiła-Niedźwiecki, T., Zhang, C., Zhao, X., Zhou, M., Zhu, Z., Zo-Bi, I., Gann, G., and Crowther, T.
- Abstract
Forests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system1. Remote-sensing estimates to quantify carbon losses from global forests2–5 are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced6 and satellite-derived approaches2,7,8 to evaluate the scale of the global forest carbon potential outside agricultural and urban lands. Despite regional variation, the predictions demonstrated remarkable consistency at a global scale, with only a 12% difference between the ground-sourced and satellite-derived estimates. At present, global forest carbon storage is markedly under the natural potential, with a total deficit of 226 Gt (model range = 151–363 Gt) in areas with low human footprint. Most (61%, 139 Gt C) of this potential is in areas with existing forests, in which ecosystem protection can allow forests to recover to maturity. The remaining 39% (87 Gt C) of potential lies in regions in which forests have been removed or fragmented. Although forests cannot be a substitute for emissions reductions, our results support the idea2,3,9 that the conservation, restoration and sustainable management of diverse forests offer valuable contributions to meeting global climate and biodiversity targets.
- Published
- 2023
37. Native diversity buffers against severity of non-native tree invasions
- Author
-
Delavaux, C., Crowther, T., Zohner, C., Robmann, N., Lauber, T., van den Hoogen, J., Kuebbing, S., Liang, J., de-Miguel, S., Nabuurs, G.-J., Reich, P.B., Abegg, M., Adou Yao, Y.C., Alberti, G., Almeyda Zambrano, A.M., Alvarado, B.V., Alvarez-Dávila, E., Alvarez-Loayza, P., Alves, L.F., Ammer, C., Antón-Fernández, C., Araujo-Murakami, A., Arroyo, L., Avitabile, V., Aymard, G.A., Baker, T.R., Bałazy, R., Banki, O., Barroso, J.G., Bastian, M.L., Bastin, J.-F., Birigazzi, L., Birnbaum, P., Bitariho, R., Boeckx, P., Bongers, F., Bouriaud, O., Brancalion, P.H.S., Brandl, S., Brienen, R., Broadbent, E.N., Bruelheide, H., Bussotti, F., Gatti, R.C., César, R.G., Cesljar, G., Chazdon, R., Chen, H.Y.H., Chisholm, C., Cho, H., Cienciala, E., Clark, C., Clark, D., Colletta, G.D., Coomes, D.A., Cornejo Valverde, F., Corral-Rivas, J.J., Crim, P.M., Cumming, J.R., Dayanandan, S., de Gasper, A.L., Decuyper, M., Derroire, G., DeVries, B., Djordjevic, I., Dolezal, J., Dourdain, A., Engone Obiang, N.L., Enquist, B.J., Eyre, T.J., Fandohan, A.B., Fayle, T.M., Feldpausch, T.R., Ferreira, L.V., Fischer, M., Fletcher, C., Frizzera, L., Gamarra, J.G.P., Gianelle, D., Glick, H.B., Harris, D.J., Hector, A., Hemp, A., Hengeveld, G., Hérault, B., Herbohn, J.L., Herold, M., Hillers, A., Honorio Coronado, E.N., Hui, C., Ibanez, T.T., Amaral, I., Imai, N., Jagodziński, A.M., Jaroszewicz, B., Johannsen, V.K., Joly, C.A., Jucker, T., Jung, I., Karminov, V., Kartawinata, K., Kearsley, E., Kenfack, D., Kennard, D.K., Kepfer-Rojas, S., Keppel, G., Khan, M.L., Killeen, T.J., Kim, H.S., Kitayama, K., Köhl, M., Korjus, H., Kraxner, F., Laarmann, D., Lang, M., Lewis, S.L., Lu, H., Lukina, N.V., Maitner, B.S., Malhi, Y., Marcon, E., Marimon, B.S., Marimon-Junior, B.H., Marshall, A.R., Martin, E.H., Martynenko, O., Meave, J.A., Melo-Cruz, O., Mendoza, C., Merow, C., Mendoza, A.M., Moreno, V.S., Mukul, S.A., Mundhenk, P., Nava-Miranda, M.G., Neill, D., Neldner, V., Nevenic, R., Ngugi, M., Niklaus, P., Oleksyn, J., Ontikov, P., Ortiz-Malavasi, E., Pan, Y., Paquette, A., Parada-Gutierrez, A., Parfenova, E., Park, M., Parren, M., Parthasarathy, N., Peri, P., Pfautsch, S., Phillips, O., Picard, N., Piedade, M., Piotto, D., Pitman, N., Polo, I., Poorter, L., Poulsen, A., Pretzsch, H., Ramirez Arevalo, F., Restrepo-Correa, Z., Rodeghiero, M., Rolim, S., Roopsind, A., Rovero, F., Rutishauser, E., Saikia, P., Salas-Eljatib, C., Saner, P., Schall, P., Shchepashchenko, D., Scherer-Lorenzen, M., Schmid, B., Schöngart, J., Searle, E., Seben, V., Serra-Diaz, J., Sheil, D., Shvidenko, A., Silva-Espejo, J., Silveira, M., Singh, J., Sist, P., Slik, F., Sonké, B., Souza, A., Stanislaw, M., Stereńczak, K., Svenning, J.-C., Svoboda, M., Swanepoel, B., Targhetta, N., Tchebakova, N., ter Steege, H., Thomas, R., Tikhonova, E., Umunay, P., Usoltsev, V., Valencia, R., Valladares, F., van der Plas, F., Do, T.V., van Nuland, M., Vasquez, R., Verbeeck, H., Viana, H., Vibrans, A., Vieira, S., von Gadow, K., Wang, H.-F., Watson, J., Werner, G., Wiser, S.K., Wittmann, F., Woell, H., Wortel, V., Zagt, R., Zawiła-Niedźwiecki, T., Zhang, C., Zhao, X., Zhou, M., Zhu, Z.-X., Zo-Bi, I., Maynard, D., Delavaux, C., Crowther, T., Zohner, C., Robmann, N., Lauber, T., van den Hoogen, J., Kuebbing, S., Liang, J., de-Miguel, S., Nabuurs, G.-J., Reich, P.B., Abegg, M., Adou Yao, Y.C., Alberti, G., Almeyda Zambrano, A.M., Alvarado, B.V., Alvarez-Dávila, E., Alvarez-Loayza, P., Alves, L.F., Ammer, C., Antón-Fernández, C., Araujo-Murakami, A., Arroyo, L., Avitabile, V., Aymard, G.A., Baker, T.R., Bałazy, R., Banki, O., Barroso, J.G., Bastian, M.L., Bastin, J.-F., Birigazzi, L., Birnbaum, P., Bitariho, R., Boeckx, P., Bongers, F., Bouriaud, O., Brancalion, P.H.S., Brandl, S., Brienen, R., Broadbent, E.N., Bruelheide, H., Bussotti, F., Gatti, R.C., César, R.G., Cesljar, G., Chazdon, R., Chen, H.Y.H., Chisholm, C., Cho, H., Cienciala, E., Clark, C., Clark, D., Colletta, G.D., Coomes, D.A., Cornejo Valverde, F., Corral-Rivas, J.J., Crim, P.M., Cumming, J.R., Dayanandan, S., de Gasper, A.L., Decuyper, M., Derroire, G., DeVries, B., Djordjevic, I., Dolezal, J., Dourdain, A., Engone Obiang, N.L., Enquist, B.J., Eyre, T.J., Fandohan, A.B., Fayle, T.M., Feldpausch, T.R., Ferreira, L.V., Fischer, M., Fletcher, C., Frizzera, L., Gamarra, J.G.P., Gianelle, D., Glick, H.B., Harris, D.J., Hector, A., Hemp, A., Hengeveld, G., Hérault, B., Herbohn, J.L., Herold, M., Hillers, A., Honorio Coronado, E.N., Hui, C., Ibanez, T.T., Amaral, I., Imai, N., Jagodziński, A.M., Jaroszewicz, B., Johannsen, V.K., Joly, C.A., Jucker, T., Jung, I., Karminov, V., Kartawinata, K., Kearsley, E., Kenfack, D., Kennard, D.K., Kepfer-Rojas, S., Keppel, G., Khan, M.L., Killeen, T.J., Kim, H.S., Kitayama, K., Köhl, M., Korjus, H., Kraxner, F., Laarmann, D., Lang, M., Lewis, S.L., Lu, H., Lukina, N.V., Maitner, B.S., Malhi, Y., Marcon, E., Marimon, B.S., Marimon-Junior, B.H., Marshall, A.R., Martin, E.H., Martynenko, O., Meave, J.A., Melo-Cruz, O., Mendoza, C., Merow, C., Mendoza, A.M., Moreno, V.S., Mukul, S.A., Mundhenk, P., Nava-Miranda, M.G., Neill, D., Neldner, V., Nevenic, R., Ngugi, M., Niklaus, P., Oleksyn, J., Ontikov, P., Ortiz-Malavasi, E., Pan, Y., Paquette, A., Parada-Gutierrez, A., Parfenova, E., Park, M., Parren, M., Parthasarathy, N., Peri, P., Pfautsch, S., Phillips, O., Picard, N., Piedade, M., Piotto, D., Pitman, N., Polo, I., Poorter, L., Poulsen, A., Pretzsch, H., Ramirez Arevalo, F., Restrepo-Correa, Z., Rodeghiero, M., Rolim, S., Roopsind, A., Rovero, F., Rutishauser, E., Saikia, P., Salas-Eljatib, C., Saner, P., Schall, P., Shchepashchenko, D., Scherer-Lorenzen, M., Schmid, B., Schöngart, J., Searle, E., Seben, V., Serra-Diaz, J., Sheil, D., Shvidenko, A., Silva-Espejo, J., Silveira, M., Singh, J., Sist, P., Slik, F., Sonké, B., Souza, A., Stanislaw, M., Stereńczak, K., Svenning, J.-C., Svoboda, M., Swanepoel, B., Targhetta, N., Tchebakova, N., ter Steege, H., Thomas, R., Tikhonova, E., Umunay, P., Usoltsev, V., Valencia, R., Valladares, F., van der Plas, F., Do, T.V., van Nuland, M., Vasquez, R., Verbeeck, H., Viana, H., Vibrans, A., Vieira, S., von Gadow, K., Wang, H.-F., Watson, J., Werner, G., Wiser, S.K., Wittmann, F., Woell, H., Wortel, V., Zagt, R., Zawiła-Niedźwiecki, T., Zhang, C., Zhao, X., Zhou, M., Zhu, Z.-X., Zo-Bi, I., and Maynard, D.
- Abstract
Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species1,2. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies3,4. Here, leveraging global tree databases5-7, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity. We find that anthropogenic factors are key to predicting whether a location is invaded, but that invasion severity is underpinned by native diversity, with higher diversity predicting lower invasion severity. Temperature and precipitation emerge as strong predictors of invasion strategy, with non-native species invading successfully when they are similar to the native community in cold or dry extremes. Yet, despite the influence of these ecological forces in determining invasion strategy, we find evidence that these patterns can be obscured by human activity, with lower ecological signal in areas with higher proximity to shipping ports. Our global perspective of non-native tree invasion highlights that human drivers influence non-native tree presence, and that native phylogenetic and functional diversity have a critical role in the establishment and spread of subsequent invasions.
- Published
- 2023
- Full Text
- View/download PDF
38. Evenness mediates the global relationship between forest productivity and richness
- Author
-
Hordijk, I., Maynard, D.S., Hart, S.P., Lidong, M., ter Steege, H., Liang, J., de‐Miguel, S., Nabuurs, G.‐J., Reich, P., Abegg, M., Adou Yao, C., Alberti, G., Almeyda Zambrano, A., Alvarado, B., Esteban, A.-D., Alvarez‐Loayza, P., Alves, L., Ammer, C., Antón‐Fernández, C., Araujo‐Murakami, A., Arroyo, L., Avitabile, V., Aymard C, G., Baker, T., Bałazy, R., Banki, O., Barroso, J., Bastian, M., Bastin, J.-F., Birigazzi, L., Birnbaum, P., Bitariho, R., Boeckx, P., Bongers, F., Bouriaud, O., Brancalion, P., Brandl, S., Brienen, R., Broadbent, E., Bruelheide, H., Bussotti, F., Cazzolla Gatti, R., César, R., Cesljar, G., Chazdon, R., Chen, H., Chisholm, C., Cienciala, E., Clark, C., Clark, D., Colletta, G., Coomes, D., Cornejo Valverde, F., Corral‐Rivas, J., Crim, P., Cumming, J., Dayanandan, S., de Gasper, A., Decuyper, M., Derroire, G., DeVries, B., Djordjevic, I., Iêda, A., Dourdain, A., Nestor Laurier, E., Enquist, B., Eyre, T., Fandohan, A., Fayle, T., Ferreira, L., Feldpausch, T., Finér, L., Fischer, M., Fletcher, C., Frizzera, L., Gamarra, J., Gianelle, D., Glick, H., Harris, D., Hector, A., Hemp, A., Hengeveld, G., Hérault, B., Herbohn, J., Hillers, A., Honorio Coronado, E., Hui, C., Cho, H., Ibanez, T., Bin Jung, I., Imai, N., Jagodzinski, A., Jaroszewicz, B., Johanssen, V., Joly, C., Jucker, T., Karminov, V., Kartawinata, K., Kearsley, E., Kenfack, D., Kennard, D., Kepfer‐Rojas, S., Keppel, G., Khan, M., Killeen, T., Kim, H., Kitayama, K., Köhl, M., Korjus, H., Kraxner, F., Laarmann, D., Lang, M., Lewis, S., Lu, H., Lukina, N., Maitner, B., Malhi, Y., Marcon, E., Marimon, B., Marimon‐Junior, B., Marshall, A., Martin, E., Martynenko, O., Meave, J., Melo‐Cruz, O., Mendoza, C., Merow, C., Stanislaw, M., Mendoza, A., Moreno, V., Mukul, S., Mundhenk, P., Nava‐Miranda, M., Neill, D., Neldner, V., Nevenic, R., Ngugi, M., Niklaus, P., Oleksyn, J., Ontikov, P., Ortiz‐Malavasi, E., Pan, Y., Paquette, A., Parada‐Gutierrez, A., Parfenova, E., Park, M., Parren, M., Parthasarathy, N., Peri, P., Pfautsch, S., Phillips, O., Picard, N., Piedade, M., Piotto, D., Pitman, N., Polo, I., Poorter, L., Poulsen, A., Poulsen, J., Pretzsch, H., Ramirez Arevalo, F., Restrepo‐Correa, Z., Rodeghiero, M., Rolim, S., Roopsind, A., Rovero, F., Rutishauser, E., Saikia, P., Salas‐Eljatib, C., Schall, P., Shchepashchenko, D., Scherer‐Lorenzen, M., Schmid, B., Schöngart, J., Searle, E., Šebeň, V., Serra‐Diaz, J., Sheil, D., Shvidenko, A., Silva‐Espejo, J., Silveira, M., Singh, J., Sist, P., Slik, F., Sonké, B., Souza, A., Stereńczak, K., Svenning, J.-C., Svoboda, M., Swanepoel, B., Targhetta, N., Tchebakova, N., Thomas, R., Tikhonova, E., Umunay, P., Usoltsev, V., Valencia, R., Valladares, F., van der Plas, F., Tran, D., Van Nuland, M., Vasquez Martinez, R., Verbeeck, H., Viana, H., Vibrans, A., Vieira, S., von Gadow, K., Wang, H.-F., Watson, J., Werner, G., Wiser, S., Wittmann, F., Wortel, V., Zagt, R., Zawila‐Niedzwiecki, T., Zhang, C., Zhao, X., Zhou, M., Zhu, Z.-X., Zo‐Bi, I., Crowther, T., Hordijk, I., Maynard, D.S., Hart, S.P., Lidong, M., ter Steege, H., Liang, J., de‐Miguel, S., Nabuurs, G.‐J., Reich, P., Abegg, M., Adou Yao, C., Alberti, G., Almeyda Zambrano, A., Alvarado, B., Esteban, A.-D., Alvarez‐Loayza, P., Alves, L., Ammer, C., Antón‐Fernández, C., Araujo‐Murakami, A., Arroyo, L., Avitabile, V., Aymard C, G., Baker, T., Bałazy, R., Banki, O., Barroso, J., Bastian, M., Bastin, J.-F., Birigazzi, L., Birnbaum, P., Bitariho, R., Boeckx, P., Bongers, F., Bouriaud, O., Brancalion, P., Brandl, S., Brienen, R., Broadbent, E., Bruelheide, H., Bussotti, F., Cazzolla Gatti, R., César, R., Cesljar, G., Chazdon, R., Chen, H., Chisholm, C., Cienciala, E., Clark, C., Clark, D., Colletta, G., Coomes, D., Cornejo Valverde, F., Corral‐Rivas, J., Crim, P., Cumming, J., Dayanandan, S., de Gasper, A., Decuyper, M., Derroire, G., DeVries, B., Djordjevic, I., Iêda, A., Dourdain, A., Nestor Laurier, E., Enquist, B., Eyre, T., Fandohan, A., Fayle, T., Ferreira, L., Feldpausch, T., Finér, L., Fischer, M., Fletcher, C., Frizzera, L., Gamarra, J., Gianelle, D., Glick, H., Harris, D., Hector, A., Hemp, A., Hengeveld, G., Hérault, B., Herbohn, J., Hillers, A., Honorio Coronado, E., Hui, C., Cho, H., Ibanez, T., Bin Jung, I., Imai, N., Jagodzinski, A., Jaroszewicz, B., Johanssen, V., Joly, C., Jucker, T., Karminov, V., Kartawinata, K., Kearsley, E., Kenfack, D., Kennard, D., Kepfer‐Rojas, S., Keppel, G., Khan, M., Killeen, T., Kim, H., Kitayama, K., Köhl, M., Korjus, H., Kraxner, F., Laarmann, D., Lang, M., Lewis, S., Lu, H., Lukina, N., Maitner, B., Malhi, Y., Marcon, E., Marimon, B., Marimon‐Junior, B., Marshall, A., Martin, E., Martynenko, O., Meave, J., Melo‐Cruz, O., Mendoza, C., Merow, C., Stanislaw, M., Mendoza, A., Moreno, V., Mukul, S., Mundhenk, P., Nava‐Miranda, M., Neill, D., Neldner, V., Nevenic, R., Ngugi, M., Niklaus, P., Oleksyn, J., Ontikov, P., Ortiz‐Malavasi, E., Pan, Y., Paquette, A., Parada‐Gutierrez, A., Parfenova, E., Park, M., Parren, M., Parthasarathy, N., Peri, P., Pfautsch, S., Phillips, O., Picard, N., Piedade, M., Piotto, D., Pitman, N., Polo, I., Poorter, L., Poulsen, A., Poulsen, J., Pretzsch, H., Ramirez Arevalo, F., Restrepo‐Correa, Z., Rodeghiero, M., Rolim, S., Roopsind, A., Rovero, F., Rutishauser, E., Saikia, P., Salas‐Eljatib, C., Schall, P., Shchepashchenko, D., Scherer‐Lorenzen, M., Schmid, B., Schöngart, J., Searle, E., Šebeň, V., Serra‐Diaz, J., Sheil, D., Shvidenko, A., Silva‐Espejo, J., Silveira, M., Singh, J., Sist, P., Slik, F., Sonké, B., Souza, A., Stereńczak, K., Svenning, J.-C., Svoboda, M., Swanepoel, B., Targhetta, N., Tchebakova, N., Thomas, R., Tikhonova, E., Umunay, P., Usoltsev, V., Valencia, R., Valladares, F., van der Plas, F., Tran, D., Van Nuland, M., Vasquez Martinez, R., Verbeeck, H., Viana, H., Vibrans, A., Vieira, S., von Gadow, K., Wang, H.-F., Watson, J., Werner, G., Wiser, S., Wittmann, F., Wortel, V., Zagt, R., Zawila‐Niedzwiecki, T., Zhang, C., Zhao, X., Zhou, M., Zhu, Z.-X., Zo‐Bi, I., and Crowther, T.
- Abstract
1. Biodiversity is an important component of natural ecosystems, with higher species richness often correlating with an increase in ecosystem productivity. Yet, this relationship varies substantially across environments, typically becoming less pronounced at high levels of species richness. However, species richness alone cannot reflect all important properties of a community, including community evenness, which may mediate the relationship between biodiversity and productivity. If the evenness of a community correlates negatively with richness across forests globally, then a greater number of species may not always increase overall diversity and productivity of the system. Theoretical work and local empirical studies have shown that the effect of evenness on ecosystem functioning may be especially strong at high richness levels, yet the consistency of this remains untested at a global scale. 2. Here, we used a dataset of forests from across the globe, which includes composition, biomass accumulation and net primary productivity, to explore whether productivity correlates with community evenness and richness in a way that evenness appears to buffer the effect of richness. Specifically, we evaluated whether low levels of evenness in speciose communities correlate with the attenuation of the richness–productivity relationship. 3. We found that tree species richness and evenness are negatively correlated across forests globally, with highly speciose forests typically comprising a few dominant and many rare species. Furthermore, we found that the correlation between diversity and productivity changes with evenness: at low richness, uneven communities are more productive, while at high richness, even communities are more productive. 4. Synthesis. Collectively, these results demonstrate that evenness is an integral component of the relationship between biodiversity and productivity, and that the attenuating effect of richness on forest productivity might be partly explain
- Published
- 2023
- Full Text
- View/download PDF
39. Environmental correlates of stem radius change in the endangered Fitzroya cupressoides forests of southern Chile
- Author
-
Urrutia-Jalabert, R., Rossi, S., Deslauriers, A., Malhi, Y., and Lara, A.
- Published
- 2015
- Full Text
- View/download PDF
40. ABOVEGROUND BIOMASS AND TREE DIVERSITY OF RIPARIAN ZONES IN AN OIL PALM-DOMINATED MIXED LANDSCAPE IN BORNEO
- Author
-
Singh, M, Malhi, Y, and Bhagwat, SA
- Published
- 2015
41. Floristics and biogeography of vegetation in seasonally dry tropical regions
- Author
-
DEXTER, K.G., SMART, B., BALDAUF, C., BAKER, T.R., BALINGA, M.P. BESSIKE, BRIENEN, R.J.W., FAUSET, S., FELDPAUSCH, T.R., SILVA, L. FERREIRA-DA, MULEDI, J. ILUNGA, LEWIS, S.L., LOPEZ-GONZALEZ, G., MARIMON-JUNIOR, B.H., MARIMON, B.S., MEERTS, P., PAGE, N., PARTHASARATHY, N., PHILLIPS, O.L., SUNDERLAND, T.C.H., THEILADE, I., WEINTRITT, J., AFFUM-BAFFOE, K., ARAUJO, A., ARROYO, L., BEGNE, S.K., NEVES, E. CARVALHO-DAS, COLLINS, M., CUNI-SANCHEZ, A., DJUIKOUO, M.N.K., ELIAS, F., FOLI, E.G., JEFFERY, K.J., KILLEEN, T.J., MALHI, Y., MARACAHIPES, L., MENDOZA, C., MONTEAGUDO-MENDOZA, A., MORANDI, P., OLIVEIRA-DOS SANTOS, C., PARADA, A.G., PARDO, G., PEH, K.S.-H., SALOMÃO, R.P., SILVEIRA, M., SINATORA –MIRANDA, H., SLIK, J.W.F., SONKE, B., TAEDOUMG, H.E., TOLEDO, M., UMETSU, R.K., VILLAROEL, R.G., VOS, V.A., WHITE, L.J.T., and PENNINGTON, R.T.
- Published
- 2015
42. The Carbon Cycle of a Maritime Ancient Temperate Broadleaved Woodland at Seasonal and Annual Scales
- Author
-
Fenn, K., Malhi, Y., Morecroft, M., Lloyd, C., and Thomas, M.
- Published
- 2015
43. The response of South American tropical forests to recent atmospheric changes
- Author
-
Phillips, O. L., Lewis, S. L., Baker, T. R., Malhi, Y., Bush, Mark, editor, Flenley, John, editor, and Gosling, William, editor
- Published
- 2011
- Full Text
- View/download PDF
44. Seasonality of above-ground net primary productivity along an Andean altitudinal transect in Peru
- Author
-
Girardin, C. A. J., Malhi, Y., Feeley, K. J., Rapp, J. M., Silman, M. R., Meir, P., Huasco, W. Huaraca, Salinas, N., Mamani, M., Silva-Espejo, J. E., Cabrera, K. García, Rios, W. Farfan, Metcalfe, D. B., Doughty, C. E., and Aragão, L. E. O. C.
- Published
- 2014
45. Identification of Areas in Brazil that Optimize Conservation of Forest Carbon, Jaguars, and Biodiversity
- Author
-
DE BARROS, ALAN E., MACDONALD, EWAN A., MATSUMOTO, MARCELO H., PAULA, ROGÉRIO C., NIJHAWAN, SAHIL, MALHI, Y., and MACDONALD, DAVID W.
- Published
- 2014
46. The sensitivity of wood production to seasonal and interannual variations in climate in a lowland Amazonian rainforest
- Author
-
Rowland, Lucy, Malhi, Y., Silva-Espejo, J. E., Farfán-Amézquita, F., Halladay, K., Doughty, C. E., Meir, P., and Phillips, O. L.
- Published
- 2014
- Full Text
- View/download PDF
47. The response of South American tropical forests to contemporary atmospheric change
- Author
-
Phillips, O. L., Lewis, S. L., Baker, T. R., Malhi, Y., Bush, Mark B., and Flenley, John R.
- Published
- 2007
- Full Text
- View/download PDF
48. Death from drought in tropical forests is triggered by hydraulics not carbon starvation
- Author
-
Rowland, L., da Costa, A.C.L., Galbraith, D.R., Oliveira, R.S., Binks, O.J., Oliveira, A.A.R., Pullen, A.M., Doughty, C.E., Metcalfe, D.B., Vasconcelos, S.S., Ferreira, L.V., Malhi, Y., Grace, J., Mencuccini, M., and Meir, P.
- Subjects
Droughts -- Physiological aspects -- Health aspects -- Environmental aspects -- Brazil ,Forests and forestry -- Research -- Brazil ,Starvation -- Physiological aspects -- Health aspects -- Analysis ,Environmental issues ,Science and technology ,Zoology and wildlife conservation - Abstract
Drought threatens tropical rainforests over seasonal to decadal timescales (1-4), but the drivers of tree mortality following drought remain poorly understood (5,6). It has been suggested that reduced availability of non-structural carbohydrates (NSC) critically increases mortality risk through insufficient carbon supply to metabolism ('carbon starvation') (7,8). However, little is known about how NSC stores are affected by drought, especially over the long term, and whether they are more important than hydraulic processes in determining drought-induced mortality. Using data from the world's longest-running experimental drought study in tropical rainforest (in the Brazilian Amazon), we test whether carbon starvation or deterioration of the water-conducting pathways from soil to leaf trigger tree mortality. Biomass loss from mortality in the experimentally droughted forest increased substantially after > 10 years of reduced soil moisture availability. The mortality signal was dominated by the death of large trees, which were at a much greater risk of hydraulic deterioration than smaller trees. However, we find no evidence that the droughted trees suffered carbon starvation, as their NSC concentrations were similar to those of non-droughted trees, and growth rates did not decline in either living or dying trees. Our results indicate that hydraulics, rather than carbon starvation, triggers tree death from drought in tropical rainforest., Drought-response observations from both field-scale experiments and natural droughts have demonstrated increased mortality over the short-term (1-3 years), with notably higher vulnerability for some taxa, and for larger trees (6,9,10). [...]
- Published
- 2015
49. The number of tree species on Earth
- Author
-
Gatti, RC, Reich, PB, Gamarra, JGP, Crowther, T, Hui, C, Morera, A, Bastin, JF, de-Miguel, S, Nabuurs, GJ, Svenning, JC, Serra-Diaz, JM, Merow, C, Enquist, B, Kamenetsky, M, Lee, J, Zhu, J, Fang, J, Jacobs, DF, Pijanowski, B, Banerjee, A, Giaquinto, RA, Alberti, G, Zambrano, AMA, Alvarez-Davila, E, Araujo-Murakami, A, Avitabile, V, Aymard, GA, Balazy, R, Baraloto, C, Barroso, JG, Bastian, ML, Birnbaum, P, Bitariho, R, Bogaert, J, Bongers, F, Bouriaud, O, Brancalion, PHS, Brearley, FQ, Broadbent, EN, Bussotti, F, da Silva, WC, César, RG, Češljar, G, Moscoso, VC, Chen, HYH, Cienciala, E, Clark, CJ, Coomes, DA, Dayanandan, S, Decuyper, M, Dee, LE, Del Aguila Pasquel, J, Derroire, G, Djuikouo, MNK, van Do, T, Dolezal, J, Đorđevic, I, Engel, J, Fayle, TM, Feldpausch, TR, Fridman, JK, Harris, DJ, Hemp, A, Hengeveld, G, Herault, B, Herold, M, Ibanez, T, Jagodzinski, AM, Jaroszewicz, B, Jeffery, KJ, Johannsen, VK, Jucker, T, Kangur, A, Karminov, VN, Kartawinata, K, Kennard, DK, Kepfer-Rojas, S, Keppel, G, Khan, ML, Khare, PK, Kileen, TJ, Kim, HS, Korjus, H, Kumar, A, Laarmann, D, Labrière, N, Lang, M, Lewis, SL, Lukina, N, Maitner, BS, Malhi, Y, Marshall, AR, Martynenko, OV, Monteagudo Mendoza, AL, Ontikov, PV, Ortiz-Malavasi, E, Pallqui Camacho, NC, Paquette, A, Park, M, Gatti, RC, Reich, PB, Gamarra, JGP, Crowther, T, Hui, C, Morera, A, Bastin, JF, de-Miguel, S, Nabuurs, GJ, Svenning, JC, Serra-Diaz, JM, Merow, C, Enquist, B, Kamenetsky, M, Lee, J, Zhu, J, Fang, J, Jacobs, DF, Pijanowski, B, Banerjee, A, Giaquinto, RA, Alberti, G, Zambrano, AMA, Alvarez-Davila, E, Araujo-Murakami, A, Avitabile, V, Aymard, GA, Balazy, R, Baraloto, C, Barroso, JG, Bastian, ML, Birnbaum, P, Bitariho, R, Bogaert, J, Bongers, F, Bouriaud, O, Brancalion, PHS, Brearley, FQ, Broadbent, EN, Bussotti, F, da Silva, WC, César, RG, Češljar, G, Moscoso, VC, Chen, HYH, Cienciala, E, Clark, CJ, Coomes, DA, Dayanandan, S, Decuyper, M, Dee, LE, Del Aguila Pasquel, J, Derroire, G, Djuikouo, MNK, van Do, T, Dolezal, J, Đorđevic, I, Engel, J, Fayle, TM, Feldpausch, TR, Fridman, JK, Harris, DJ, Hemp, A, Hengeveld, G, Herault, B, Herold, M, Ibanez, T, Jagodzinski, AM, Jaroszewicz, B, Jeffery, KJ, Johannsen, VK, Jucker, T, Kangur, A, Karminov, VN, Kartawinata, K, Kennard, DK, Kepfer-Rojas, S, Keppel, G, Khan, ML, Khare, PK, Kileen, TJ, Kim, HS, Korjus, H, Kumar, A, Laarmann, D, Labrière, N, Lang, M, Lewis, SL, Lukina, N, Maitner, BS, Malhi, Y, Marshall, AR, Martynenko, OV, Monteagudo Mendoza, AL, Ontikov, PV, Ortiz-Malavasi, E, Pallqui Camacho, NC, Paquette, A, and Park, M
- Abstract
One of the most fundamental questions in ecology is how many species inhabit the Earth. However, due to massive logistical and financial challenges and taxonomic difficulties connected to the species concept definition, the global numbers of species, including those of important and well-studied life forms such as trees, still remain largely unknown. Here, based on global ground-sourced data, we estimate the total tree species richness at global, continental, and biome levels. Our results indicate that there are ∼73,000 tree species globally, among which ∼9,000 tree species are yet to be discovered. Roughly 40% of undiscovered tree species are in South America. Moreover, almost one-third of all tree species to be discovered may be rare, with very low populations and limited spatial distribution (likely in remote tropical lowlands and mountains). These findings highlight the vulnerability of global forest biodiversity to anthropogenic changes in land use and climate, which disproportionately threaten rare species and thus, global tree richness.
- Published
- 2022
50. Tallo: A global tree allometry and crown architecture database
- Author
-
Jucker, T., Fischer, F. J., Chave, J., Coomes, D. A., Caspersen, J., Ali, A., Loubota, Panzou, G. J., Feldpausch, T. R., Falster, D., Usoltsev, V. A., Adu-Bredu, S., Alves, L. F., Aminpour, M., Angoboy, I. B., Anten, N. P. R., Antin, C., Askari, Y., Muñoz, R., Ayyappan, N., Balvanera, P., Banin, L., Barbier, N., Battles, J. J., Beeckman, H., Bocko, Y. E., Bond-Lamberty, B., Bongers, F., Bowers, S., Brade, T., van, Breugel, M., Chantrain, A., Chaudhary, R., Dai, J., Dalponte, M., Dimobe, K., Domec, J. -C., Doucet, J. -L., Duursma, R. A., Enríquez, M., van, Ewijk, K. Y., Farfán-Rios, W., Fayolle, A., Forni, E., Forrester, D. I., Gilani, H., Godlee, J. L., Gourlet-Fleury, S., Haeni, M., Hall, J. S., He, J. -K., Hemp, A., Hernández-Stefanoni, J. L., Higgins, S. I., Holdaway, R. J., Hussain, K., Hutley, L. B., Ichie, T., Iida, Y., Jiang, H. -S., Joshi, P. R., Kaboli, H., Larsary, M. K., Kenzo, T., Kloeppel, B. D., Kohyama, T., Kunwar, S., Kuyah, S., Kvasnica, J., Lin, S., Lines, E. R., Liu, H., Lorimer, C., Loumeto, J. -J., Malhi, Y., Marshall, P. L., Mattsson, E., Matula, R., Meave, J. A., Mensah, S., Mi, X., Momo, S., Moncrieff, G. R., Mora, F., Nissanka, S. P., O'Hara, K. L., Pearce, S., Pelissier, R., Peri, P. L., Ploton, P., Poorter, L., Pour, M. J., Pourbabaei, H., Dupuy-Rada, J. M., Ribeiro, S. C., Ryan, C., Sanaei, A., Sanger, J., Schlund, M., Sellan, G., Shenkin, A., Sonké, B., Sterck, F. J., Svátek, M., Takagi, K., Trugman, A. T., Ullah, F., Vadeboncoeur, M. A., Valipour, A., Vanderwel, M. C., Vovides, A. G., Wang, W., Wang, L. -Q., Wirth, C., Woods, M., Xiang, W., Ximenes, F. D. A., Xu, Y., Yamada, T., Zavala, M. A., Jucker, T., Fischer, F. J., Chave, J., Coomes, D. A., Caspersen, J., Ali, A., Loubota, Panzou, G. J., Feldpausch, T. R., Falster, D., Usoltsev, V. A., Adu-Bredu, S., Alves, L. F., Aminpour, M., Angoboy, I. B., Anten, N. P. R., Antin, C., Askari, Y., Muñoz, R., Ayyappan, N., Balvanera, P., Banin, L., Barbier, N., Battles, J. J., Beeckman, H., Bocko, Y. E., Bond-Lamberty, B., Bongers, F., Bowers, S., Brade, T., van, Breugel, M., Chantrain, A., Chaudhary, R., Dai, J., Dalponte, M., Dimobe, K., Domec, J. -C., Doucet, J. -L., Duursma, R. A., Enríquez, M., van, Ewijk, K. Y., Farfán-Rios, W., Fayolle, A., Forni, E., Forrester, D. I., Gilani, H., Godlee, J. L., Gourlet-Fleury, S., Haeni, M., Hall, J. S., He, J. -K., Hemp, A., Hernández-Stefanoni, J. L., Higgins, S. I., Holdaway, R. J., Hussain, K., Hutley, L. B., Ichie, T., Iida, Y., Jiang, H. -S., Joshi, P. R., Kaboli, H., Larsary, M. K., Kenzo, T., Kloeppel, B. D., Kohyama, T., Kunwar, S., Kuyah, S., Kvasnica, J., Lin, S., Lines, E. R., Liu, H., Lorimer, C., Loumeto, J. -J., Malhi, Y., Marshall, P. L., Mattsson, E., Matula, R., Meave, J. A., Mensah, S., Mi, X., Momo, S., Moncrieff, G. R., Mora, F., Nissanka, S. P., O'Hara, K. L., Pearce, S., Pelissier, R., Peri, P. L., Ploton, P., Poorter, L., Pour, M. J., Pourbabaei, H., Dupuy-Rada, J. M., Ribeiro, S. C., Ryan, C., Sanaei, A., Sanger, J., Schlund, M., Sellan, G., Shenkin, A., Sonké, B., Sterck, F. J., Svátek, M., Takagi, K., Trugman, A. T., Ullah, F., Vadeboncoeur, M. A., Valipour, A., Vanderwel, M. C., Vovides, A. G., Wang, W., Wang, L. -Q., Wirth, C., Woods, M., Xiang, W., Ximenes, F. D. A., Xu, Y., Yamada, T., and Zavala, M. A.
- Abstract
Data capturing multiple axes of tree size and shape, such as a tree's stem diameter, height and crown size, underpin a wide range of ecological research—from developing and testing theory on forest structure and dynamics, to estimating forest carbon stocks and their uncertainties, and integrating remote sensing imagery into forest monitoring programmes. However, these data can be surprisingly hard to come by, particularly for certain regions of the world and for specific taxonomic groups, posing a real barrier to progress in these fields. To overcome this challenge, we developed the Tallo database, a collection of 498,838 georeferenced and taxonomically standardized records of individual trees for which stem diameter, height and/or crown radius have been measured. These data were collected at 61,856 globally distributed sites, spanning all major forested and non-forested biomes. The majority of trees in the database are identified to species (88%), and collectively Tallo includes data for 5163 species distributed across 1453 genera and 187 plant families. The database is publicly archived under a CC-BY 4.0 licence and can be access from: https://doi.org/10.5281/zenodo.6637599. To demonstrate its value, here we present three case studies that highlight how the Tallo database can be used to address a range of theoretical and applied questions in ecology—from testing the predictions of metabolic scaling theory, to exploring the limits of tree allometric plasticity along environmental gradients and modelling global variation in maximum attainable tree height. In doing so, we provide a key resource for field ecologists, remote sensing researchers and the modelling community working together to better understand the role that trees play in regulating the terrestrial carbon cycle. © 2022 The Authors. Global Change Biology published by John Wiley & Sons Ltd.
- Published
- 2022
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.