32 results on '"Maikawa CL"'
Search Results
2. Accessible interview practices for disabled scientists and engineers.
- Author
-
Greene SM, Schachat SR, Arita-Merino N, Cao XE, Gurnani H, Heyns M, Cagigas ML, Maikawa CL, Needham EJ, Perets EA, Phillips E, Waddle AW, Wilkinson CE, Zhou KC, and Zlotnick HM
- Abstract
Increasing representation of people with disabilities in science and engineering will require systemic changes to the culture around support and accommodations. Equitable interview practices can help foster such changes. We, an interdisciplinary group of disabled and nondisabled early-career scientists who care deeply about making science more accessible to all, present a framework of suggestions based on Universal Design principles for improving the accessibility and equitability of interviews for people with disabilities and other underrepresented groups. We discuss potential challenges that may arise when implementing these suggestions and provide questions to guide discussions about addressing them., (© 2024 The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
3. Use of a biomimetic hydrogel depot technology for sustained delivery of GLP-1 receptor agonists reduces burden of diabetes management.
- Author
-
d'Aquino AI, Maikawa CL, Nguyen LT, Lu K, Hall IA, Jons CK, Kasse CM, Yan J, Prossnitz AN, Chang E, Baker SW, Hovgaard L, Steensgaard DB, Andersen HB, Simonsen L, and Appel EA
- Subjects
- Humans, Animals, Rats, Hypoglycemic Agents pharmacology, Hypoglycemic Agents therapeutic use, Glucagon-Like Peptide-1 Receptor agonists, Hydrogels therapeutic use, Biomimetics, Glucagon-Like Peptide 1, Diabetes Mellitus, Type 2 drug therapy
- Abstract
Glucagon-like peptide-1 (GLP-1) is an incretin hormone and neurotransmitter secreted from intestinal L cells in response to nutrients to stimulate insulin and block glucagon secretion in a glucose-dependent manner. Long-acting GLP-1 receptor agonists (GLP-1 RAs) have become central to treating type 2 diabetes (T2D); however, these therapies are burdensome, as they must be taken daily or weekly. Technological innovations that enable less frequent administrations would reduce patient burden and increase patient compliance. Herein, we leverage an injectable hydrogel depot technology to develop a GLP-1 RA drug product capable of months-long GLP-1 RA delivery. Using a rat model of T2D, we confirm that one injection of hydrogel-based therapy sustains exposure of GLP-1 RA over 42 days, corresponding to a once-every-4-months therapy in humans. Hydrogel therapy maintains management of blood glucose and weight comparable to daily injections of a leading GLP-1 RA drug. This long-acting GLP-1 RA treatment is a promising therapy for more effective T2D management., Competing Interests: Declaration of interests A.I.D., C.L.M., L.T.N., and E.A.A. are listed on a patent describing the technology reported in this work. L.H., D.B.S., and H.B.A. declare the following potential competing interest with respect to the research, authorship, and/or publication of this article: the authors are full-time employees and shareholders of Novo Nordisk A/S., (Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
4. Sustained Delivery of GLP-1 Receptor Agonists from Injectable Biomimetic Hydrogels Improves Treatment of Diabetes.
- Author
-
d'Aquino AI, Maikawa CL, Nguyen LT, Lu K, Hall IA, Jons CK, Kasse CM, Yan J, Prossnitz AN, Chang E, Baker SW, Hovgaard L, Steensgaard DB, Andersen HB, Simonsen L, and Appel EA
- Abstract
Glucagon-like peptide-1 (GLP-1) is an incretin hormone and neurotransmitter secreted from intestinal L-cells in response to nutrients to stimulate insulin and block glucagon secretion in a glucose-dependent manner. GLP-1 in itself is rapidly degraded, but long-acting GLP-1 receptor agonists (GLP-1 RAs) have become central in the treatment of T2D because of the beneficial effects extending also beyond glucose control. Currently, these therapeutics must be injected either daily or weekly or taken daily orally, leaving room for technological innovations that enable less frequent administrations, which will reduce patient burden and increase patient compliance. An ideal GLP-1 RA drug product would provide continuous therapy for upwards of four months from a single administration to match the cadence with which T2D patients typically visit their physician. In this work, we leveraged an injectable hydrogel depot technology to develop a long-acting GLP-1 RA drug product. By modulating the hydrogel properties to tune GLP-1 RA retention within the hydrogel depot, we engineered formulations capable of months-long GLP-1 RA delivery. Using a rat model of T2D, we confirmed that a single injection of hydrogel-based therapies exhibits sustained exposure of GLP-1 RA over 42 days, corresponding to a once-every four month therapy in humans. Moreover, these hydrogel therapies maintained optimal management of blood glucose and weight comparable to daily injections of a leading GLP-1 RA drug molecule. The pharmacokinetics and pharmacodynamics of these hydrogel-based long-acting GLP-1 RA treatments are promising for development of novel therapies reducing treatment burden for more effective management of T2D., Progress and Potential: While insufficient access to quality healthcare is problematic for consistent management of Type II diabetes (T2D), poor adherence to burdensome treatment regimens is one of the greatest challenges for disease management. Glucagon-like peptide 1 (GLP1) drugs have become central to the treatment of T2D due to their many beneficial effects beyond improving glucose control. Unfortunately, while optimization of GLP1 drugs has reduced treatment frequency from daily to weekly, significant patient burden still leads to poor patience compliance. In this work we developed an injectable hydrogel technology to enable GLP1 drugs only requiring administration once every four months. We showed in a rat model of T2D that one injection of a hydrogel-based therapy improves management of blood glucose and weight when compared with daily injections of the leading drug used clinically. These hydrogel-based GLP1 treatments are promising for reducing treatment burden and more effectively managing T2D., Future Impact: A GLP-1-based drug product providing four months of continuous therapy per administration could be transformational for the management of Type II diabetes (T2D). One of the most challenging aspects of diabetes management with GLP-1 mimics is maintenance of consistent levels of the drugs in the body, which is complicated by poor patient compliance on account of the high frequency of dosing required for current treatments. By leveraging a unique sustained release hydrogel depot technology we develop a months-long GLP-1 drug product candidate that has the potential to reduce patient burden and improving diabetes management. Overall, the hydrogel technology we describe here can dramatically reduce the frequency of therapeutic interventions, significantly increasing patient quality of life and reducing complications of diabetes management.Our next steps will focus on optimization of the drug formulations in a swine model of T2D, which is the most advanced and translationally-relevant animal model for these types of therapeutics. The long-term vision for this work is to translate lead candidate drug products towards clinical evaluation, which will also require comprehensive safety evaluation in multiple species and manufacturing our these materials according to Good Manufacturing Practices. The months-long-acting GLP-1 drug product that will come from this work has the potential to afford thus far unrealized therapeutic impact for the hundreds of millions of people with diabetes worldwide.
- Published
- 2023
- Full Text
- View/download PDF
5. Polyacrylamide-based hydrogel coatings improve biocompatibility of implanted pump devices.
- Author
-
Chan D, Maikawa CL, d'Aquino AI, Raghavan SS, Troxell ML, and Appel EA
- Subjects
- Rats, Mice, Humans, Animals, Polymers, Hydrogels, Acrylamides, Inflammation, Insulins
- Abstract
The introduction of transcutaneous and subcutaneous implants and devices into the human body instigates fouling and foreign body responses (FBRs) that limit their functional lifetimes. Polymer coatings are a promising solution to improve the biocompatibility of such implants, with potential to enhance in vivo device performance and prolong device lifetime. Here we sought to develop novel materials for use as coatings on subcutaneously implanted devices to reduce the FBR and local tissue inflammation in comparison to gold standard materials such as poly(ethylene glycol) and polyzwitterions. We prepared a library of polyacrylamide-based copolymer hydrogels, which were selected from materials previously shown to exhibit remarkable antifouling properties with blood and plasma, and implanted them into the subcutaneous space of mice to evaluate their biocompatibility over the course of 1 month. The top performing polyacrylamide-based copolymer hydrogel material, comprising a 50:50 mixture of N-(2-hydroxyethyl)acrylamide (HEAm) and N-(3-methoxypropyl)acrylamide (MPAm), exhibited significantly better biocompatibility and lower tissue inflammation than gold standard materials. Moreover, when applied to polydimethylsiloxane disks or silicon catheters as a thin coating (45 ± 1 μm), this leading copolymer hydrogel coating significantly improved implant biocompatibility. Using a rat model of insulin-deficient diabetes, we showed that insulin pumps fitted with HEAm-co-MPAm hydrogel-coated insulin infusion catheters exhibited improved biocompatibility and extended functional lifetime over pumps fitted with industry standard catheters. These polyacrylamide-based copolymer hydrogel coatings have the potential to improve device function and lifetime, thereby reducing the burden of disease management for people regularly using implanted devices., (© 2023 Wiley Periodicals LLC.)
- Published
- 2023
- Full Text
- View/download PDF
6. Subcutaneous delivery of an antibody against SARS-CoV-2 from a supramolecular hydrogel depot.
- Author
-
Kasse CM, Yu AC, Powell AE, Roth GA, Liong CS, Jons CK, Buahin A, Maikawa CL, Zhou X, Youssef S, Glanville JE, and Appel EA
- Subjects
- Mice, Animals, SARS-CoV-2, Broadly Neutralizing Antibodies, Drug Delivery Systems, Polymers, Antibodies, Hydrogels pharmacokinetics, COVID-19
- Abstract
Prolonged maintenance of therapeutically-relevant levels of broadly neutralizing antibodies (bnAbs) is necessary to enable passive immunization against infectious disease. Unfortunately, protection only lasts for as long as these bnAbs remain present at a sufficiently high concentration in the body. Poor pharmacokinetics and burdensome administration are two challenges that need to be addressed in order to make pre- and post-exposure prophylaxis with bnAbs feasible and effective. In this work, we develop a supramolecular hydrogel as an injectable, subcutaneous depot to encapsulate and deliver antibody drug cargo. This polymer-nanoparticle (PNP) hydrogel exhibits shear-thinning and self-healing properties that are required for an injectable drug delivery vehicle. In vitro drug release assays and diffusion measurements indicate that the PNP hydrogels prevent burst release and slow the release of encapsulated antibodies. Delivery of bnAbs against SARS-CoV-2 from PNP hydrogels is compared to standard routes of administration in a preclinical mouse model. We develop a multi-compartment model to understand the ability of these subcutaneous depot materials to modulate the pharmacokinetics of released antibodies; the model is extrapolated to explore the requirements needed for novel materials to successfully deliver relevant antibody therapeutics with different pharmacokinetic characteristics.
- Published
- 2023
- Full Text
- View/download PDF
7. Formulation Excipients and Their Role in Insulin Stability and Association State in Formulation.
- Author
-
Maikawa CL, Nguyen LT, Mann JL, and Appel EA
- Subjects
- Humans, Insulin Lispro, Insulin, Regular, Human, Zinc, Drug Stability, Insulin, Excipients
- Abstract
While excipients are often overlooked as the "inactive" ingredients in pharmaceutical formulations, they often play a critical role in protein stability and absorption kinetics. Recent work has identified an ultrafast absorbing insulin formulation that is the result of excipient modifications. Specifically, the insulin monomer can be isolated by replacing zinc and the phenolic preservative metacresol with phenoxyethanol as an antimicrobial agent and an amphiphilic acrylamide copolymer excipient for stability. A greater understanding is needed of the interplay between excipients, insulin association state, and stability in order to optimize this formulation. Here, we formulated insulin with different preservatives and stabilizing excipient concentrations using both insulin lispro and regular human insulin and assessed the insulin association states using analytical ultracentrifugation as well as formulation stability. We determined that phenoxyethanol is required to eliminate hexamers and promote a high monomer content even in a zinc-free lispro formulation. There is also a concentration dependent relationship between the concentration of polyacrylamide-based copolymer excipient and insulin stability, where a concentration greater than 0.1 g/mL copolymer is required for a mostly monomeric zinc-free lispro formulation to achieve stability exceeding that of Humalog in a stressed aging assay. Further, we determined that under the formulation conditions tested zinc-free regular human insulin remains primarily hexameric and is not at this time a promising candidate for rapid-acting formulations., (© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
- Published
- 2022
- Full Text
- View/download PDF
8. Injectable Nanoparticle-Based Hydrogels Enable the Safe and Effective Deployment of Immunostimulatory CD40 Agonist Antibodies.
- Author
-
Correa S, Meany EL, Gale EC, Klich JH, Saouaf OM, Mayer AT, Xiao Z, Liong CS, Brown RA, Maikawa CL, Grosskopf AK, Mann JL, Idoyaga J, and Appel EA
- Subjects
- Antibodies, CD40 Antigens, Cytokines, Humans, Hydrogels chemistry, Polymers, Tomography, X-Ray Computed, Melanoma, Nanoparticles
- Abstract
When properly deployed, the immune system can eliminate deadly pathogens, eradicate metastatic cancers, and provide long-lasting protection from diverse diseases. Unfortunately, realizing these remarkable capabilities is inherently risky as disruption to immune homeostasis can elicit dangerous complications or autoimmune disorders. While current research is continuously expanding the arsenal of potent immunotherapeutics, there is a technological gap when it comes to controlling when, where, and how long these drugs act on the body. Here, this study explored the ability of a slow-releasing injectable hydrogel depot to reduce dose-limiting toxicities of immunostimulatory CD40 agonist (CD40a) while maintaining its potent anticancer efficacy. A previously described polymer-nanoparticle (PNP) hydrogel system is leveraged that exhibits shear-thinning and yield-stress properties that are hypothesized to improve locoregional delivery of CD40a immunotherapy. Using positron emission tomography, it is demonstrated that prolonged hydrogel-based delivery redistributes CD40a exposure to the tumor and the tumor draining lymph node (TdLN), thereby reducing weight loss, hepatotoxicity, and cytokine storm associated with standard treatment. Moreover, CD40a-loaded hydrogels mediate improved local cytokine induction in the TdLN and improve treatment efficacy in the B16F10 melanoma model. PNP hydrogels, therefore, represent a facile, drug-agnostic method to ameliorate immune-related adverse effects and explore locoregional delivery of immunostimulatory drugs., (© 2022 The Authors. Advanced Science published by Wiley-VCH GmbH.)
- Published
- 2022
- Full Text
- View/download PDF
9. Combinatorial Polyacrylamide Hydrogels for Preventing Biofouling on Implantable Biosensors.
- Author
-
Chan D, Chien JC, Axpe E, Blankemeier L, Baker SW, Swaminathan S, Piunova VA, Zubarev DY, Maikawa CL, Grosskopf AK, Mann JL, Soh HT, and Appel EA
- Subjects
- Acrylic Resins, Hydrogels chemistry, Polymers chemistry, Prostheses and Implants, Surface Properties, Biofouling prevention & control, Biosensing Techniques
- Abstract
Biofouling on the surface of implanted medical devices and biosensors severely hinders device functionality and drastically shortens device lifetime. Poly(ethylene glycol) and zwitterionic polymers are currently considered "gold-standard" device coatings to reduce biofouling. To discover novel anti-biofouling materials, a combinatorial library of polyacrylamide-based copolymer hydrogels is created, and their ability is screened to prevent fouling from serum and platelet-rich plasma in a high-throughput parallel assay. It is found that certain nonintuitive copolymer compositions exhibit superior anti-biofouling properties over current gold-standard materials, and machine learning is used to identify key molecular features underpinning their performance. For validation, the surfaces of electrochemical biosensors are coated with hydrogels and their anti-biofouling performance in vitro and in vivo in rodent models is evaluated. The copolymer hydrogels preserve device function and enable continuous measurements of a small-molecule drug in vivo better than gold-standard coatings. The novel methodology described enables the discovery of anti-biofouling materials that can extend the lifetime of real-time in vivo sensing devices., (© 2022 Wiley-VCH GmbH.)
- Published
- 2022
- Full Text
- View/download PDF
10. Subcutaneous delivery of an antibody against SARS-CoV-2 from a supramolecular hydrogel depot.
- Author
-
Kasse CM, Yu AC, Powell AE, Roth GA, Liong CS, Jons CK, Buahin A, Maikawa CL, Youssef S, Glanville JE, and Appel EA
- Abstract
Prolonged maintenance of therapeutically-relevant levels of broadly neutralizing antibodies (bnAbs) is necessary to enable passive immunization against infectious disease. Unfortunately, protection only lasts for as long as these bnAbs remain present at a sufficiently high concentration in the body. Poor pharmacokinetics and burdensome administration are two challenges that need to be addressed in order to make pre- and post-exposure prophylaxis with bnAbs feasible and effective. In this work, we develop a supramolecular hydrogel as an injectable, subcutaneous depot to encapsulate and deliver antibody drug cargo. This polymer-nanoparticle (PNP) hydrogel exhibits shear-thinning and self-healing properties that are required for an injectable drug delivery vehicle. In vitro drug release assays and diffusion measurements indicate that the PNP hydrogels prevent burst release and slow the release of encapsulated antibodies. Delivery of bnAbs against SARS-CoV-2 from PNP hydrogels is compared to standard routes of administration in a preclinical mouse model. We develop a multi-compartment model to understand the ability of these subcutaneous depot materials to modulate the pharmacokinetics of released antibodies; the model is extrapolated to explore the requirements needed for novel materials to successfully deliver relevant antibody therapeutics with different pharmacokinetic characteristics.
- Published
- 2022
- Full Text
- View/download PDF
11. Delivery of CAR-T cells in a transient injectable stimulatory hydrogel niche improves treatment of solid tumors.
- Author
-
Grosskopf AK, Labanieh L, Klysz DD, Roth GA, Xu P, Adebowale O, Gale EC, Jons CK, Klich JH, Yan J, Maikawa CL, Correa S, Ou BS, d'Aquino AI, Cochran JR, Chaudhuri O, Mackall CL, and Appel EA
- Subjects
- Cytokines, Humans, Hydrogels, Immunotherapy, Adoptive methods, T-Lymphocytes pathology, Neoplasms pathology, Neoplasms therapy, Receptors, Chimeric Antigen genetics
- Abstract
Adoptive cell therapy (ACT) has proven to be highly effective in treating blood cancers, but traditional approaches to ACT are poorly effective in treating solid tumors observed clinically. Novel delivery methods for therapeutic cells have shown promise for treatment of solid tumors when compared with standard intravenous administration methods, but the few reported approaches leverage biomaterials that are complex to manufacture and have primarily demonstrated applicability following tumor resection or in immune-privileged tissues. Here, we engineer simple-to-implement injectable hydrogels for the controlled co-delivery of CAR-T cells and stimulatory cytokines that improve treatment of solid tumors. The unique architecture of this material simultaneously inhibits passive diffusion of entrapped cytokines and permits active motility of entrapped cells to enable long-term retention, viability, and activation of CAR-T cells. The generation of a transient inflammatory niche following administration affords sustained exposure of CAR-T cells, induces a tumor-reactive CAR-T phenotype, and improves efficacy of treatment.
- Published
- 2022
- Full Text
- View/download PDF
12. Ultra-Fast Insulin-Pramlintide Co-Formulation for Improved Glucose Management in Diabetic Rats.
- Author
-
Maikawa CL, Chen PC, Vuong ET, Nguyen LT, Mann JL, d'Aquino AI, Lal RA, Maahs DM, Buckingham BA, and Appel EA
- Subjects
- Acetaminophen chemistry, Acetaminophen metabolism, Animals, Blood Glucose analysis, Diabetes Mellitus, Experimental pathology, Drug Compounding, Gastric Emptying, Glucose Tolerance Test, Half-Life, Hypoglycemic Agents chemistry, Hypoglycemic Agents pharmacokinetics, Infusions, Subcutaneous, Insulin analogs & derivatives, Insulin pharmacokinetics, Insulin Lispro pharmacokinetics, Insulin Lispro therapeutic use, Islet Amyloid Polypeptide chemistry, Islet Amyloid Polypeptide pharmacokinetics, Islet Amyloid Polypeptide therapeutic use, Male, Rats, Rats, Sprague-Dawley, Diabetes Mellitus, Experimental drug therapy, Hypoglycemic Agents therapeutic use, Insulin therapeutic use
- Abstract
Dual-hormone replacement therapy with insulin and amylin in patients with type 1 diabetes has the potential to improve glucose management. Unfortunately, currently available formulations require burdensome separate injections at mealtimes and have disparate pharmacokinetics that do not mimic endogenous co-secretion. Here, amphiphilic acrylamide copolymers are used to create a stable co-formulation of monomeric insulin and amylin analogues (lispro and pramlintide) with synchronous pharmacokinetics and ultra-rapid action. The co-formulation is stable for over 16 h under stressed aging conditions, whereas commercial insulin lispro (Humalog) aggregates in 8 h. The faster pharmacokinetics of monomeric insulin in this co-formulation result in increased insulin-pramlintide overlap of 75 ± 6% compared to only 47 ± 7% for separate injections. The co-formulation results in similar delay in gastric emptying compared to pramlintide delivered separately. In a glucose challenge, in rats, the co-formulation reduces deviation from baseline glucose compared to insulin only, or separate insulin and pramlintide administrations. Further, comparison of interspecies pharmacokinetics of monomeric pramlintide suggests that pharmacokinetics observed for the co-formulation will be well preserved in future translation to humans. Together these results suggest that the co-formulation has the potential to improve mealtime glucose management and reduce patient burden in the treatment of diabetes., (© 2021 The Authors. Advanced Science published by Wiley-VCH GmbH.)
- Published
- 2021
- Full Text
- View/download PDF
13. Self-Assembled, Dilution-Responsive Hydrogels for Enhanced Thermal Stability of Insulin Biopharmaceuticals.
- Author
-
Meis CM, Salzman EE, Maikawa CL, Smith AAA, Mann JL, Grosskopf AK, and Appel EA
- Subjects
- Hydrogels, Insulin, Polymers, Biological Products, Nanoparticles
- Abstract
Biotherapeutics currently dominate the landscape of new drugs because of their exceptional potency and selectivity. Yet, the intricate molecular structures that give rise to these beneficial qualities also render them unstable in formulation. Hydrogels have shown potential as stabilizing excipients for biotherapeutic drugs, providing protection against harsh thermal conditions experienced during distribution and storage. In this work, we report the utilization of a cellulose-based supramolecular hydrogel formed from polymer-nanoparticle (PNP) interactions to encapsulate and stabilize insulin, an important biotherapeutic used widely to treat diabetes. Encapsulation of insulin in these hydrogels prevents insulin aggregation and maintains insulin bioactivity through stressed aging conditions of elevated temperature and continuous agitation for over 28 days. Further, insulin can be easily recovered by dilution of these hydrogels for administration at the point of care. This supramolecular hydrogel system shows promise as a stabilizing excipient to reduce the cold chain dependence of insulin and other biotherapeutics.
- Published
- 2021
- Full Text
- View/download PDF
14. Isthmin-1 is an adipokine that promotes glucose uptake and improves glucose tolerance and hepatic steatosis.
- Author
-
Jiang Z, Zhao M, Voilquin L, Jung Y, Aikio MA, Sahai T, Dou FY, Roche AM, Carcamo-Orive I, Knowles JW, Wabitsch M, Appel EA, Maikawa CL, Camporez JP, Shulman GI, Tsai L, Rosen ED, Gardner CD, Spiegelman BM, and Svensson KJ
- Subjects
- Adipokines, Animals, Diet, High-Fat, Glucose metabolism, Intercellular Signaling Peptides and Proteins, Lipid Metabolism physiology, Lipogenesis, Liver metabolism, Mice, Mice, Inbred C57BL, Phosphatidylinositol 3-Kinases metabolism, Diabetes Mellitus, Type 2 drug therapy, Diabetes Mellitus, Type 2 metabolism, Fatty Liver drug therapy, Fatty Liver metabolism, Insulin Resistance
- Abstract
With the increasing prevalence of type 2 diabetes and fatty liver disease, there is still an unmet need to better treat hyperglycemia and hyperlipidemia. Here, we identify isthmin-1 (Ism1) as an adipokine and one that has a dual role in increasing adipose glucose uptake while suppressing hepatic lipid synthesis. Ism1 ablation results in impaired glucose tolerance, reduced adipose glucose uptake, and reduced insulin sensitivity, demonstrating an endogenous function for Ism1 in glucose regulation. Mechanistically, Ism1 activates a PI3K-AKT signaling pathway independently of the insulin and insulin-like growth factor receptors. Notably, while the glucoregulatory function is shared with insulin, Ism1 counteracts lipid accumulation in the liver by switching hepatocytes from a lipogenic to a protein synthesis state. Furthermore, therapeutic dosing of recombinant Ism1 improves diabetes in diet-induced obese mice and ameliorates hepatic steatosis in a diet-induced fatty liver mouse model. These findings uncover an unexpected, bioactive protein hormone that might have simultaneous therapeutic potential for diabetes and fatty liver disease., Competing Interests: Declaration of interests The authors declare no competing interests., (Copyright © 2021 Elsevier Inc. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
15. Consistent tumorigenesis with self-assembled hydrogels enables high-powered murine cancer studies.
- Author
-
Grosskopf AK, Correa S, Baillet J, Maikawa CL, Gale EC, Brown RA, and Appel EA
- Subjects
- Animals, Heterografts, Mice, Carcinogenesis, Disease Models, Animal, Hydrogels
- Abstract
Preclinical cancer research is heavily dependent on allograft and xenograft models, but current approaches to tumor inoculation yield inconsistent tumor formation and growth, ultimately wasting valuable resources (e.g., animals, time, and money) and limiting experimental progress. Here we demonstrate a method for tumor inoculation using self-assembled hydrogels to reliably generate tumors with low variance in growth. The observed reduction in model variance enables smaller animal cohorts, improved effect observation and higher powered studies., (© 2021. The Author(s).)
- Published
- 2021
- Full Text
- View/download PDF
16. Engineering Insulin Cold Chain Resilience to Improve Global Access.
- Author
-
Maikawa CL, Mann JL, Kannan A, Meis CM, Grosskopf AK, Ou BS, Autzen AAA, Fuller GG, Maahs DM, and Appel EA
- Subjects
- Excipients, Humans, Insulin, Regular, Human, Refrigeration, Diabetes Mellitus, Insulin
- Abstract
There are 150 million people with diabetes worldwide who require insulin replacement therapy, and the prevalence of diabetes is rising the fastest in middle- and low-income countries. The current formulations require costly refrigerated transport and storage to prevent loss of insulin integrity. This study shows the development of simple "drop-in" amphiphilic copolymer excipients to maintain formulation integrity, bioactivity, pharmacokinetics, and pharmacodynamics for over 6 months when subjected to severe stressed aging conditions that cause current commercial formulation to fail in under 2 weeks. Further, when these copolymers are added to Humulin R (Eli Lilly) in original commercial packaging, they prevent insulin aggregation for up to 4 days at 50 °C compared to less than 1 day for Humulin R alone. These copolymers demonstrate promise as simple formulation additives to increase the cold chain resilience of commercial insulin formulations, thereby expanding global access to these critical drugs for treatment of diabetes.
- Published
- 2021
- Full Text
- View/download PDF
17. Affinity-Directed Dynamics of Host-Guest Motifs for Pharmacokinetic Modulation via Supramolecular PEGylation.
- Author
-
Maikawa CL, d'Aquino AI, Vuong ET, Su B, Zou L, Chen PC, Nguyen LT, Autzen AAA, Mann JL, Webber MJ, and Appel EA
- Subjects
- Insulin, Proteins, Polyethylene Glycols, Polymers
- Abstract
Proteins are an impactful class of therapeutics but can exhibit suboptimal therapeutic performance, arising from poor control over the timescale of clearance. Covalent PEGylation is one established strategy to extend circulation time but often at the cost of reduced activity and increased immunogenicity. Supramolecular PEGylation may afford similar benefits without necessitating that the protein be permanently modified with a polymer. Here, we show that insulin pharmacokinetics can be modulated by tuning the affinity-directed dynamics of a host-guest motif used to non-covalently endow insulin with a poly(ethylene glycol) (PEG) chain. When administered subcutaneously, supramolecular PEGylation with higher binding affinities extends the time of total insulin exposure systemically. Pharmacokinetic modeling reveals that the extension in the duration of exposure arises specifically from decreased absorption from the subcutaneous depot governed directly by the affinity and dynamics of host-guest exchange. The lifetime of the supramolecular interaction thus dictates the rate of absorption, with negligible impact attributed to association of the PEG upon rapid dilution of the supramolecular complex in circulation. This modular approach to supramolecular PEGylation offers a powerful tool to tune protein pharmacokinetics in response to the needs of different disease applications.
- Published
- 2021
- Full Text
- View/download PDF
18. Full closed loop open-source algorithm performance comparison in pigs with diabetes.
- Author
-
Lal RA, Maikawa CL, Lewis D, Baker SW, Smith AAA, Roth GA, Gale EC, Stapleton LM, Mann JL, Yu AC, Correa S, Grosskopf AK, Liong CS, Meis CM, Chan D, Garner JP, Maahs DM, Buckingham BA, and Appel EA
- Subjects
- Algorithms, Animals, Blood Glucose analysis, Diabetes Mellitus, Experimental blood, Disease Models, Animal, Female, Glycemic Control methods, Insulin administration & dosage, Insulin therapeutic use, Swine, Diabetes Mellitus, Experimental drug therapy, Insulin Infusion Systems
- Abstract
Understanding how automated insulin delivery (AID) algorithm features impact glucose control under full closed loop delivery represents a critical step toward reducing patient burden by eliminating the need for carbohydrate entries at mealtimes. Here, we use a pig model of diabetes to compare AndroidAPS and Loop open-source AID systems without meal announcements. Overall time-in-range (70-180 mg/dl) for AndroidAPS was 58% ± 5%, while time-in-range for Loop was 35% ± 5%. The effect of the algorithms on time-in-range differed between meals and overnight. During the overnight monitoring period, pigs had an average time-in-range of 90% ± 7% when on AndroidAPS compared to 22% ± 8% on Loop. Time-in-hypoglycemia also differed significantly during the lunch meal, whereby pigs running AndroidAPS spent an average of 1.4% (+0.4/-0.8)% in hypoglycemia compared to 10% (+3/-6)% for those using Loop. As algorithm design for closed loop systems continues to develop, the strategies employed in the OpenAPS algorithm (known as oref1) as implemented in AndroidAPS for unannounced meals may result in a better overall control for full closed loop systems., (© 2021 The Authors. Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.)
- Published
- 2021
- Full Text
- View/download PDF
19. Seasonal Impact of Phosphate-Based Fire Retardants on Soil Chemistry Following the Prophylactic Treatment of Vegetation.
- Author
-
Yu AC, Reinhart M, Hunter R, Lu K, Maikawa CL, Rajakaruna N, Acosta JD, Stubler C, Appel C, and Appel EA
- Subjects
- Nitrogen analysis, Phosphates, Seasons, Soil, Flame Retardants analysis, Wildfires
- Abstract
A preventative treatment of fire retardants at high-risk locales can potentially stop a majority of wildfires. For example, over 80% of wildfire ignitions in California occur at high-risk locales such as adjacent to roadsides and utility infrastructure. Recently a new class of ammonium polyphosphate retardants was developed with enhanced adherence and retention on vegetation to enable prophylactic treatments of these high-risk locals to provide season-long prevention of ignitions. Here, we compare three different ammonium (poly)phosphate-based wildland retardant formulations and evaluate their resistance to weathering and analyze their seasonal impact on soil chemistry following application onto grass. Soil samples from all three treatments demonstrated no changes in soil pH and total soil carbon and nitrogen amounts. Total soil phosphorus amounts increased by ∼2-3× following early precipitation, always remaining within typical topsoil amounts, and returned to the same level as control soil before spring. Available indices of ammonium, nitrate, and phosphate levels for all groups were elevated compared to the untreated control samples, again remaining within typical topsoil ranges across all time points and rainfall amounts evaluated. Microbial activity was decreased, potentially because the addition of available nutrients from retardant application reduced the need for organic decomposition. These results demonstrate that the application of ammonium (poly)phosphate-based retardants does not alter soil chemistry beyond typical topsoil compositions and are thus suitable for use in prophylactic wildfire prevention strategies.
- Published
- 2021
- Full Text
- View/download PDF
20. Engineering biopharmaceutical formulations to improve diabetes management.
- Author
-
Maikawa CL, d'Aquino AI, Lal RA, Buckingham BA, and Appel EA
- Subjects
- Blood Glucose, Drug Compounding, Glucagon, Humans, Hypoglycemic Agents therapeutic use, Insulin, Biological Products, Diabetes Mellitus, Type 1
- Abstract
Insulin was first isolated almost a century ago, yet commercial formulations of insulin and its analogs for hormone replacement therapy still fall short of appropriately mimicking endogenous glycemic control. Moreover, the controlled delivery of complementary hormones (such as amylin or glucagon) is complicated by instability of the pharmacologic agents and complexity of maintaining multiple infusions. In this review, we highlight the advantages and limitations of recent advances in drug formulation that improve protein stability and pharmacokinetics, prolong drug delivery, or enable alternative dosage forms for the management of diabetes. With controlled delivery, these formulations could improve closed-loop glycemic control., (Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.)
- Published
- 2021
- Full Text
- View/download PDF
21. A fluorescence sandwich immunoassay for the real-time continuous detection of glucose and insulin in live animals.
- Author
-
Poudineh M, Maikawa CL, Ma EY, Pan J, Mamerow D, Hang Y, Baker SW, Beirami A, Yoshikawa A, Eisenstein M, Kim S, Vučković J, Appel EA, and Soh HT
- Subjects
- Animals, Diabetes Mellitus, Experimental, Equipment Design, Fluorescent Antibody Technique instrumentation, Male, Rats, Rats, Sprague-Dawley, Blood Glucose analysis, Fluorescent Antibody Technique methods, Insulin blood, Microfluidic Analytical Techniques instrumentation
- Abstract
Biosensors that continuously measure circulating biomolecules in real time could provide insights into the health status of patients and their response to therapeutics. But biosensors for the continuous real-time monitoring of analytes in vivo have only reached nanomolar sensitivity and can measure only a handful of molecules, such as glucose and blood oxygen. Here we show that multiple analytes can be continuously and simultaneously measured with picomolar sensitivity and sub-second resolution via the integration of aptamers and antibodies into a bead-based fluorescence sandwich immunoassay implemented in a custom microfluidic chip. After an incubation time of 30 s, bead fluorescence is measured using a high-speed camera under spatially multiplexed two-colour laser illumination. We used the assay for continuous quantification of glucose and insulin concentrations in the blood of live diabetic rats to resolve inter-animal differences in the pharmacokinetic response to insulin as well as discriminate pharmacokinetic profiles from different insulin formulations. The assay can be readily modified to continuously and simultaneously measure other blood analytes in vivo.
- Published
- 2021
- Full Text
- View/download PDF
22. Injectable Hydrogels for Sustained Codelivery of Subunit Vaccines Enhance Humoral Immunity.
- Author
-
Roth GA, Gale EC, Alcántara-Hernández M, Luo W, Axpe E, Verma R, Yin Q, Yu AC, Lopez Hernandez H, Maikawa CL, Smith AAA, Davis MM, Pulendran B, Idoyaga J, and Appel EA
- Abstract
Vaccines aim to elicit a robust, yet targeted, immune response. Failure of a vaccine to elicit such a response arises in part from inappropriate temporal control over antigen and adjuvant presentation to the immune system. In this work, we sought to exploit the immune system's natural response to extended pathogen exposure during infection by designing an easily administered slow-delivery vaccine platform. We utilized an injectable and self-healing polymer-nanoparticle (PNP) hydrogel platform to prolong the codelivery of vaccine components to the immune system. We demonstrated that these hydrogels exhibit unique delivery characteristics, whereby physicochemically distinct compounds (such as antigen and adjuvant) could be codelivered over the course of weeks. When administered in mice, hydrogel-based sustained vaccine exposure enhanced the magnitude, duration, and quality of the humoral immune response compared to standard PBS bolus administration of the same model vaccine. We report that the creation of a local inflammatory niche within the hydrogel, coupled with sustained exposure of vaccine cargo, enhanced the magnitude and duration of germinal center responses in the lymph nodes. This strengthened germinal center response promoted greater antibody affinity maturation, resulting in a more than 1000-fold increase in antigen-specific antibody affinity in comparison to bolus immunization. In summary, this work introduces a simple and effective vaccine delivery platform that increases the potency and durability of subunit vaccines., Competing Interests: The authors declare the following competing financial interest(s): G.A.R., E.C.G., M.M.D., and E.A.A. are inventors on a patent describing the technology reported in this manuscript.
- Published
- 2020
- Full Text
- View/download PDF
23. Nanoparticles Presenting Potent TLR7/8 Agonists Enhance Anti-PD-L1 Immunotherapy in Cancer Treatment.
- Author
-
Smith AAA, Gale EC, Roth GA, Maikawa CL, Correa S, Yu AC, and Appel EA
- Subjects
- Animals, B7-H1 Antigen, Immunotherapy, Mice, Mice, Inbred C57BL, Toll-Like Receptor 7, Nanoparticles, Neoplasms drug therapy
- Abstract
Cancer immunotherapy can be augmented with toll-like receptor agonist (TLRa) adjuvants, which interact with immune cells to elicit potent immune activation. Despite their potential, use of many TLRa compounds has been limited clinically due to their extreme potency and lack of pharmacokinetic control, causing systemic toxicity from unregulated systemic cytokine release. Herein, we overcome these shortcomings by generating poly(ethylene glycol)-poly(lactic acid) (PEG-PLA) nanoparticles (NPs) presenting potent TLR7/8a moieties on their surface. The NP platform allows precise control of TLR7/8a valency and resulting surface presentation through self-assembly using nanoprecipitation. We hypothesize that the pharmacokinetic profile of the NPs minimizes systemic toxicity, localizing TLR7/8a presentation to the tumor bed and tumor-draining lymph nodes. In conjunction with antiprogrammed death-ligand 1 (anti-PD-L1) checkpoint blockade, peritumoral injection of TLR7/8a NPs slows tumor growth, extends survival, and decreases systemic toxicity in comparison to the free TLR7/8a in a murine colon adenocarcinoma model. These NPs constitute a modular platform for controlling pharmacokinetics of immunostimulatory molecules, resulting in increased potency and decreased toxicity.
- Published
- 2020
- Full Text
- View/download PDF
24. An ultrafast insulin formulation enabled by high-throughput screening of engineered polymeric excipients.
- Author
-
Mann JL, Maikawa CL, Smith AAA, Grosskopf AK, Baker SW, Roth GA, Meis CM, Gale EC, Liong CS, Correa S, Chan D, Stapleton LM, Yu AC, Muir B, Howard S, Postma A, and Appel EA
- Subjects
- Animals, Blood Glucose, Excipients, High-Throughput Screening Assays, Humans, Hypoglycemic Agents, Insulin Lispro, Swine, Diabetes Mellitus, Type 2, Insulin
- Abstract
Insulin has been used to treat diabetes for almost 100 years; yet, current rapid-acting insulin formulations do not have sufficiently fast pharmacokinetics to maintain tight glycemic control at mealtimes. Dissociation of the insulin hexamer, the primary association state of insulin in rapid-acting formulations, is the rate-limiting step that leads to delayed onset and extended duration of action. A formulation of insulin monomers would more closely mimic endogenous postprandial insulin secretion, but monomeric insulin is unstable in solution using present formulation strategies and rapidly aggregates into amyloid fibrils. Here, we implement high-throughput-controlled radical polymerization techniques to generate a large library of acrylamide carrier/dopant copolymer (AC/DC) excipients designed to reduce insulin aggregation. Our top-performing AC/DC excipient candidate enabled the development of an ultrafast-absorbing insulin lispro (UFAL) formulation, which remains stable under stressed aging conditions for 25 ± 1 hours compared to 5 ± 2 hours for commercial fast-acting insulin lispro formulations (Humalog). In a porcine model of insulin-deficient diabetes, UFAL exhibited peak action at 9 ± 4 min, whereas commercial Humalog exhibited peak action at 25 ± 10 min. These ultrafast kinetics make UFAL a promising candidate for improving glucose control and reducing burden for patients with diabetes., (Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.)
- Published
- 2020
- Full Text
- View/download PDF
25. Site-selective modification of proteins using cucurbit[7]uril as supramolecular protection for N-terminal aromatic amino acids.
- Author
-
Smith AAA, Maikawa CL, Roth GA, and Appel EA
- Abstract
Cucurbit[7,8]urils are known to form inclusion complexes with aromatic amino acids, hosting the hydrohobic side chains within the cavity and adjacent cations within the portal of the macrocyclic host. Here we show that cucurbit[7]uril binding with N-terminal phenylalanine significantly reduces the nucleophilicity of the amine, likely due to an increase in stability of the ammonium ion, rendering it unreactive at neutral pH. Using insulin as a model protein, we show that this supramolecular protection strategy can drive selectivity of N-terminal amine conjugation away from the preferred B chain N-terminal phenylalanine towards the A chain N-terminal glycine. Cucurbit[7]uril can therefore be used as a supramolecular protecting group for site-selective protein modification.
- Published
- 2020
- Full Text
- View/download PDF
26. A co-formulation of supramolecularly stabilized insulin and pramlintide enhances mealtime glucagon suppression in diabetic pigs.
- Author
-
Maikawa CL, Smith AAA, Zou L, Roth GA, Gale EC, Stapleton LM, Baker SW, Mann JL, Yu AC, Correa S, Grosskopf AK, Liong CS, Meis CM, Chan D, Troxell M, Maahs DM, Buckingham BA, Webber MJ, and Appel EA
- Subjects
- Animals, Bridged-Ring Compounds chemistry, Diffusion, Drug Administration Routes, Drug Stability, Hydrogen-Ion Concentration, Imidazoles chemistry, Insulin administration & dosage, Insulin pharmacokinetics, Insulin pharmacology, Islet Amyloid Polypeptide administration & dosage, Islet Amyloid Polypeptide pharmacokinetics, Islet Amyloid Polypeptide pharmacology, Male, Polyethylene Glycols chemistry, Rats, Sprague-Dawley, Signal Transduction drug effects, Swine, Diabetes Mellitus, Experimental drug therapy, Drug Compounding, Glucagon metabolism, Insulin therapeutic use, Islet Amyloid Polypeptide therapeutic use
- Abstract
Treatment of patients with diabetes with insulin and pramlintide (an amylin analogue) is more effective than treatment with insulin only. However, because mixtures of insulin and pramlintide are unstable and have to be injected separately, amylin analogues are only used by 1.5% of people with diabetes needing rapid-acting insulin. Here, we show that the supramolecular modification of insulin and pramlintide with cucurbit[7]uril-conjugated polyethylene glycol improves the pharmacokinetics of the dual-hormone therapy and enhances postprandial glucagon suppression in diabetic pigs. The co-formulation is stable for over 100 h at 37 °C under continuous agitation, whereas commercial formulations of insulin analogues aggregate after 10 h under similar conditions. In diabetic rats, the administration of the stabilized co-formulation increased the area-of-overlap ratio of the pharmacokinetic curves of pramlintide and insulin from 0.4 ± 0.2 to 0.7 ± 0.1 (mean ± s.d.) for the separate administration of the hormones. The co-administration of supramolecularly stabilized insulin and pramlintide better mimics the endogenous kinetics of co-secreted insulin and amylin, and holds promise as a dual-hormone replacement therapy.
- Published
- 2020
- Full Text
- View/download PDF
27. Stable Monomeric Insulin Formulations Enabled by Supramolecular PEGylation of Insulin Analogues.
- Author
-
Maikawa CL, Smith AAA, Zou L, Meis CM, Mann JL, Webber MJ, and Appel EA
- Abstract
Current "fast-acting" insulin analogues contain amino acid modifications meant to inhibit dimer formation and shift the equilibrium of association states toward the monomeric state. However, the insulin monomer is highly unstable and current formulation techniques require insulin to primarily exist as hexamers to prevent aggregation into inactive and immunogenic amyloids. Insulin formulation excipients have thus been traditionally selected to promote insulin association into the hexameric form to enhance formulation stability. This study exploits a novel excipient for the supramolecular PEGylation of insulin analogues, including aspart and lispro, to enhance the stability and maximize the prevalence of insulin monomers in formulation. Using multiple techniques, it is demonstrated that judicious choice of formulation excipients (tonicity agents and parenteral preservatives) enables insulin analogue formulations with 70-80% monomer and supramolecular PEGylation imbued stability under stressed aging for over 100 h without altering the insulin association state. Comparatively, commercial "fast-acting" formulations contain less than 1% monomer and remain stable for only 10 h under the same stressed aging conditions. This simple and effective formulation approach shows promise for next-generation ultrafast insulin formulations with a short duration of action that can reduce the risk of post-prandial hypoglycemia in the treatment of diabetes., Competing Interests: Conflict of Interest The authors declare no conflict of interest.
- Published
- 2020
- Full Text
- View/download PDF
28. Block copolymer composition drives function of self-assembled nanoparticles for delivery of small-molecule cargo.
- Author
-
Maikawa CL, Sevit A, Lin B, Wallstrom RJ, Mann JL, Yu AC, Waymouth RM, and Appel EA
- Abstract
Nanoparticles are useful for the delivery of small molecule therapeutics, increasing their solubility, in vivo residence time, and stability. Here, we used organocatalytic ring opening polymerization to produce amphiphilic block copolymers for the formation of nanoparticle drug carriers with enhanced stability, cargo encapsulation, and sustained delivery. These polymers comprised blocks of poly(ethylene glycol) (PEG), poly(valerolactone) (PVL), and poly(lactide) (PLA). Four particle chemistries were examined: (a) PEG-PLA, (b) PEG-PVL, (c) a physical mixture of PEG-PLA and PEG-PVL, and (d) PEG-PVL-PLA tri-block copolymers. Nanoparticle stability was assessed at room temperature (20 °C; pH = 7), physiological temperature (37 °C; pH = 7), in acidic media (37 °C; pH = 2), and with a digestive enzyme (lipase; 37 °C; pH = 7.4). PVL-based nanoparticles demonstrated the highest level of stability at room temperature, 37 °C and acidic conditions, but were rapidly degraded by lipase. Moreover, PVL-based nanoparticles demonstrated good cargo encapsulation, but rapid release. In contrast, PLA-based nanoparticles demonstrated poor stability and encapsulation, but sustained release. The PEG-PVL-PLA nanoparticles exhibited the best combination of stability, encapsulation, and release properties. Our results demonstrate the ability to tune nanoparticle properties by modifying the polymeric architecture and composition. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1322-1332.
- Published
- 2019
- Full Text
- View/download PDF
29. Comparison of Airway Responses Induced in a Mouse Model by the Gas and Particulate Fractions of Gasoline Direct Injection Engine Exhaust.
- Author
-
Maikawa CL, Zimmerman N, Ramos M, Shah M, Wallace JS, and Pollitt KJG
- Subjects
- Animals, Antigens, Dermatophagoides, Asthma physiopathology, Cytochrome P-450 CYP1B1 metabolism, Female, Gasoline, Mice, Inbred BALB C, Tumor Necrosis Factor-alpha metabolism, Air Pollutants toxicity, Asthma metabolism, Particulate Matter toxicity, Polycyclic Aromatic Hydrocarbons toxicity, Vehicle Emissions toxicity
- Abstract
Diesel exhaust has been associated with asthma, but its response to other engine emissions is not clear. The increasing prevalence of vehicles with gasoline direct injection (GDI) engines motivated this study, and the objective was to evaluate pulmonary responses induced by acute exposure to GDI engine exhaust in an allergic asthma murine model. Mice were sensitized with an allergen to induce airway hyperresponsiveness or treated with saline (non-allergic group). Animals were challenged for 2-h to exhaust from a laboratory GDI engine operated at conditions equivalent to a highway cruise. Exhaust was filtered to assess responses induced by the particulate and gas fractions. Short-term exposure to particulate matter from GDI engine exhaust induced upregulation of genes related to polycyclic aromatic hydrocarbon (PAH) metabolism ( Cyp1b1 ) and inflammation ( TNFα ) in the lungs of non-allergic mice. High molecular weight PAHs dominated the particulate fraction of the exhaust, and this response was therefore likely attributable to the presence of these PAHs. The particle fraction of GDI engine exhaust further contributed to enhanced methacholine responsiveness in the central and peripheral tissues in animals with airway hyperresponsiveness. As GDI engines gain prevalence in the vehicle fleet, understanding the health impacts of their emissions becomes increasingly important., Competing Interests: The authors declare no conflict of interest.
- Published
- 2018
- Full Text
- View/download PDF
30. Murine precision-cut lung slices exhibit acute responses following exposure to gasoline direct injection engine emissions.
- Author
-
Maikawa CL, Zimmerman N, Rais K, Shah M, Hawley B, Pant P, Jeong CH, Delgado-Saborit JM, Volckens J, Evans G, Wallace JS, and Godri Pollitt KJ
- Subjects
- Animals, Cytochrome P-450 CYP1A1 genetics, Cytochrome P-450 CYP1A1 metabolism, Cytochrome P-450 CYP1B1 genetics, Cytochrome P-450 CYP1B1 metabolism, Female, Heme Oxygenase-1 genetics, Heme Oxygenase-1 metabolism, Membrane Proteins genetics, Membrane Proteins metabolism, Mice, Mice, Inbred BALB C, Oxidative Stress, Air Pollutants toxicity, Gasoline toxicity, Lung drug effects, Particulate Matter toxicity, Vehicle Emissions toxicity
- Abstract
Gasoline direct injection (GDI) engines are increasingly prevalent in the global vehicle fleet. Particulate matter emissions from GDI engines are elevated compared to conventional gasoline engines. The pulmonary effects of these higher particulate emissions are unclear. This study investigated the pulmonary responses induced by GDI engine exhaust using an ex vivo model. The physiochemical properties of GDI engine exhaust were assessed. Precision cut lung slices were prepared using Balb/c mice to evaluate the pulmonary response induced by one-hour exposure to engine-out exhaust from a laboratory GDI engine operated at conditions equivalent to vehicle highway cruise conditions. Lung slices were exposed at an air-liquid interface using an electrostatic aerosol in vitro exposure system. Particulate and gaseous exhaust was fractionated to contrast mRNA production related to polycyclic aromatic hydrocarbon (PAH) metabolism and oxidative stress. Exposure to GDI engine exhaust upregulated genes involved in PAH metabolism, including Cyp1a1 (2.71, SE=0.22), and Cyp1b1 (3.24, SE=0.12) compared to HEPA filtered air (p<0.05). GDI engine exhaust further increased Cyp1b1 expression compared to filtered GDI engine exhaust (i.e., gas fraction only), suggesting this response was associated with the particulate fraction. Exhaust particulate was dominated by high molecular weight PAHs. Hmox1, an oxidative stress marker, exhibited increased expression after exposure to GDI (1.63, SE=0.03) and filtered GDI (1.55, SE=0.04) engine exhaust compared to HEPA filtered air (p<0.05), likely attributable to a combination of the gas and particulate fractions. Exposure to GDI engine exhaust contributes to upregulation of genes related to the metabolism of PAHs and oxidative stress., (Copyright © 2016 Elsevier B.V. All rights reserved.)
- Published
- 2016
- Full Text
- View/download PDF
31. Particulate Oxidative Burden as a Predictor of Exhaled Nitric Oxide in Children with Asthma.
- Author
-
Maikawa CL, Weichenthal S, Wheeler AJ, Dobbin NA, Smargiassi A, Evans G, Liu L, Goldberg MS, and Pollitt KJ
- Abstract
Background: Epidemiological studies have provided strong evidence that fine particulate matter (PM2.5; aerodynamic diameter ≤ 2.5 μm) can exacerbate asthmatic symptoms in children. Pro-oxidant components of PM2.5 are capable of directly generating reactive oxygen species. Oxidative burden is used to describe the capacity of PM2.5 to generate reactive oxygen species in the lung., Objective: In this study we investigated the association between airway inflammation in asthmatic children and oxidative burden of PM2.5 personal exposure., Methods: Daily PM2.5 personal exposure samples (n = 249) of 62 asthmatic school-aged children in Montreal were collected over 10 consecutive days. The oxidative burden of PM2.5 samples was determined in vitro as the depletion of low-molecular-weight antioxidants (ascorbate and glutathione) from a synthetic model of the fluid lining the respiratory tract. Airway inflammation was measured daily as fractional exhaled nitric oxide (FeNO)., Results: A positive association was identified between FeNO and glutathione-related oxidative burden exposure in the previous 24 hr (6.0% increase per interquartile range change in glutathione). Glutathione-related oxidative burden was further found to be positively associated with FeNO over 1-day lag and 2-day lag periods. Results further demonstrate that corticosteroid use may reduce the FeNO response to elevated glutathione-related oxidative burden exposure (no use, 15.8%; irregular use, 3.8%), whereas mold (22.1%), dust (10.6%), or fur (13.1%) allergies may increase FeNO in children with versus children without these allergies (11.5%). No association was found between PM2.5 mass or ascorbate-related oxidative burden and FeNO levels., Conclusions: Exposure to PM2.5 with elevated glutathione-related oxidative burden was associated with increased FeNO., Citation: Maikawa CL, Weichenthal S, Wheeler AJ, Dobbin NA, Smargiassi A, Evans G, Liu L, Goldberg MS, Godri Pollitt KJ. 2016. Particulate oxidative burden as a predictor of exhaled nitric oxide in children with asthma. Environ Health Perspect 124:1616-1622; http://dx.doi.org/10.1289/EHP175., Competing Interests: The authors declare they have no actual or potential competing financial interests.
- Published
- 2016
- Full Text
- View/download PDF
32. Trace metal exposure is associated with increased exhaled nitric oxide in asthmatic children.
- Author
-
Godri Pollitt KJ, Maikawa CL, Wheeler AJ, Weichenthal S, Dobbin NA, Liu L, and Goldberg MS
- Subjects
- Adolescent, Child, Environmental Monitoring, Exhalation, Female, Humans, Male, Air Pollutants analysis, Arsenic analysis, Asthma metabolism, Metals analysis, Nitric Oxide metabolism, Particulate Matter analysis
- Abstract
Background: Children with asthma experience increased susceptibility to airborne pollutants. Exposure to traffic and industrial activity have been positively associated with exacerbation of symptoms as well as emergency room visits and hospitalisations. The effect of trace metals contained in fine particulate matter (aerodynamic diameter 2.5 μm and lower, PM2.5) on acute health effects amongst asthmatic children has not been well investigated. The objective of this panel study in asthmatic children was to determine the association between personal daily exposure to ambient trace metals and airway inflammation, as measured by fractional exhaled nitric oxide (FeNO)., Methods: Daily concentrations of trace metals contained on PM2.5 were determined from personal samples (n = 217) collected from 70 asthmatic school aged children in Montreal, Canada, over ten consecutive days. FeNO was measured daily using standard techniques., Results: A positive association was found between FeNO and children's exposure to an indicator of vehicular non-tailpipe emissions (8.9 % increase for an increase in the interquartile range (IQR) in barium, 95 % confidence interval (CI): 2.8, 15.4) as well as exposure to an indicator of industrial emissions (7.6 % increase per IQR increase in vanadium, 95 % CI: 0.1, 15.8). Elevated FeNO was also suggested for other metals on the day after the exposure: 10.3 % increase per IQR increase in aluminium (95 % CI: 4.2, 16.6) and 7.5 % increase per IQR increase in iron (95 % CI: 1.5, 13.9) at a 1-day lag period., Conclusions: Exposures to ambient PM2.5 containing trace metals that are markers of traffic and industrial-derived emissions were associated in asthmatic children with an enhanced FeNO response.
- Published
- 2016
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.