1. Effect of mineral and organic fertilizer on N dynamics upon erosion-induced topsoil dilution
- Author
-
Isabel Zentgraf, Mathias Hoffmann, Jürgen Augustin, Caroline Buchen-Tschiskale, Sara Hoferer, and Maire Holz
- Subjects
15N labelingN recovery ,Topsoil dilution ,Soil erosion ,Canola ,Soil type ,Science (General) ,Q1-390 ,Social sciences (General) ,H1-99 - Abstract
Erosion-induced topsoil dilution strongly affects cropland biogeochemistry and is associated with a negative effect on soil health and crop productivity. While its impact on soil C cycling has been widely recognized, there is little information about its impact on soil N cycling and N fertilizer dynamics. Here, we studied three factors potentially influencing N cycling and N fertilizer dynamics in cropping systems, namely: 1.) soil type, 2.) erosion-induced topsoil dilution and 3.) N fertilizer form, in a full-factorial pot experiment using canola plants. We studied three erosion affected soil types (Luvisol, eroded Luvisol, calcaric Regosol) and performed topsoil dilution in all three soils by admixing 20 % of the respective subsoil into its topsoil. N fertilizer dynamics were investigated using either mineral (calcium ammonium nitrate) or organic (biogas digestate) fertilizer, labeled with 15N. The fertilizer 15N recovery and the distribution of the fertilizer N in different soil fractions was quantified after plant maturity. Fertilizer N dynamics and utilization were influenced by all three factors investigated. 15N recovery in the plant-soil system was higher and fertilizer N utilization was lower in the treatments with diluted topsoil than in the non-diluted controls. Similarly, plants of the organic fertilizer N treatments took up significantly less fertilizer N in comparison to mineral fertilizer treatments. Both topsoil dilution and organic fertilizer application promoted 15N recovery and N accumulation in the soil fractions, with strong differences between soil types. Our study reveals an innovative insight: topsoil dilution due to soil erosion has a negligible impact on N cycling and dynamics in the plant-soil system. The crucial factors influencing these processes are found to be the choice of fertilizer form and the specific soil type. Recognizing these aspects is essential for a precise and comprehensive assessment of the environmental continuum, emphasizing the novelty of our findings.
- Published
- 2024
- Full Text
- View/download PDF