959 results on '"Magana P"'
Search Results
2. Image Velocimetry using Direct Displacement Field estimation with Neural Networks for Fluids
- Author
-
Magaña, Efraín, Costabal, Francisco Sahli, and Brevis, Wernher
- Subjects
Computer Science - Computer Vision and Pattern Recognition ,Physics - Fluid Dynamics - Abstract
An important tool for experimental fluids mechanics research is Particle Image Velocimetry (PIV). Several robust methodologies have been proposed to perform the estimation of velocity field from the images, however, alternative methods are still needed to increase the spatial resolution of the results. This work presents a novel approach for estimating fluid flow fields using neural networks and the optical flow equation to predict displacement vectors between sequential images. The result is a continuous representation of the displacement, that can be evaluated on the full spatial resolution of the image. The methodology was validated on synthetic and experimental images. Accurate results were obtained in terms of the estimation of instantaneous velocity fields, and of the determined time average turbulence quantities and power spectral density. The methodology proposed differs of previous attempts of using machine learning for this task: it does not require any previous training, and could be directly used in any pair of images.
- Published
- 2025
3. Search for continuous gravitational waves from known pulsars in the first part of the fourth LIGO-Virgo-KAGRA observing run
- Author
-
The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, Abac, A. G., Abbott, R., Abouelfettouh, I., Acernese, F., Ackley, K., Adhicary, S., Adhikari, N., Adhikari, R. X., Adkins, V. K., Agarwal, D., Agathos, M., Abchouyeh, M. Aghaei, Aguiar, O. D., Aguilar, I., Aiello, L., Ain, A., Ajith, P., Akutsu, T., Albanesi, S., Alfaidi, R. A., Al-Jodah, A., Alléné, C., Allocca, A., Al-Shammari, S., Altin, P. A., Alvarez-Lopez, S., Amato, A., Amez-Droz, L., Amorosi, A., Amra, C., Ananyeva, A., Anderson, S. B., Anderson, W. G., Andia, M., Ando, M., Andrade, T., Andres, N., Andrés-Carcasona, M., Andrić, T., Anglin, J., Ansoldi, S., Antelis, J. M., Antier, S., Aoumi, M., Appavuravther, E. Z., Appert, S., Apple, S. K., Arai, K., Araya, A., Araya, M. C., Areeda, J. S., Argianas, L., Aritomi, N., Armato, F., Arnaud, N., Arogeti, M., Aronson, S. M., Ashton, G., Aso, Y., Assiduo, M., Melo, S. Assis de Souza, Aston, S. M., Astone, P., Attadio, F., Aubin, F., AultONeal, K., Avallone, G., Babak, S., Badaracco, F., Badger, C., Bae, S., Bagnasco, S., Bagui, E., Baier, J. G., Baiotti, L., Bajpai, R., Baka, T., Ball, M., Ballardin, G., Ballmer, S. W., Banagiri, S., Banerjee, B., Bankar, D., Baral, P., Barayoga, J. C., Barish, B. C., Barker, D., Barneo, P., Barone, F., Barr, B., Barsotti, L., Barsuglia, M., Barta, D., Bartoletti, A. M., Barton, M. A., Bartos, I., Basak, S., Basalaev, A., Bassiri, R., Basti, A., Bates, D. E., Bawaj, M., Baxi, P., Bayley, J. C., Baylor, A. C., Baynard II, P. A., Bazzan, M., Bedakihale, V. M., Beirnaert, F., Bejger, M., Belardinelli, D., Bell, A. S., Benedetto, V., Benoit, W., Bentley, J. D., Yaala, M. Ben, Bera, S., Berbel, M., Bergamin, F., Berger, B. K., Bernuzzi, S., Beroiz, M., Bersanetti, D., Bertolini, A., Betzwieser, J., Beveridge, D., Bevins, N., Bhandare, R., Bhardwaj, U., Bhatt, R., Bhattacharjee, D., Bhaumik, S., Bhowmick, S., Bianchi, A., Bilenko, I. A., Billingsley, G., Binetti, A., Bini, S., Birnholtz, O., Biscoveanu, S., Bisht, A., Bitossi, M., Bizouard, M. -A., Blackburn, J. K., Blagg, L. A., Blair, C. D., Blair, D. G., Bobba, F., Bode, N., Boileau, G., Boldrini, M., Bolingbroke, G. N., Bolliand, A., Bonavena, L. D., Bondarescu, R., Bondu, F., Bonilla, E., Bonilla, M. S., Bonino, A., Bonnand, R., Booker, P., Borchers, A., Boschi, V., Bose, S., Bossilkov, V., Boudart, V., Boudon, A., Bozzi, A., Bradaschia, C., Brady, P. R., Braglia, M., Branch, A., Branchesi, M., Brandt, J., Braun, I., Breschi, M., Briant, T., Brillet, A., Brinkmann, M., Brockill, P., Brockmueller, E., Brooks, A. F., Brown, B. C., Brown, D. D., Brozzetti, M. L., Brunett, S., Bruno, G., Bruntz, R., Bryant, J., Bucci, F., Buchanan, J., Bulashenko, O., Bulik, T., Bulten, H. J., Buonanno, A., Burtnyk, K., Buscicchio, R., Buskulic, D., Buy, C., Byer, R. L., Davies, G. S. Cabourn, Cabras, G., Cabrita, R., Cáceres-Barbosa, V., Cadonati, L., Cagnoli, G., Cahillane, C., Bustillo, J. Calderón, Callister, T. A., Calloni, E., Camp, J. B., Canepa, M., Santoro, G. Caneva, Cannon, K. C., Cao, H., Capistran, L. A., Capocasa, E., Capote, E., Carapella, G., Carbognani, F., Carlassara, M., Carlin, J. B., Carpinelli, M., Carrillo, G., Carter, J. J., Carullo, G., Diaz, J. Casanueva, Casentini, C., Castro-Lucas, S. Y., Caudill, S., Cavaglià, M., Cavalieri, R., Cella, G., Cerdá-Durán, P., Cesarini, E., Chaibi, W., Chakraborty, P., Subrahmanya, S. Chalathadka, Chan, J. C. L., Chan, M., Chandra, K., Chang, R. -J., Chao, S., Charlton, E. L., Charlton, P., Chassande-Mottin, E., Chatterjee, C., Chatterjee, Debarati, Chatterjee, Deep, Chaturvedi, M., Chaty, S., Chen, A., Chen, A. H. -Y., Chen, D., Chen, H., Chen, H. Y., Chen, J., Chen, K. H., Chen, Y., Chen, Yanbei, Chen, Yitian, Cheng, H. P., Chessa, P., Cheung, H. T., Cheung, S. Y., Chiadini, F., Chiarini, G., Chierici, R., Chincarini, A., Chiofalo, M. L., Chiummo, A., Chou, C., Choudhary, S., Christensen, N., Chua, S. S. Y., Chugh, P., Ciani, G., Ciecielag, P., Cieślar, M., Cifaldi, M., Ciolfi, R., Clara, F., Clark, J. A., Clarke, J., Clarke, T. A., Clearwater, P., Clesse, S., Coccia, E., Codazzo, E., Cohadon, P. -F., Colace, S., Colleoni, M., Collette, C. G., Collins, J., Colloms, S., Colombo, A., Colpi, M., Compton, C. M., Connolly, G., Conti, L., Corbitt, T. R., Cordero-Carrión, I., Corezzi, S., Cornish, N. J., Corsi, A., Cortese, S., Costa, C. A., Cottingham, R., Coughlin, M. W., Couineaux, A., Coulon, J. -P., Countryman, S. T., Coupechoux, J. -F., Couvares, P., Coward, D. M., Cowart, M. J., Coyne, R., Craig, K., Creed, R., Creighton, J. D. E., Creighton, T. D., Cremonese, P., Criswell, A. W., Crockett-Gray, J. C. G., Crook, S., Crouch, R., Csizmazia, J., Cudell, J. R., Cullen, T. J., Cumming, A., Cuoco, E., Cusinato, M., Dabadie, P., Canton, T. Dal, Dall'Osso, S., Pra, S. Dal, Dálya, G., D'Angelo, B., Danilishin, S., D'Antonio, S., Danzmann, K., Darroch, K. E., Dartez, L. P., Dasgupta, A., Datta, S., Dattilo, V., Daumas, A., Davari, N., Dave, I., Davenport, A., Davier, M., Davies, T. F., Davis, D., Davis, L., Davis, M. C., Davis, P. J., Dax, M., De Bolle, J., Deenadayalan, M., Degallaix, J., De Laurentis, M., Deléglise, S., De Lillo, F., Dell'Aquila, D., Del Pozzo, W., De Marco, F., De Matteis, F., D'Emilio, V., Demos, N., Dent, T., Depasse, A., DePergola, N., De Pietri, R., De Rosa, R., De Rossi, C., DeSalvo, R., De Simone, R., Dhani, A., Diab, R., Díaz, M. C., Di Cesare, M., Dideron, G., Didio, N. A., Dietrich, T., Di Fiore, L., Di Fronzo, C., Di Giovanni, M., Di Girolamo, T., Diksha, D., Di Michele, A., Ding, J., Di Pace, S., Di Palma, I., Di Renzo, F., Divyajyoti, Dmitriev, A., Doctor, Z., Dohmen, E., Doleva, P. P., Dominguez, D., D'Onofrio, L., Donovan, F., Dooley, K. L., Dooney, T., Doravari, S., Dorosh, O., Drago, M., Driggers, J. C., Ducoin, J. -G., Dunn, L., Dupletsa, U., D'Urso, D., Duval, H., Duverne, P. -A., Dwyer, S. E., Eassa, C., Ebersold, M., Eckhardt, T., Eddolls, G., Edelman, B., Edo, T. B., Edy, O., Effler, A., Eichholz, J., Einsle, H., Eisenmann, M., Eisenstein, R. A., Ejlli, A., Eleveld, R. M., Emma, M., Endo, K., Engl, A. J., Enloe, E., Errico, L., Essick, R. C., Estellés, H., Estevez, D., Etzel, T., Evans, M., Evstafyeva, T., Ewing, B. E., Ezquiaga, J. M., Fabrizi, F., Faedi, F., Fafone, V., Fairhurst, S., Farah, A. M., Farr, B., Farr, W. M., Favaro, G., Favata, M., Fays, M., Fazio, M., Feicht, J., Fejer, M. M., Felicetti, R., Fenyvesi, E., Ferguson, D. L., Ferraiuolo, S., Ferrante, I., Ferreira, T. A., Fidecaro, F., Figura, P., Fiori, A., Fiori, I., Fishbach, M., Fisher, R. P., Fittipaldi, R., Fiumara, V., Flaminio, R., Fleischer, S. M., Fleming, L. S., Floden, E., Foley, E. M., Fong, H., Font, J. A., Fornal, B., Forsyth, P. W. F., Franceschetti, K., Franchini, N., Frasca, S., Frasconi, F., Mascioli, A. Frattale, Frei, Z., Freise, A., Freitas, O., Frey, R., Frischhertz, W., Fritschel, P., Frolov, V. V., Fronzé, G. G., Fuentes-Garcia, M., Fujii, S., Fujimori, T., Fulda, P., Fyffe, M., Gadre, B., Gair, J. R., Galaudage, S., Galdi, V., Gallagher, H., Gallardo, S., Gallego, B., Gamba, R., Gamboa, A., Ganapathy, D., Ganguly, A., Garaventa, B., García-Bellido, J., Núñez, C. García, García-Quirós, C., Gardner, J. W., Gardner, K. A., Gargiulo, J., Garron, A., Garufi, F., Gasbarra, C., Gateley, B., Gayathri, V., Gemme, G., Gennai, A., Gennari, V., George, J., George, R., Gerberding, O., Gergely, L., Ghosh, Archisman, Ghosh, Sayantan, Ghosh, Shaon, Ghosh, Shrobana, Ghosh, Suprovo, Ghosh, Tathagata, Giacoppo, L., Giaime, J. A., Giardina, K. D., Gibson, D. R., Gibson, D. T., Gier, C., Giri, P., Gissi, F., Gkaitatzis, S., Glanzer, J., Glotin, F., Godfrey, J., Godwin, P., Goebbels, N. L., Goetz, E., Golomb, J., Lopez, S. Gomez, Goncharov, B., Gong, Y., González, G., Goodarzi, P., Goode, S., Goodwin-Jones, A. W., Gosselin, M., Göttel, A. S., Gouaty, R., Gould, D. W., Govorkova, K., Goyal, S., Grace, B., Grado, A., Graham, V., Granados, A. E., Granata, M., Granata, V., Gras, S., Grassia, P., Gray, A., Gray, C., Gray, R., Greco, G., Green, A. C., Green, S. M., Green, S. R., Gretarsson, A. M., Gretarsson, E. M., Griffith, D., Griffiths, W. L., Griggs, H. L., Grignani, G., Grimaldi, A., Grimaud, C., Grote, H., Guerra, D., Guetta, D., Guidi, G. M., Guimaraes, A. R., Gulati, H. K., Gulminelli, F., Gunny, A. M., Guo, H., Guo, W., Guo, Y., Gupta, Anchal, Gupta, Anuradha, Gupta, Ish, Gupta, N. C., Gupta, P., Gupta, S. K., Gupta, T., Gupte, N., Gurs, J., Gutierrez, N., Guzman, F., H, H. -Y., Haba, D., Haberland, M., Haino, S., Hall, E. D., Hamilton, E. Z., Hammond, G., Han, W. -B., Haney, M., Hanks, J., Hanna, C., Hannam, M. D., Hannuksela, O. A., Hanselman, A. G., Hansen, H., Hanson, J., Harada, R., Hardison, A. R., Haris, K., Harmark, T., Harms, J., Harry, G. M., Harry, I. W., Hart, J., Haskell, B., Haster, C. -J., Hathaway, J. S., Haughian, K., Hayakawa, H., Hayama, K., Hayes, R., Heffernan, A., Heidmann, A., Heintze, M. C., Heinze, J., Heinzel, J., Heitmann, H., Hellman, F., Hello, P., Helmling-Cornell, A. F., Hemming, G., Henderson-Sapir, O., Hendry, M., Heng, I. S., Hennes, E., Henshaw, C., Hertog, T., Heurs, M., Hewitt, A. L., Heyns, J., Higginbotham, S., Hild, S., Hill, S., Himemoto, Y., Hirata, N., Hirose, C., Ho, W. C. G., Hoang, S., Hochheim, S., Hofman, D., Holland, N. A., Holley-Bockelmann, K., Holmes, Z. J., Holz, D. E., Honet, L., Hong, C., Hornung, J., Hoshino, S., Hough, J., Hourihane, S., Howell, E. J., Hoy, C. G., Hrishikesh, C. A., Hsieh, H. -F., Hsiung, C., Hsu, H. C., Hsu, W. -F., Hu, P., Hu, Q., Huang, H. Y., Huang, Y. -J., Huddart, A. D., Hughey, B., Hui, D. C. Y., Hui, V., Husa, S., Huxford, R., Huynh-Dinh, T., Iampieri, L., Iandolo, G. A., Ianni, M., Iess, A., Imafuku, H., Inayoshi, K., Inoue, Y., Iorio, G., Iqbal, M. H., Irwin, J., Ishikawa, R., Isi, M., Ismail, M. A., Itoh, Y., Iwanaga, H., Iwaya, M., Iyer, B. R., JaberianHamedan, V., Jacquet, C., Jacquet, P. -E., Jadhav, S. J., Jadhav, S. P., Jain, T., James, A. L., James, P. A., Jamshidi, R., Janquart, J., Janssens, K., Janthalur, N. N., Jaraba, S., Jaranowski, P., Jaume, R., Javed, W., Jennings, A., Jia, W., Jiang, J., Jin, H., Kubisz, J., Johanson, C., Johns, G. R., Johnson, N. A., Johnston, M. C., Johnston, R., Johny, N., Jones, D. H., Jones, D. I., Jones, R., Jose, S., Joshi, P., Ju, L., Jung, K., Junker, J., Juste, V., Kajita, T., Kaku, I., Kalaghatgi, C., Kalogera, V., Kamiizumi, M., Kanda, N., Kandhasamy, S., Kang, G., Kanner, J. B., Kapadia, S. J., Kapasi, D. P., Karat, S., Karathanasis, C., Kashyap, R., Kasprzack, M., Kastaun, W., Kato, T., Katsavounidis, E., Katzman, W., Kaushik, R., Kawabe, K., Kawamoto, R., Kazemi, A., Keitel, D., Kelley-Derzon, J., Kennington, J., Kesharwani, R., Key, J. S., Khadela, R., Khadka, S., Khalili, F. Y., Khan, F., Khan, I., Khanam, T., Khursheed, M., Khusid, N. M., Kiendrebeogo, W., Kijbunchoo, N., Kim, C., Kim, J. C., Kim, K., Kim, M. H., Kim, S., Kim, Y. -M., Kimball, C., Kinley-Hanlon, M., Kinnear, M., Kissel, J. S., Klimenko, S., Knee, A. M., Knust, N., Kobayashi, K., Koch, P., Koehlenbeck, S. M., Koekoek, G., Kohri, K., Kokeyama, K., Koley, S., Kolitsidou, P., Kolstein, M., Komori, K., Kong, A. K. H., Kontos, A., Korobko, M., Kossak, R. V., Kou, X., Koushik, A., Kouvatsos, N., Kovalam, M., Kozak, D. B., Kranzhoff, S. L., Kringel, V., Krishnendu, N. V., Królak, A., Kruska, K., Kuehn, G., Kuijer, P., Kulkarni, S., Ramamohan, A. Kulur, Kumar, A., Kumar, Praveen, Kumar, Prayush, Kumar, Rahul, Kumar, Rakesh, Kume, J., Kuns, K., Kuntimaddi, N., Kuroyanagi, S., Kurth, N. J., Kuwahara, S., Kwak, K., Kwan, K., Kwok, J., Lacaille, G., Lagabbe, P., Laghi, D., Lai, S., Laity, A. H., Lakkis, M. H., Lalande, E., Lalleman, M., Lalremruati, P. C., Landry, M., Lane, B. B., Lang, R. N., Lange, J., Lantz, B., La Rana, A., La Rosa, I., Lartaux-Vollard, A., Lasky, P. D., Lawrence, J., Lawrence, M. N., Laxen, M., Lazzarini, A., Lazzaro, C., Leaci, P., Lecoeuche, Y. K., Lee, H. M., Lee, H. W., Lee, K., Lee, R. -K., Lee, R., Lee, S., Lee, Y., Legred, I. N., Lehmann, J., Lehner, L., Jean, M. Le, Lemaître, A., Lenti, M., Leonardi, M., Lequime, M., Leroy, N., Lesovsky, M., Letendre, N., Lethuillier, M., Levin, S. E., Levin, Y., Leyde, K., Li, A. K. Y., Li, K. L., Li, T. G. F., Li, X., Li, Z., Lihos, A., Lin, C-Y., Lin, C. -Y., Lin, E. T., Lin, F., Lin, H., Lin, L. C. -C., Lin, Y. -C., Linde, F., Linker, S. D., Littenberg, T. B., Liu, A., Liu, G. C., Liu, Jian, Villarreal, F. Llamas, Llobera-Querol, J., Lo, R. K. L., Locquet, J. -P., London, L. T., Longo, A., Lopez, D., Portilla, M. Lopez, Lorenzini, M., Lorenzo-Medina, A., Loriette, V., Lormand, M., Losurdo, G., Lott IV, T. P., Lough, J. D., Loughlin, H. A., Lousto, C. O., Lowry, M. J., Lu, N., Lück, H., Lumaca, D., Lundgren, A. P., Lussier, A. W., Ma, L. -T., Ma, S., Ma'arif, M., Macas, R., Macedo, A., MacInnis, M., Maciy, R. R., Macleod, D. M., MacMillan, I. A. O., Macquet, A., Macri, D., Maeda, K., Maenaut, S., Hernandez, I. Magaña, Magare, S. S., Magazzù, C., Magee, R. M., Maggio, E., Maggiore, R., Magnozzi, M., Mahesh, M., Mahesh, S., Maini, M., Majhi, S., Majorana, E., Makarem, C. N., Makelele, E., Malaquias-Reis, J. A., Mali, U., Maliakal, S., Malik, A., Man, N., Mandic, V., Mangano, V., Mannix, B., Mansell, G. L., Mansingh, G., Manske, M., Mantovani, M., Mapelli, M., Marchesoni, F., Pina, D. Marín, Marion, F., Márka, S., Márka, Z., Markosyan, A. S., Markowitz, A., Maros, E., Marsat, S., Martelli, F., Martin, I. W., Martin, R. M., Martinez, B. B., Martinez, M., Martinez, V., Martini, A., Martinovic, K., Martins, J. C., Martynov, D. V., Marx, E. J., Massaro, L., Masserot, A., Masso-Reid, M., Mastrodicasa, M., Mastrogiovanni, S., Matcovich, T., Matiushechkina, M., Matsuyama, M., Mavalvala, N., Maxwell, N., McCarrol, G., McCarthy, R., McClelland, D. E., McCormick, S., McCuller, L., McEachin, S., McElhenny, C., McGhee, G. I., McGinn, J., McGowan, K. B. M., McIver, J., McLeod, A., McRae, T., Meacher, D., Meijer, Q., Melatos, A., Mellaerts, S., Menendez-Vazquez, A., Menoni, C. S., Mera, F., Mercer, R. A., Mereni, L., Merfeld, K., Merilh, E. L., Mérou, J. R., Merritt, J. D., Merzougui, M., Messenger, C., Messick, C., Metzler, Z., Meyer-Conde, M., Meylahn, F., Mhaske, A., Miani, A., Miao, H., Michaloliakos, I., Michel, C., Michimura, Y., Middleton, H., Miller, A. L., Miller, S., Millhouse, M., Milotti, E., Milotti, V., Minenkov, Y., Mio, N., Mir, Ll. M., Mirasola, L., Miravet-Tenés, M., Miritescu, C. -A., Mishra, A. K., Mishra, A., Mishra, C., Mishra, T., Mitchell, A. L., Mitchell, J. G., Mitra, S., Mitrofanov, V. P., Mittleman, R., Miyakawa, O., Miyamoto, S., Miyoki, S., Mo, G., Mobilia, L., Mohapatra, S. R. P., Mohite, S. R., Molina-Ruiz, M., Mondal, C., Mondin, M., Montani, M., Moore, C. J., Moraru, D., More, A., More, S., Moreno, G., Morgan, C., Morisaki, S., Moriwaki, Y., Morras, G., Moscatello, A., Mourier, P., Mours, B., Mow-Lowry, C. M., Muciaccia, F., Mukherjee, Arunava, Mukherjee, D., Mukherjee, Samanwaya, Mukherjee, Soma, Mukherjee, Subroto, Mukherjee, Suvodip, Mukund, N., Mullavey, A., Munch, J., Mundi, J., Mungioli, C. L., Oberg, W. R. Munn, Murakami, Y., Murakoshi, M., Murray, P. G., Muusse, S., Nabari, D., Nadji, S. L., Nagar, A., Nagarajan, N., Nagler, K. N., Nakagaki, K., Nakamura, K., Nakano, H., Nakano, M., Nandi, D., Napolano, V., Narayan, P., Nardecchia, I., Narikawa, T., Narola, H., Naticchioni, L., Nayak, R. K., Neilson, J., Nelson, A., Nelson, T. J. N., Nery, M., Neunzert, A., Ng, S., Quynh, L. Nguyen, Nichols, S. A., Nielsen, A. B., Nieradka, G., Niko, A., Nishino, Y., Nishizawa, A., Nissanke, S., Nitoglia, E., Niu, W., Nocera, F., Norman, M., North, C., Novak, J., Siles, J. F. Nuño, Nuttall, L. K., Obayashi, K., Oberling, J., O'Dell, J., Oertel, M., Offermans, A., Oganesyan, G., Oh, J. J., Oh, K., O'Hanlon, T., Ohashi, M., Ohkawa, M., Ohme, F., Oliveira, A. S., Oliveri, R., O'Neal, B., Oohara, K., O'Reilly, B., Ormsby, N. D., Orselli, M., O'Shaughnessy, R., O'Shea, S., Oshima, Y., Oshino, S., Ossokine, S., Osthelder, C., Ota, I., Ottaway, D. J., Ouzriat, A., Overmier, H., Owen, B. J., Pace, A. E., Pagano, R., Page, M. A., Pai, A., Pal, A., Pal, S., Palaia, M. A., Pálfi, M., Palma, P. P., Palomba, C., Palud, P., Pan, H., Pan, J., Pan, K. C., Panai, R., Panda, P. K., Pandey, S., Panebianco, L., Pang, P. T. H., Pannarale, F., Pannone, K. A., Pant, B. C., Panther, F. H., Paoletti, F., Paolone, A., Papalexakis, E. E., Papalini, L., Papigkiotis, G., Paquis, A., Parisi, A., Park, B. -J., Park, J., Parker, W., Pascale, G., Pascucci, D., Pasqualetti, A., Passaquieti, R., Passenger, L., Passuello, D., Patane, O., Pathak, D., Pathak, M., Patra, A., Patricelli, B., Patron, A. S., Paul, K., Paul, S., Payne, E., Pearce, T., Pedraza, M., Pegna, R., Pele, A., Arellano, F. E. Peña, Penn, S., Penuliar, M. D., Perego, A., Pereira, Z., Perez, J. J., Périgois, C., Perna, G., Perreca, A., Perret, J., Perriès, S., Perry, J. W., Pesios, D., Petracca, S., Petrillo, C., Pfeiffer, H. P., Pham, H., Pham, K. A., Phukon, K. S., Phurailatpam, H., Piarulli, M., Piccari, L., Piccinni, O. J., Pichot, M., Piendibene, M., Piergiovanni, F., Pierini, L., Pierra, G., Pierro, V., Pietrzak, M., Pillas, M., Pilo, F., Pinard, L., Pinto, I. M., Pinto, M., Piotrzkowski, B. J., Pirello, M., Pitkin, M. D., Placidi, A., Placidi, E., Planas, M. L., Plastino, W., Poggiani, R., Polini, E., Pompili, L., Poon, J., Porcelli, E., Porter, E. K., Posnansky, C., Poulton, R., Powell, J., Pracchia, M., Pradhan, B. K., Pradier, T., Prajapati, A. K., Prasai, K., Prasanna, R., Prasia, P., Pratten, G., Principe, G., Principe, M., Prodi, G. A., Prokhorov, L., Prosposito, P., Puecher, A., Pullin, J., Punturo, M., Puppo, P., Pürrer, M., Qi, H., Qin, J., Quéméner, G., Quetschke, V., Quigley, C., Quinonez, P. J., Raab, F. J., Raabith, S. S., Raaijmakers, G., Raja, S., Rajan, C., Rajbhandari, B., Ramirez, K. E., Vidal, F. A. Ramis, Ramos-Buades, A., Rana, D., Ranjan, S., Ransom, K., Rapagnani, P., Ratto, B., Rawat, S., Ray, A., Raymond, V., Razzano, M., Read, J., Payo, M. Recaman, Regimbau, T., Rei, L., Reid, S., Reitze, D. H., Relton, P., Renzini, A. I., Rettegno, P., Revenu, B., Reyes, R., Rezaei, A. S., Ricci, F., Ricci, M., Ricciardone, A., Richardson, J. W., Richardson, M., Rijal, A., Riles, K., Riley, H. K., Rinaldi, S., Rittmeyer, J., Robertson, C., Robinet, F., Robinson, M., Rocchi, A., Rolland, L., Rollins, J. G., Romano, A. E., Romano, R., Romero, A., Romero-Shaw, I. M., Romie, J. H., Ronchini, S., Roocke, T. J., Rosa, L., Rosauer, T. J., Rose, C. A., Rosińska, D., Ross, M. P., Rossello, M., Rowan, S., Roy, S. K., Roy, S., Rozza, D., Ruggi, P., Ruhama, N., Morales, E. Ruiz, Ruiz-Rocha, K., Sachdev, S., Sadecki, T., Sadiq, J., Saffarieh, P., Sah, M. R., Saha, S. S., Saha, S., Sainrat, T., Menon, S. Sajith, Sakai, K., Sakellariadou, M., Sakon, S., Salafia, O. S., Salces-Carcoba, F., Salconi, L., Saleem, M., Salemi, F., Sallé, M., Salvador, S., Sanchez, A., Sanchez, E. J., Sanchez, J. H., Sanchez, L. E., Sanchis-Gual, N., Sanders, J. R., Sänger, E. M., Santoliquido, F., Saravanan, T. R., Sarin, N., Sasaoka, S., Sasli, A., Sassi, P., Sassolas, B., Satari, H., Sato, R., Sato, Y., Sauter, O., Savage, R. L., Sawada, T., Sawant, H. L., Sayah, S., Scacco, V., Schaetzl, D., Scheel, M., Schiebelbein, A., Schiworski, M. G., Schmidt, P., Schmidt, S., Schnabel, R., Schneewind, M., Schofield, R. M. S., Schouteden, K., Schulte, B. W., Schutz, B. F., Schwartz, E., Scialpi, M., Scott, J., Scott, S. M., Seetharamu, T. C., Seglar-Arroyo, M., Sekiguchi, Y., Sellers, D., Sengupta, A. S., Sentenac, D., Seo, E. G., Seo, J. W., Sequino, V., Serra, M., Servignat, G., Sevrin, A., Shaffer, T., Shah, U. S., Shaikh, M. A., Shao, L., Sharma, A. K., Sharma, P., Sharma-Chaudhary, S., Shaw, M. R., Shawhan, P., Shcheblanov, N. S., Sheridan, E., Shikano, Y., Shikauchi, M., Shimode, K., Shinkai, H., Shiota, J., Shoemaker, D. H., Shoemaker, D. M., Short, R. W., ShyamSundar, S., Sider, A., Siegel, H., Sieniawska, M., Sigg, D., Silenzi, L., Simmonds, M., Singer, L. P., Singh, A., Singh, D., Singh, M. K., Singh, S., Singha, A., Sintes, A. M., Sipala, V., Skliris, V., Slagmolen, B. J. J., Slaven-Blair, T. J., Smetana, J., Smith, J. R., Smith, L., Smith, R. J. E., Smith, W. J., Soldateschi, J., Somiya, K., Song, I., Soni, K., Soni, S., Sordini, V., Sorrentino, F., Sorrentino, N., Sotani, H., Soulard, R., Southgate, A., Spagnuolo, V., Spencer, A. P., Spera, M., Spinicelli, P., Spoon, J. B., Sprague, C. A., Srivastava, A. K., Stachurski, F., Steer, D. A., Steinlechner, J., Steinlechner, S., Stergioulas, N., Stevens, P., StPierre, M., Stratta, G., Strong, M. D., Strunk, A., Sturani, R., Stuver, A. L., Suchenek, M., Sudhagar, S., Sueltmann, N., Suleiman, L., Sullivan, K. D., Sun, L., Sunil, S., Suresh, J., Sutton, P. J., Suzuki, T., Suzuki, Y., Swinkels, B. L., Syx, A., Szczepańczyk, M. J., Szewczyk, P., Tacca, M., Tagoshi, H., Tait, S. C., Takahashi, H., Takahashi, R., Takamori, A., Takase, T., Takatani, K., Takeda, H., Takeshita, K., Talbot, C., Tamaki, M., Tamanini, N., Tanabe, D., Tanaka, K., Tanaka, S. J., Tanaka, T., Tang, D., Tanioka, S., Tanner, D. B., Tao, L., Tapia, R. D., Martín, E. N. Tapia San, Tarafder, R., Taranto, C., Taruya, A., Tasson, J. D., Teloi, M., Tenorio, R., Themann, H., Theodoropoulos, A., Thirugnanasambandam, M. P., Thomas, L. M., Thomas, M., Thomas, P., Thompson, J. E., Thondapu, S. R., Thorne, K. A., Thrane, E., Tissino, J., Tiwari, A., Tiwari, P., Tiwari, S., Tiwari, V., Todd, M. R., Toivonen, A. M., Toland, K., Tolley, A. E., Tomaru, T., Tomita, K., Tomura, T., Tong-Yu, C., Toriyama, A., Toropov, N., Torres-Forné, A., Torrie, C. I., Toscani, M., Melo, I. Tosta e, Tournefier, E., Trapananti, A., Travasso, F., Traylor, G., Trevor, M., Tringali, M. C., Tripathee, A., Troian, G., Troiano, L., Trovato, A., Trozzo, L., Trudeau, R. J., Tsang, T. T. L., Tso, R., Tsuchida, S., Tsukada, L., Tsutsui, T., Turbang, K., Turconi, M., Turski, C., Ubach, H., Uchiyama, T., Udall, R. P., Uehara, T., Uematsu, M., Ueno, K., Ueno, S., Undheim, V., Ushiba, T., Vacatello, M., Vahlbruch, H., Vaidya, N., Vajente, G., Vajpeyi, A., Valdes, G., Valencia, J., Valentini, M., Vallejo-Peña, S. A., Vallero, S., Valsan, V., van Bakel, N., van Beuzekom, M., van Dael, M., Brand, J. F. J. van den, Broeck, C. Van Den, Vander-Hyde, D. C., van der Sluys, M., Van de Walle, A., van Dongen, J., Vandra, K., van Haevermaet, H., van Heijningen, J. V., Van Hove, P., VanKeuren, M., Vanosky, J., van Putten, M. H. P. M., van Ranst, Z., van Remortel, N., Vardaro, M., Vargas, A. F., Varghese, J. J., Varma, V., Vasúth, M., Vecchio, A., Vedovato, G., Veitch, J., Veitch, P. J., Venikoudis, S., Venneberg, J., Verdier, P., Verkindt, D., Verma, B., Verma, P., Verma, Y., Vermeulen, S. M., Vetrano, F., Veutro, A., Vibhute, A. M., Viceré, A., Vidyant, S., Viets, A. D., Vijaykumar, A., Vilkha, A., Villa-Ortega, V., Vincent, E. T., Vinet, J. -Y., Viret, S., Virtuoso, A., Vitale, S., Vives, A., Vocca, H., Voigt, D., von Reis, E. R. G., von Wrangel, J. S. A., Vyatchanin, S. P., Wade, L. E., Wade, M., Wagner, K. J., Wajid, A., Walker, M., Wallace, G. S., Wallace, L., Wang, H., Wang, J. Z., Wang, W. H., Wang, Z., Waratkar, G., Warner, J., Was, M., Washimi, T., Washington, N. Y., Watarai, D., Wayt, K. E., Weaver, B. R., Weaver, B., Weaving, C. R., Webster, S. A., Weinert, M., Weinstein, A. J., Weiss, R., Wellmann, F., Wen, L., Weßels, P., Wette, K., Whelan, J. T., Whiting, B. F., Whittle, C., Wildberger, J. B., Wilk, O. S., Wilken, D., Wilkin, A. T., Willadsen, D. J., Willetts, K., Williams, D., Williams, M. J., Williams, N. S., Willis, J. L., Willke, B., Wils, M., Winterflood, J., Wipf, C. C., Woan, G., Woehler, J., Wofford, J. K., Wolfe, N. E., Wong, H. T., Wong, H. W. Y., Wong, I. C. F., Wright, J. L., Wright, M., Wu, C., Wu, D. S., Wu, H., Wuchner, E., Wysocki, D. M., Xu, V. A., Xu, Y., Yadav, N., Yamamoto, H., Yamamoto, K., Yamamoto, T. S., Yamamoto, T., Yamamura, S., Yamazaki, R., Yan, S., Yan, T., Yang, F. W., Yang, F., Yang, K. Z., Yang, Y., Yarbrough, Z., Yasui, H., Yeh, S. -W., Yelikar, A. B., Yin, X., Yokoyama, J., Yokozawa, T., Yoo, J., Yu, H., Yuan, S., Yuzurihara, H., Zadrożny, A., Zanolin, M., Zeeshan, M., Zelenova, T., Zendri, J. -P., Zeoli, M., Zerrad, M., Zevin, M., Zhang, A. C., Zhang, L., Zhang, R., Zhang, T., Zhang, Y., Zhao, C., Zhao, Yue, Zhao, Yuhang, Zheng, Y., Zhong, H., Zhou, R., Zhu, X. -J., Zhu, Z. -H., Zimmerman, A. B., Zucker, M. E., Zweizig, J., Furlan, S. B. Araujo, Arzoumanian, Z., Basu, A., Cassity, A., Cognard, I., Crowter, K., del Palacio, S., Espinoza, C. M., Fonseca, E., Flynn, C. M. L., Gancio, G., Garcia, F., Gendreau, K. C., Good, D. C., Guillemot, L., Guillot, S., Keith, M. J., Kuiper, L., Lower, M. E., Lyne, A. G., McKee, J. W., Meyers, B. W., Palfreyman, J. L., Pearlman, A. B., Romero, G. E., Shannon, R. M., Shaw, B., Stairs, I. H., Stappers, B. W., Tan, C. M., Theureau, G., Thompson, M., Weltevrede, P., and Zubieta, E.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
Continuous gravitational waves (CWs) emission from neutron stars carries information about their internal structure and equation of state, and it can provide tests of General Relativity. We present a search for CWs from a set of 45 known pulsars in the first part of the fourth LIGO--Virgo--KAGRA observing run, known as O4a. We conducted a targeted search for each pulsar using three independent analysis methods considering the single-harmonic and the dual-harmonic emission models. We find no evidence of a CW signal in O4a data for both models and set upper limits on the signal amplitude and on the ellipticity, which quantifies the asymmetry in the neutron star mass distribution. For the single-harmonic emission model, 29 targets have the upper limit on the amplitude below the theoretical spin-down limit. The lowest upper limit on the amplitude is $6.4\!\times\!10^{-27}$ for the young energetic pulsar J0537-6910, while the lowest constraint on the ellipticity is $8.8\!\times\!10^{-9}$ for the bright nearby millisecond pulsar J0437-4715. Additionally, for a subset of 16 targets we performed a narrowband search that is more robust regarding the emission model, with no evidence of a signal. We also found no evidence of non-standard polarizations as predicted by the Brans-Dicke theory., Comment: main paper: 12 pages, 6 figures, 4 tables
- Published
- 2025
4. Constraining the phase shift of relativistic species in DESI BAOs
- Author
-
Whitford, Abbé M., Rivera-Morales, Hugo, Howlett, Cullan, Vargas-Magaña, Mariana, Fromenteau, Sébastien, Davis, Tamara M., Pérez-Fernández, Alejandro, de Mattia, Arnaud, Ahlen, Steven, Bianchi, Davide, Brooks, David, Burtin, Etienne, Claybaugh, Todd, de la Macorra, Axel, Doel, Peter, Ferraro, Simone, Forero-Romero, Jaime E., Gaztañaga, Enrique, Gontcho, Satya Gontcho A, Gutierrez, Gaston, Juneau, Stephanie, Kehoe, Robert, Kirkby, David, Kisner, Theodore, Koposov, Sergey, Landriau, Martin, Guillou, Laurent Le, Meisner, Aaron, Miquel, Ramon, Prada, Francisco, Pérez-Ràfols, Ignasi, Rossi, Graziano, Sanchez, Eusebio, Schubnell, Michael, Sprayberry, David, Tarlé, Gregory, Weaver, Benjamin Alan, Zarrouk, Pauline, and Zou, Hu
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
In the early Universe, neutrinos decouple quickly from the primordial plasma and propagate without further interactions. The impact of free-streaming neutrinos is to create a temporal shift in the gravitational potential that impacts the acoustic waves known as baryon acoustic oscillations (BAOs), resulting in a non-linear spatial shift in the Fourier-space BAO signal. In this work, we make use of and extend upon an existing methodology to measure the phase shift amplitude $\beta_{\phi}$ and apply it to the DESI Data Release 1 (DR1) BAOs with an anisotropic BAO fitting pipeline. We validate the fitting methodology by testing the pipeline with two publicly available fitting codes applied to highly precise cubic box simulations and realistic simulations representative of the DESI DR1 data. We find further study towards the methods used in fitting the BAO signal will be necessary to ensure accurate constraints on $\beta_{\phi}$ in future DESI data releases. Using DESI DR1, we present individual measurements of the anisotropic BAO distortion parameters and the $\beta_{\phi}$ for the different tracers, and additionally a combined fit to $\beta_{\phi}$ resulting in $\beta_{\phi} = 2.7 \pm 1.7$. After including a prior on the distortion parameters from constraints using \textit{Planck} we find $\beta_{\phi} = 2.7^{+0.60}_{-0.67} $ suggesting $\beta_{\phi} > 0$ at 4.3$\sigma$ significance. This result may hint at a phase shift that is not purely sourced from the standard model expectation for $N_{\rm{eff}}$ or could be a upwards statistical fluctuation in the measured $\beta_{\phi}$; this result relaxes in models with additional freedom beyond $\Lambda$CDM.
- Published
- 2024
5. An acidic microenvironment produced by the V-type ATPase of Euprymna scolopes promotes specificity during Vibrio fischeri recruitment.
- Author
-
Hargadon, Alexis, Viliunas, Joani, Koehler, Sabrina, Thies, Angus, Chen, Grischa, Ladinsky, Mark, Kuwabara, Jill, Avila-Magana, Viridiana, Ruby, Edward, Tresguerres, Martin, and McFall-Ngai, Margaret
- Subjects
Aliivibrio fischeri ,Animals ,Decapodiformes ,Symbiosis ,Hydrogen-Ion Concentration ,Vacuolar Proton-Translocating ATPases - Abstract
Animals often acquire their microbial symbionts from the environment, but the mechanisms underlying how specificity of the association is achieved are poorly understood. We demonstrate that the conserved proton pump, V-type ATPase (VHA), plays a key role in the establishment of the model light-organ symbiosis between the squid Euprymna scolopes and its bacterial partner, Vibrio fischeri. Recruitment of V. fischeri from the surrounding seawater is mediated by juvenile-specific ciliated fields on the organs surface. These epithelia produce acidic mucus containing antimicrobials with low-pH optima, creating a chemical environment fostering specific recruitment of V. fischeri. We provide evidence that this critical acidic landscape is created by activity of VHA. VHA inhibition abolished epithelial-cell acidity, resulting in increased mucus pH and inefficient symbiont colonization. Thus, VHA provides a mechanistic link between host modulation of microenvironmental acidity, immune function, and selection of microbial symbionts, a strategy for specificity that may govern other symbioses.
- Published
- 2024
6. Enhancing cognitive performance prediction by white matter hyperintensity connectivity assessment
- Author
-
Petersen, Marvin, Coenen, Mirthe, DeCarli, Charles, De Luca, Alberto, van der Lelij, Ewoud, Weiner, Michael, Aisen, Paul, Petersen, Ronald, Jack, Clifford R, Jagust, William, Landau, Susan, Rivera-Mindt, Monica, Okonkwo, Ozioma, Shaw, Leslie M, Lee, Edward B, Toga, Arthur W, Beckett, Laurel, Harvey, Danielle, Green, Robert C, Saykin, Andrew J, Nho, Kwangsik, Perrin, Richard J, Tosun, Duygu, Sachdev, Pallavi, Drake, Erin, Montine, Tom, Conti, Cat, Weiner, Michael W, Nosheny, Rachel, Sacrey, Diana Truran, Fockler, Juliet, Miller, Melanie J, Conti, Catherine, Kwang, Winnie, Jin, Chengshi, Diaz, Adam, Ashford, Miriam, Flenniken, Derek, Rafii, Michael, Raman, Rema, Jimenez, Gustavo, Donohue, Michael, Salazar, Jennifer, Fidell, Andrea, Boatwright, Virginia, Robison, Justin, Zimmerman, Caileigh, Cabrera, Yuliana, Walter, Sarah, Clanton, Taylor, Shaffer, Elizabeth, Webb, Caitlin, Hergesheimer, Lindsey, Smith, Stephanie, Ogwang, Sheila, Adegoke, Olusegun, Mahboubi, Payam, Pizzola, Jeremy, Jenkins, Cecily, Saito, Naomi, Hussen, Kedir Adem, Amaza, Hannatu, Thao, Mai Seng, Parkins, Shaniya, Ayo, Omobolanle, Glittenberg, Matt, Hoang, Isabella, Germano, Kaori Kubo, Strong, Joe, Weisensel, Trinity, Magana, Fabiola, Thomas, Lisa, Guzman, Vanessa, Ajayi, Adeyinka, Benedetto, Joseph Di, Talavera, Sandra, Felmlee, Joel, Fox, Nick C, Thompson, Paul, Forghanian-Arani, Arvin, Borowski, Bret, Reyes, Calvin, Hedberg, Caitie, Ward, Chad, Schwarz, Christopher, and Reyes, Denise
- Subjects
Biological Psychology ,Psychology ,Aging ,Neurodegenerative ,Dementia ,Vascular Cognitive Impairment/Dementia ,Cerebrovascular ,Acquired Cognitive Impairment ,Neurosciences ,Basic Behavioral and Social Science ,Alzheimer's Disease Related Dementias (ADRD) ,Brain Disorders ,Alzheimer's Disease including Alzheimer's Disease Related Dementias (AD/ADRD) ,Behavioral and Social Science ,Clinical Research ,2.1 Biological and endogenous factors ,Neurological ,Humans ,Male ,Female ,White Matter ,Aged ,Middle Aged ,Cross-Sectional Studies ,Magnetic Resonance Imaging ,Cognitive Dysfunction ,Cognition ,Neuropsychological Tests ,Connectome ,Brain ,Alzheimer’s Disease Neuroimaging Initiative ,cerebral small vessel disease ,dementia ,lesion network mapping ,magnetic resonance imaging ,vascular cognitive impairment ,white matter hyperintensities ,Medical and Health Sciences ,Psychology and Cognitive Sciences ,Neurology & Neurosurgery ,Biomedical and clinical sciences ,Health sciences - Abstract
White matter hyperintensities of presumed vascular origin (WMH) are associated with cognitive impairment and are a key imaging marker in evaluating brain health. However, WMH volume alone does not fully account for the extent of cognitive deficits and the mechanisms linking WMH to these deficits remain unclear. Lesion network mapping (LNM) enables us to infer if brain networks are connected to lesions and could be a promising technique for enhancing our understanding of the role of WMH in cognitive disorders. Our study employed LNM to test the following hypotheses: (i) LNM-informed markers surpass WMH volumes in predicting cognitive performance; and (ii) WMH contributing to cognitive impairment map to specific brain networks. We analysed cross-sectional data of 3485 patients from 10 memory clinic cohorts within the Meta VCI Map Consortium, using harmonized test results in four cognitive domains and WMH segmentations. WMH segmentations were registered to a standard space and mapped onto existing normative structural and functional brain connectome data. We employed LNM to quantify WMH connectivity to 480 atlas-based grey and white matter regions of interest (ROI), resulting in ROI-level structural and functional LNM scores. We compared the capacity of total and regional WMH volumes and LNM scores in predicting cognitive function using ridge regression models in a nested cross-validation. LNM scores predicted performance in three cognitive domains (attention/executive function, information processing speed, and verbal memory) significantly better than WMH volumes. LNM scores did not improve prediction for language functions. ROI-level analysis revealed that higher LNM scores, representing greater connectivity to WMH, in grey and white matter regions of the dorsal and ventral attention networks were associated with lower cognitive performance. Measures of WMH-related brain network connectivity significantly improve the prediction of current cognitive performance in memory clinic patients compared to WMH volume as a traditional imaging marker of cerebrovascular disease. This highlights the crucial role of network integrity, particularly in attention-related brain regions, improving our understanding of vascular contributions to cognitive impairment. Moving forward, refining WMH information with connectivity data could contribute to patient-tailored therapeutic interventions and facilitate the identification of subgroups at risk of cognitive disorders.
- Published
- 2024
7. Extensive analysis of reconstruction algorithms for DESI 2024 baryon acoustic oscillations
- Author
-
Chen, X., Ding, Z., Paillas, E., Nadathur, S., Seo, H., Chen, S., Padmanabhan, N., White, M., de Mattia, A., McDonald, P., Ross, A. J., Variu, A., Rosell, A. Carnero, Hadzhiyska, B., Hanif, M. M. S, Forero-Sánchez, D., Ahlen, S., Alves, O., Andrade, U., BenZvi, S., Bianchi, D., Brooks, D., Chaussidon, E., Claybaugh, T., de la Macorra, A., Dey, Biprateep, Fanning, K., Ferraro, S., Font-Ribera, A., Forero-Romero, J. E., Garcia-Quintero, C., Gaztañaga, E., Gontcho, S. Gontcho A, Gutierrez, G., Hahn, C., Honscheid, K., Juneau, S., Kehoe, R., Kirkby, D., Kisner, T., Kremin, A., Levi, M. E., Meisner, A., Mena-Fernández, J., Miquel, R., Moustakas, J., Muñoz-Gutiérrez, A., Nikakhtar, F., Palanque-Delabrouille, N., Percival, W. J., Prada, F., Pérez-Ràfols, I., Rashkovetskyi, M., Rossi, G., Ruggeri, R., Sanchez, E., Saulder, C., Schlegel, D., Schubnell, M., Smith, A., Sprayberry, D., Tarlé, G., Valcin, D., Vargas-Magaña, M., Weaver, B. A., Yuan, S., and Zhou, R.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Reconstruction of the baryon acoustic oscillation (BAO) signal has been a standard procedure in BAO analyses over the past decade and has helped to improve the BAO parameter precision by a factor of ~2 on average. The Dark Energy Spectroscopic Instrument (DESI) BAO analysis for the first year (DR1) data uses the ``standard'' reconstruction framework, in which the displacement field is estimated from the observed density field by solving the linearized continuity equation in redshift space, and galaxy and random positions are shifted in order to partially remove nonlinearities. There are several approaches to solving for the displacement field in real survey data, including the multigrid (MG), iterative Fast Fourier Transform (iFFT), and iterative Fast Fourier Transform particle (iFFTP) algorithms. In this work, we analyze these algorithms and compare them with various metrics including two-point statistics and the displacement itself using realistic DESI mocks. We focus on three representative DESI samples, the emission line galaxies (ELG), quasars (QSO), and the bright galaxy sample (BGS), which cover the extreme redshifts and number densities, and potential wide-angle effects. We conclude that the MG and iFFT algorithms agree within 0.4% in post-reconstruction power spectrum on BAO scales with the RecSym convention, which does not remove large-scale redshift space distortions (RSDs), in all three tracers. The RecSym convention appears to be less sensitive to displacement errors than the RecIso convention, which attempts to remove large-scale RSDs. However, iFFTP deviates from the first two; thus, we recommend against using iFFTP without further development. In addition, we provide the optimal settings for reconstruction for five years of DESI observation. The analyses presented in this work pave the way for DESI DR1 analysis as well as future BAO analyses., Comment: 51 pages, 28 figures. Supporting publication of DESI 2024 III: Baryon Acoustic Oscillations from Galaxies and Quasars
- Published
- 2024
8. Feature-Factory: Automating Software Feature Integration Using Generative AI
- Author
-
Vsevolodovna, Ruslan Idelfonso Magana
- Subjects
Computer Science - Software Engineering ,Computer Science - Artificial Intelligence ,Computer Science - Machine Learning ,Computer Science - Multiagent Systems ,68T05, 68N01, 68N30, 68Q25 ,D.2.3 ,I.2.2 ,D.2.7 ,D.2.9 ,I.2.7 - Abstract
Integrating new features into existing software projects can be a complex and time-consuming process. Feature-Factory leverages Generative AI with WatsonX.ai to automate the analysis, planning, and implementation of feature requests. By combining advanced project parsing, dependency resolution, and AI-generated code, the program ensures seamless integration of features into software systems while maintaining structural integrity. This paper presents the methodology, mathematical model, and results of the Feature-Factory framework., Comment: 14 pages, 1 figure
- Published
- 2024
9. Constraining primordial non-Gaussianity with DESI 2024 LRG and QSO samples
- Author
-
Chaussidon, E., Yèche, C., de Mattia, A., Payerne, C., McDonald, P., Ross, A. J., Ahlen, S., Bianchi, D., Brooks, D., Burtin, E., Claybaugh, T., de la Macorra, A., Doel, P., Ferraro, S., Font-Ribera, A., Forero-Romero, J. E., Gaztañaga, E., Gil-Marín, H., Gontcho, S. Gontcho A, Gutierrez, G., Guy, J., Honscheid, K., Howlett, C., Huterer, D., Kehoe, R., Kirkby, D., Kisner, T., Kremin, A., Guillou, L. Le, Levi, M. E., Manera, M., Meisner, A., Miquel, R., Moustakas, J., Newman, J. A., Niz, G., Palanque-Delabrouille, N., Percival, W. J., Prada, F., Pérez-Ràfols, I., Ravoux, C., Rossi, G., Sanchez, E., Schlegel, D., Schubnell, M., Seo, H., Sprayberry, D., Tarlé, G., Vargas-Magaña, M., Weaver, B. A., Zhao, C., and Zou, H.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We analyse the large-scale clustering of the Luminous Red Galaxy (LRG) and Quasar (QSO) sample from the first data release (DR1) of the Dark Energy Spectroscopic Instrument (DESI). In particular, we constrain the primordial non-Gaussianity (PNG) parameter $f_{\rm NL}^{\rm loc}$ via the large-scale scale-dependent bias in the power spectrum using $1,631,716$ LRGs ($0.6 < z < 1.1$) and $1,189,129$ QSOs ($0.8 < z < 3.1$). This new measurement takes advantage of the enormous statistical power at large scales of DESI DR1 data, surpassing the latest data release (DR16) of the extended Baryon Oscillation Spectroscopic Survey (eBOSS). For the first time in this kind of analysis, we use a blinding procedure to mitigate the risk of confirmation bias in our results. We improve the model of the radial integral constraint proposing an innovative correction of the window function. We also carefully test the mitigation of the dependence of the target selection on the photometry qualities by incorporating an angular integral constraint contribution to the window function, and validate our methodology with the blinded data. Finally, combining the two samples, we measure $f_{\rm NL}^{\rm loc} = {-3.6}_{-9.1}^{+9.0}$ at $68\%$ confidence, where we assume the universality relation for the LRG sample and a recent merger model for the QSO sample about the response of bias to primordial non-Gaussianity. Adopting the universality relation for the PNG bias in the QSO analysis leads to $f_{\rm NL}^{\rm loc} = 3.5_{-7.4}^{+10.7}$ at $68\%$ confidence. This measurement is the most precise determination of primordial non-Gaussianity using large-scale structure to date, surpassing the latest result from eBOSS by a factor of $2.3$.
- Published
- 2024
10. Analytical and EZmock covariance validation for the DESI 2024 results
- Author
-
Forero-Sánchez, Daniel, Rashkovetskyi, Michael, Alves, Otávio, de Mattia, Arnaud, Nadathur, Seshadri, Zarrouk, Pauline, Gil-Marín, Héctor, Ding, Zhejie, Yu, Jiaxi, Andrade, Uendert, Chen, Xinyi, Garcia-Quintero, Cristhian, Mena-Fernández, Juan, Ahlen, Steven, Bianchi, Davide, Brooks, David, Burtin, Etienne, Chaussidon, Edmond, Claybaugh, Todd, Cole, Shaun, de la Macorra, Axel, Vargas, Miguel Enriquez, Gaztañaga, Enrique, Gutierrez, Gaston, Honscheid, Klaus, Howlett, Cullan, Kisner, Theodore, Landriau, Martin, Guillou, Laurent Le, Levi, Michael, Miquel, Ramon, Moustakas, John, Palanque-Delabrouille, Nathalie, Percival, Will, Pérez-Ràfols, Ignasi, Ross, Ashley J., Rossi, Graziano, Sanchez, Eusebio, Schlegel, David, Schubnell, Michael, Seo, Hee-Jong, Sprayberry, David, Tarlé, Gregory, Magana, Mariana Vargas, Weaver, Benjamin Alan, and Zou, Hu
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The estimation of uncertainties in cosmological parameters is an important challenge in Large-Scale-Structure (LSS) analyses. For standard analyses such as Baryon Acoustic Oscillations (BAO) and Full Shape, two approaches are usually considered. First: analytical estimates of the covariance matrix use Gaussian approximations and (nonlinear) clustering measurements to estimate the matrix, which allows a relatively fast and computationally cheap way to generate matrices that adapt to an arbitrary clustering measurement. On the other hand, sample covariances are an empirical estimate of the matrix based on en ensemble of clustering measurements from fast and approximate simulations. While more computationally expensive due to the large amount of simulations and volume required, these allow us to take into account systematics that are impossible to model analytically. In this work we compare these two approaches in order to enable DESI's key analyses. We find that the configuration space analytical estimate performs satisfactorily in BAO analyses and its flexibility in terms of input clustering makes it the fiducial choice for DESI's 2024 BAO analysis. On the contrary, the analytical computation of the covariance matrix in Fourier space does not reproduce the expected measurements in terms of Full Shape analyses, which motivates the use of a corrected mock covariance for DESI's Full Shape analysis., Comment: 23 pages, 5 figures 7 tables, submitted to JCAP
- Published
- 2024
11. Modified Gravity Constraints from the Full Shape Modeling of Clustering Measurements from DESI 2024
- Author
-
Ishak, M., Pan, J., Calderon, R., Lodha, K., Valogiannis, G., Aviles, A., Niz, G., Yi, L., Zheng, C., Garcia-Quintero, C., de Mattia, A., Medina-Varela, L., Cervantes-Cota, J. L., Andrade, U., Huterer, D., Noriega, H. E., Zhao, G., Shafieloo, A., Fang, W., Ahlen, S., Bianchi, D., Brooks, D., Burtin, E., Chaussidon, E., Claybaugh, T., Cole, S., de la Macorra, A., Dey, Arjun, Fanning, K., Ferraro, S., Font-Ribera, A., Forero-Romero, J. E., Gaztañaga, E., Gil-Marín, H., Gutierrez, G., Hahn, C., Honscheid, K., Howlett, C., Juneau, S., Kirkby, D., Kisner, T., Kremin, A., Landriau, M., Guillou, L. Le, Leauthaud, A., Levi, M. E., Meisner, A., Miquel, R., Moustakas, J., Newman, J. A., Palanque-Delabrouille, N., Percival, W. J., Poppett, C., Prada, F., Pérez-Ràfols, I., Ross, A. J., Rossi, G., Sanchez, E., Schlegel, D., Schubnell, M., Seo, H., Sprayberry, D., Tarlé, G., Vargas-Magana, M., Weaver, B. A., Wechsler, R. H., Yèche, C., Zarrouk, P., Zhou, R., and Zou, H.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present cosmological constraints on deviations from general relativity (GR) from the first-year of clustering observations from the Dark Energy Spectroscopic Instrument (DESI) in combination with other datasets. We first consider the $\mu(a,k)$-$\Sigma(a,k)$ modified gravity (MG) parametrization (as well as $\eta(a,k)$) in flat $\Lambda$CDM and $w_0 w_a$CDM backgrounds. Using a functional form for time-only evolution gives $\mu_0= 0.11^{+0.44}_{-0.54}$ from DESI(FS+BAO)+BBN and a wide prior on $n_{s}$. Using DESI(FS+BAO)+CMB+DESY3+DESY5-SN, we obtain $\mu_0 = 0.05\pm 0.22$ and $\Sigma_0 = 0.008\pm 0.045$ in the $\Lambda$CDM background. In $w_0 w_a$CDM, we obtain $\mu_0 =-0.24^{+0.32}_{-0.28}$ and $\Sigma_0 = 0.006\pm 0.043$, consistent with GR, and we still find a preference of the data for dynamical dark energy with $w_0>-1$ and $w_a<0$. We then use binned forms in the two backgrounds starting with two bins in redshift and then combining them with two bins in scale for a total of 4 and 8 MG parameters, respectively. All MG parameters are found consistent with GR. We also find that the tension reported for $\Sigma_0$ with GR when using Planck PR3 goes away when we use the recent LoLLiPoP+HiLLiPoP likelihoods. As noted previously, this seems to indicate that the tension is related to the CMB lensing anomaly in PR3 which is also resolved when using these likelihoods. We then constrain the class of Horndeski theory in the effective field theory of dark energy. We consider both EFT-basis and $\alpha$-basis. Assuming a power law parametrization for the function $\Omega$, which controls non-minimal coupling, we obtain $\Omega_0 = 0.012^{+0.001}_{-0.012}$ and $s_0 = 0.996^{+0.54}_{-0.20}$ from DESI(FS+BAO)+DESY5SN+CMB in a $\Lambda$CDM background. Similar results are obtained when using the $\alpha$-basis, where we constrain $c_M<1.14$, and are all consistent with GR. [Abridged.], Comment: 55 pages, 13 figures. This DESI Collaboration Publication is part of the 2024 publication series using the first year of observations (see https://data.desi.lbl.gov/doc/papers/). Added 3 figures and more discussions
- Published
- 2024
12. Characterization of DESI fiber assignment incompleteness effect on 2-point clustering and mitigation methods for DR1 analysis
- Author
-
Bianchi, D., Hanif, M. M. S, Rosell, A. Carnero, Lasker, J., Ross, A. J., Pinon, M., de Mattia, A., White, M., Ahlen, S., Bailey, S., Brooks, D., Burtin, E., Chaussidon, E., Claybaugh, T., Cole, S., de la Macorra, A., Ferraro, S., Font-Ribera, A., Forero-Romero, J. E., Gaztañaga, E., Gontcho, S. Gontcho A, Gutierrez, G., Guy, J., Hahn, C., Honscheid, K., Howlett, C., Juneau, S., Kirkby, D., Kisner, T., Kremin, A., Landriau, M., Guillou, L. Le, Levi, M. E., McDonald, P., Meisner, A., Miquel, R., Moustakas, J., Palanque-Delabrouille, N., Percival, W. J., Prada, F., Pérez-Ràfols, I., Raichoor, A., Rossi, G., Sanchez, E., Schlegel, D., Schubnell, M., Sharples, R., Silber, J., Sprayberry, D., Tarlé, G., Vargas-Magaña, M., Weaver, B. A., Zarrouk, P., Zhou, R., and Zou, H.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present an in-depth analysis of the fiber assignment incompleteness in the Dark Energy Spectroscopic Instrument (DESI) Data Release 1 (DR1). This incompleteness is caused by the restricted mobility of the robotic fiber positioner in the DESI focal plane, which limits the number of galaxies that can be observed at the same time, especially at small angular separations. As a result, the observed clustering amplitude is suppressed in a scale-dependent manner, which, if not addressed, can severely impact the inference of cosmological parameters. We discuss the methods adopted for simulating fiber assignment on mocks and data. In particular, we introduce the fast fiber assignment (FFA) emulator, which was employed to obtain the power spectrum covariance adopted for the DR1 full-shape analysis. We present the mitigation techniques, organised in two classes: measurement stage and model stage. We then use high fidelity mocks as a reference to quantify both the accuracy of the FFA emulator and the effectiveness of the different measurement-stage mitigation techniques. This complements the studies conducted in a parallel paper for the model-stage techniques, namely the $\theta$-cut approach. We find that pairwise inverse probability (PIP) weights with angular upweighting recover the "true" clustering in all the cases considered, in both Fourier and configuration space. Notably, we present the first ever power spectrum measurement with PIP weights from real data., Comment: 42 pages, 19 figures
- Published
- 2024
13. Mitigating Imaging Systematics for DESI 2024 Emission Line Galaxies and Beyond
- Author
-
Rosado-Marín, A. J., Ross, A. J., Seo, H., Rezaie, M., Kong, H., de Mattia, A., Zhou, R., Aguilar, J., Ahlen, S., Alves, O., Bianchi, D., Brooks, D., Burtin, E., Chaussidon, E., Chen, X., Claybaugh, T., Dawson, K. S., de la Macorra, A., Dey, Arjun, Doel, P., Fanning, K., Ferraro, S., Forero-Romero, J. E., Gaztañaga, E., Gontcho, S. Gontcho A, Gutierrez, G., Hahn, C., Hanif, M. M. S, Howlett, C., Juneau, S., Kehoe, R., Kisner, T., Kremin, A., Krolewski, A., Landriau, M., Guillou, L. Le, Levi, M. E., Meisner, A., Mena-Fernández, J., Miquel, R., Moustakas, J., Newman, J. A., Paillas, E., Palanque-Delabrouille, N., Percival, W. J., Prada, F., Pérez-Ràfols, I., Raichoor, A., Rossi, G., Ruggeri, R., Sanchez, E., Schlafly, E. F., Schlegel, D., Schubnell, M., Sprayberry, D., Vargas-Magaña, M., Weaver, B. A., Yu, J., and Zou, H.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Emission Line Galaxies (ELGs) are one of the main tracers that the Dark Energy Spectroscopic Instrument (DESI) uses to probe the universe. However, they are afflicted by strong spurious correlations between target density and observing conditions known as imaging systematics. We present the imaging systematics mitigation applied to the DESI Data Release 1 (DR1) large-scale structure catalogs used in the DESI 2024 cosmological analyses. We also explore extensions of the fiducial treatment. This includes a combined approach, through forward image simulations in conjunction with neural network-based regression, to obtain an angular selection function that mitigates the imaging systematics observed in the DESI DR1 ELGs target density. We further derive a line-of-sight selection function from the forward model that removes the strong redshift dependence between imaging systematics and low redshift ELGs. Combining both angular and redshift-dependent systematics, we construct a 3D selection function and assess the impact of all selection functions on clustering statistics. We quantify differences between these extended treatments and the fiducial treatment in terms of the measured 2-point statistics. We find that the results are generally consistent with the fiducial treatment and conclude that the differences are far less than the imaging systematics uncertainty included in DESI 2024 full-shape measurements. We extend our investigation to the ELGs at $0.6
- Published
- 2024
14. DESI 2024 VII: Cosmological Constraints from the Full-Shape Modeling of Clustering Measurements
- Author
-
DESI Collaboration, Adame, A. G., Aguilar, J., Ahlen, S., Alam, S., Alexander, D. M., Prieto, C. Allende, Alvarez, M., Alves, O., Anand, A., Andrade, U., Armengaud, E., Avila, S., Aviles, A., Awan, H., Bahr-Kalus, B., Bailey, S., Baltay, C., Bault, A., Behera, J., BenZvi, S., Beutler, F., Bianchi, D., Blake, C., Blum, R., Bonici, M., Brieden, S., Brodzeller, A., Brooks, D., Buckley-Geer, E., Burtin, E., Calderon, R., Canning, R., Rosell, A. Carnero, Cereskaite, R., Cervantes-Cota, J. L., Chabanier, S., Chaussidon, E., Chaves-Montero, J., Chebat, D., Chen, S., Chen, X., Claybaugh, T., Cole, S., Cuceu, A., Davis, T. M., Dawson, K., de la Macorra, A., de Mattia, A., Deiosso, N., Dey, A., Dey, B., Ding, Z., Doel, P., Edelstein, J., Eftekharzadeh, S., Eisenstein, D. J., Elbers, W., Elliott, A., Fagrelius, P., Fanning, K., Ferraro, S., Ereza, J., Findlay, N., Flaugher, B., Font-Ribera, A., Forero-Sánchez, D., Forero-Romero, J. E., Frenk, C. S., Garcia-Quintero, C., Garrison, L. H., Gaztañaga, E., Gil-Marín, H., Gontcho, S. Gontcho A, Gonzalez-Morales, A. X., Gonzalez-Perez, V., Gordon, C., Green, D., Gruen, D., Gsponer, R., Gutierrez, G., Guy, J., Hadzhiyska, B., Hahn, C., Hanif, M. M. S, Herrera-Alcantar, H. K., Honscheid, K., Howlett, C., Huterer, D., Iršič, V., Ishak, M., Joyce, R., Juneau, S., Karaçaylı, N. G., Kehoe, R., Kent, S., Kirkby, D., Kong, H., Koposov, S. E., Kremin, A., Krolewski, A., Lahav, O., Lai, Y., Lan, T. -W., Landriau, M., Lang, D., Lasker, J., Goff, J. M. Le, Guillou, L. Le, Leauthaud, A., Levi, M. E., Li, T. S., Lodha, K., Magneville, C., Manera, M., Margala, D., Martini, P., Matthewson, W., Maus, M., McDonald, P., Medina-Varela, L., Meisner, A., Mena-Fernández, J., Miquel, R., Moon, J., Moore, S., Moustakas, J., Mudur, N., Mueller, E., Muñoz-Gutiérrez, A., Myers, A. D., Nadathur, S., Napolitano, L., Neveux, R., Newman, J. A., Nguyen, N. M., Nie, J., Niz, G., Noriega, H. E., Padmanabhan, N., Paillas, E., Palanque-Delabrouille, N., Pan, J., Penmetsa, S., Percival, W. J., Pieri, M. M., Pinon, M., Poppett, C., Porredon, A., Prada, F., Pérez-Fernández, A., Pérez-Ràfols, I., Rabinowitz, D., Raichoor, A., Ramírez-Pérez, C., Ramirez-Solano, S., Rashkovetskyi, M., Ravoux, C., Rezaie, M., Rich, J., Rocher, A., Rockosi, C., Roe, N. A., Rosado-Marin, A., Ross, A. J., Rossi, G., Ruggeri, R., Ruhlmann-Kleider, V., Samushia, L., Sanchez, E., Saulder, C., Schlafly, E. F., Schlegel, D., Schubnell, M., Seo, H., Shafieloo, A., Sharples, R., Silber, J., Slosar, A., Smith, A., Sprayberry, D., Tan, T., Tarlé, G., Taylor, P., Trusov, S., Vaisakh, R., Valcin, D., Valdes, F., Valogiannis, G., Vargas-Magaña, M., Verde, L., Walther, M., Wang, B., Wang, M. S., Weaver, B. A., Weaverdyck, N., Wechsler, R. H., Weinberg, D. H., White, M., Wilson, M. J., Yi, L., Yu, J., Yu, Y., Yuan, S., Yèche, C., Zaborowski, E. A., Zarrouk, P., Zhang, H., Zhao, C., Zhao, R., Zhou, R., Zhuang, T., and Zou, H.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present cosmological results from the measurement of clustering of galaxy, quasar and Lyman-$\alpha$ forest tracers from the first year of observations with the Dark Energy Spectroscopic Instrument (DESI Data Release 1). We adopt the full-shape (FS) modeling of the power spectrum, including the effects of redshift-space distortions, in an analysis which has been validated in a series of supporting papers. In the flat $\Lambda$CDM cosmological model, DESI (FS+BAO), combined with a baryon density prior from Big Bang Nucleosynthesis and a weak prior on the scalar spectral index, determines matter density to $\Omega_\mathrm{m}=0.2962\pm 0.0095$, and the amplitude of mass fluctuations to $\sigma_8=0.842\pm 0.034$. The addition of the cosmic microwave background (CMB) data tightens these constraints to $\Omega_\mathrm{m}=0.3056\pm 0.0049$ and $\sigma_8=0.8121\pm 0.0053$, while further addition of the the joint clustering and lensing analysis from the Dark Energy Survey Year-3 (DESY3) data leads to a 0.4% determination of the Hubble constant, $H_0 = (68.40\pm 0.27)\,{\rm km\,s^{-1}\,Mpc^{-1}}$. In models with a time-varying dark energy equation of state, combinations of DESI (FS+BAO) with CMB and type Ia supernovae continue to show the preference, previously found in the DESI DR1 BAO analysis, for $w_0>-1$ and $w_a<0$ with similar levels of significance. DESI data, in combination with the CMB, impose the upper limits on the sum of the neutrino masses of $\sum m_\nu < 0.071\,{\rm eV}$ at 95% confidence. DESI data alone measure the modified-gravity parameter that controls the clustering of massive particles, $\mu_0=0.11^{+0.45}_{-0.54}$, while the combination of DESI with the CMB and the clustering and lensing analysis from DESY3 constrains both modified-gravity parameters, giving $\mu_0 = 0.04\pm 0.22$ and $\Sigma_0 = 0.044\pm 0.047$, in agreement with general relativity. [Abridged.], Comment: This DESI Collaboration Key Publication is part of the 2024 publication series using the first year of observations (see https://data.desi.lbl.gov/doc/papers/). 55 pages, 10 figures
- Published
- 2024
15. DESI 2024 II: Sample Definitions, Characteristics, and Two-point Clustering Statistics
- Author
-
DESI Collaboration, Adame, A. G., Aguilar, J., Ahlen, S., Alam, S., Alexander, D. M., Alvarez, M., Alves, O., Anand, A., Andrade, U., Armengaud, E., Avila, S., Aviles, A., Awan, H., Bailey, S., Baltay, C., Bault, A., Behera, J., BenZvi, S., Beutler, F., Bianchi, D., Blake, C., Blum, R., Brieden, S., Brodzeller, A., Brooks, D., Brown, Z., Buckley-Geer, E., Burtin, E., Calderon, R., Canning, R., Rosell, A. Carnero, Cereskaite, R., Cervantes-Cota, J. L., Chabanier, S., Chaussidon, E., Chaves-Montero, J., Chen, S., Chen, X., Claybaugh, T., Cole, S., Cuceu, A., Davis, T. M., Dawson, K., de la Macorra, A., de Mattia, A., Deiosso, N., Demina, R., Dey, A., Dey, B., Ding, Z., Doel, P., Edelstein, J., Eftekharzadeh, S., Eisenstein, D. J., Elliott, A., Fagrelius, P., Fanning, K., Ferraro, S., Ereza, J., Findlay, N., Flaugher, B., Font-Ribera, A., Forero-Sánchez, D., Forero-Romero, J. E., Frenk, C. S., Garcia-Quintero, C., Gaztañaga, E., Gil-Marín, H., Gontcho, S. Gontcho A, Gonzalez-Morales, A. X., Gonzalez-Perez, V., Gordon, C., Green, D., Gruen, D., Gsponer, R., Gutierrez, G., Guy, J., Hadzhiyska, B., Hahn, C., Hanif, M. M. S, Herrera-Alcantar, H. K., Honscheid, K., Hou, J., Howlett, C., Huterer, D., Iršič, V., Ishak, M., Juneau, S., Karaçaylı, N. G., Kehoe, R., Kent, S., Kirkby, D., Kitaura, F. -S., Kong, H., Kremin, A., Krolewski, A., Lai, Y., Lan, T. -W., Landriau, M., Lang, D., Lasker, J., Goff, J. M. Le, Guillou, L. Le, Leauthaud, A., Levi, M. E., Li, T. S., Lodha, K., Magneville, C., Manera, M., Margala, D., Martini, P., Maus, M., McDonald, P., Medina-Varela, L., Meisner, A., Mena-Fernández, J., Miquel, R., Moon, J., Moore, S., Moustakas, J., Mudur, N., Mueller, E., Muñoz-Gutiérrez, A., Myers, A. D., Nadathur, S., Napolitano, L., Neveux, R., Newman, J. A., Nguyen, N. M., Nie, J., Niz, G., Noriega, H. E., Padmanabhan, N., Paillas, E., Palanque-Delabrouille, N., Pan, J., Penmetsa, S., Percival, W. J., Pieri, M. M., Pinon, M., Poppett, C., Porredon, A., Prada, F., Pérez-Fernández, A., Pérez-Ràfols, I., Rabinowitz, D., Raichoor, A., Ramírez-Pérez, C., Ramirez-Solano, S., Rashkovetskyi, M., Ravoux, C., Rezaie, M., Rich, J., Rocher, A., Rockosi, C., Roe, N. A., Rosado-Marin, A., Ross, A. J., Rossi, G., Ruggeri, R., Ruhlmann-Kleider, V., Samushia, L., Sanchez, E., Saulder, C., Schlafly, E. F., Schlegel, D., Scholte, D., Schubnell, M., Seo, H., Sharples, R., Silber, J., Slosar, A., Smith, A., Sprayberry, D., Tan, T., Tarlé, G., Trusov, S., Vaisakh, R., Valcin, D., Valdes, F., Vargas-Magaña, M., Verde, L., Walther, M., Wang, B., Wang, M. S., Weaver, B. A., Weaverdyck, N., Wechsler, R. H., Weinberg, D. H., White, M., Wilson, M. J., Yu, J., Yu, Y., Yuan, S., Yèche, C., Zaborowski, E. A., Zarrouk, P., Zhang, H., Zhao, C., Zhao, R., Zhou, R., and Zou, H.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present the samples of galaxies and quasars used for DESI 2024 cosmological analyses, drawn from the DESI Data Release 1 (DR1). We describe the construction of large-scale structure (LSS) catalogs from these samples, which include matched sets of synthetic reference `randoms' and weights that account for variations in the observed density of the samples due to experimental design and varying instrument performance. We detail how we correct for variations in observational completeness, the input `target' densities due to imaging systematics, and the ability to confidently measure redshifts from DESI spectra. We then summarize how remaining uncertainties in the corrections can be translated to systematic uncertainties for particular analyses. We describe the weights added to maximize the signal-to-noise of DESI DR1 2-point clustering measurements. We detail measurement pipelines applied to the LSS catalogs that obtain 2-point clustering measurements in configuration and Fourier space. The resulting 2-point measurements depend on window functions and normalization constraints particular to each sample, and we present the corrections required to match models to the data. We compare the configuration- and Fourier-space 2-point clustering of the data samples to that recovered from simulations of DESI DR1 and find they are, generally, in statistical agreement to within 2\% in the inferred real-space over-density field. The LSS catalogs, 2-point measurements, and their covariance matrices will be released publicly with DESI DR1., Comment: This DESI Collaboration Key Publication is part of the 2024 publication series using the first year of observations (see https://data.desi.lbl.gov/doc/papers/)
- Published
- 2024
16. DESI 2024 V: Full-Shape Galaxy Clustering from Galaxies and Quasars
- Author
-
DESI Collaboration, Adame, A. G., Aguilar, J., Ahlen, S., Alam, S., Alexander, D. M., Alvarez, M., Alves, O., Anand, A., Andrade, U., Armengaud, E., Avila, S., Aviles, A., Awan, H., Bailey, S., Baltay, C., Bault, A., Behera, J., BenZvi, S., Beutler, F., Bianchi, D., Blake, C., Blum, R., Brieden, S., Brodzeller, A., Brooks, D., Buckley-Geer, E., Burtin, E., Calderon, R., Canning, R., Rosell, A. Carnero, Cereskaite, R., Cervantes-Cota, J. L., Chabanier, S., Chaussidon, E., Chaves-Montero, J., Chen, S., Chen, X., Claybaugh, T., Cole, S., Cuceu, A., Davis, T. M., Dawson, K., de la Macorra, A., de Mattia, A., Deiosso, N., Dey, A., Dey, B., Ding, Z., Doel, P., Edelstein, J., Eftekharzadeh, S., Eisenstein, D. J., Elliott, A., Fagrelius, P., Fanning, K., Ferraro, S., Ereza, J., Findlay, N., Flaugher, B., Font-Ribera, A., Forero-Sánchez, D., Forero-Romero, J. E., Garcia-Quintero, C., Garrison, L. H., Gaztañaga, E., Gil-Marín, H., Gontcho, S. Gontcho A, Gonzalez-Morales, A. X., Gonzalez-Perez, V., Gordon, C., Green, D., Gruen, D., Gsponer, R., Gutierrez, G., Guy, J., Hadzhiyska, B., Hahn, C., Hanif, M. M. S, Herrera-Alcantar, H. K., Honscheid, K., Howlett, C., Huterer, D., Iršič, V., Ishak, M., Juneau, S., Karaçaylı, N. G., Kehoe, R., Kent, S., Kirkby, D., Kong, H., Koposov, S. E., Kremin, A., Krolewski, A., Lai, Y., Lan, T. -W., Landriau, M., Lang, D., Lasker, J., Goff, J. M. Le, Guillou, L. Le, Leauthaud, A., Levi, M. E., Li, T. S., Lodha, K., Magneville, C., Manera, M., Margala, D., Martini, P., Maus, M., McDonald, P., Medina-Varela, L., Meisner, A., Mena-Fernández, J., Miquel, R., Moon, J., Moore, S., Moustakas, J., Mueller, E., Muñoz-Gutiérrez, A., Myers, A. D., Nadathur, S., Napolitano, L., Neveux, R., Newman, J. A., Nguyen, N. M., Nie, J., Niz, G., Noriega, H. E., Padmanabhan, N., Paillas, E., Palanque-Delabrouille, N., Pan, J., Penmetsa, S., Percival, W. J., Pieri, M. M., Pinon, M., Poppett, C., Porredon, A., Prada, F., Pérez-Fernández, A., Pérez-Ràfols, I., Rabinowitz, D., Raichoor, A., Ramírez-Pérez, C., Ramirez-Solano, S., Rashkovetskyi, M., Ravoux, C., Rezaie, M., Rich, J., Rocher, A., Rockosi, C., Rodríguez-Martínez, F., Roe, N. A., Rosado-Marin, A., Ross, A. J., Rossi, G., Ruggeri, R., Ruhlmann-Kleider, V., Samushia, L., Sanchez, E., Saulder, C., Schlafly, E. F., Schlegel, D., Schubnell, M., Seo, H., Sharples, R., Silber, J., Slosar, A., Smith, A., Sprayberry, D., Tan, T., Tarlé, G., Trusov, S., Vaisakh, R., Valcin, D., Valdes, F., Vargas-Magaña, M., Verde, L., Walther, M., Wang, B., Wang, M. S., Weaver, B. A., Weaverdyck, N., Wechsler, R. H., Weinberg, D. H., White, M., Wilson, M. J., Yu, J., Yu, Y., Yuan, S., Yèche, C., Zaborowski, E. A., Zarrouk, P., Zhang, H., Zhao, C., Zhao, R., Zhou, R., and Zou, H.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present the measurements and cosmological implications of the galaxy two-point clustering using over 4.7 million unique galaxy and quasar redshifts in the range $0.1
- Published
- 2024
17. Exploring HOD-dependent systematics for the DESI 2024 Full-Shape galaxy clustering analysis
- Author
-
Findlay, N., Nadathur, S., Percival, W. J., de Mattia, A., Zarrouk, P., Gil-Marín, H., Alves, O., Mena-Fernández, J., Garcia-Quintero, C., Rocher, A., Ahlen, S., Bianchi, D., Brooks, D., Claybaugh, T., Cole, S., de la Macorra, A., Dey, Arjun, Doel, P., Fanning, K., Font-Ribera, A., Forero-Romero, J. E., Gaztañaga, E., Gutierrez, G., Hahn, C., Honscheid, K., Howlett, C., Juneau, S., Levi, M. E., Meisner, A., Miquel, R., Moustakas, J., Palanque-Delabrouille, N., Pérez-Ràfols, I., Rossi, G., Sanchez, E., Schlegel, D., Schubnell, M., Seo, H., Sprayberry, D., Tarlé, G., Vargas-Magaña, M., and Weaver, B. A.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We analyse the robustness of the DESI 2024 cosmological inference from fits to the full shape of the galaxy power spectrum to uncertainties in the Halo Occupation Distribution (HOD) model of the galaxy-halo connection and the choice of priors on nuisance parameters. We assess variations in the recovered cosmological parameters across a range of mocks populated with different HOD models and find that shifts are often greater than 20% of the expected statistical uncertainties from the DESI data. We encapsulate the effect of such shifts in terms of a systematic covariance term, $\mathsf{C}_{\rm HOD}$, and an additional diagonal contribution quantifying the impact of our choice of nuisance parameter priors on the ability of the effective field theory (EFT) model to correctly recover the cosmological parameters of the simulations. These two covariance contributions are designed to be added to the usual covariance term, $\mathsf{C}_{\rm stat}$, describing the statistical uncertainty in the power spectrum measurement, in order to fairly represent these sources of systematic uncertainty. This approach is more general and robust to choices of model free parameters or additional external datasets used in cosmological fits than the alternative approach of adding systematic uncertainties at the level of the recovered marginalised parameter posteriors. We compare the approaches within the context of a fixed $\Lambda$CDM model and demonstrate that our method gives conservative estimates of the systematic uncertainty that nevertheless have little impact on the final posteriors obtained from DESI data., Comment: This DESI Collaboration Publication is part of the 2024 publication series using the first year of observations (see https://data.desi.lbl.gov/doc/papers/). 26 pages, 10 figures
- Published
- 2024
18. See-Saw Generative Mechanism for Scalable Recursive Code Generation with Generative AI
- Author
-
Vsevolodovna, Ruslan Idelfonso Magaña
- Subjects
Computer Science - Machine Learning ,Computer Science - Artificial Intelligence ,Computer Science - Software Engineering ,68T05 (Primary) 68T50, 68N99(Secondary) ,I.2.6 ,I.2.7 ,D.2.2 - Abstract
The generation of complex, large-scale code projects using generative AI models presents challenges due to token limitations, dependency management, and iterative refinement requirements. This paper introduces the See-Saw generative mechanism, a novel methodology for dynamic and recursive code generation. The proposed approach alternates between main code updates and dependency generation to ensure alignment and functionality. By dynamically optimizing token usage and incorporating key elements of the main code into the generation of dependencies, the method enables efficient and scalable code generation for projects requiring hundreds of interdependent files. The mechanism ensures that all code components are synchronized and functional, enabling scalable and efficient project generation. Experimental validation demonstrates the method's capability to manage dependencies effectively while maintaining coherence and minimizing computational overhead., Comment: 18 pages, 4 figures
- Published
- 2024
19. One-dimensional cellular automata with a unique active transition
- Author
-
Castillo-Ramirez, Alonso, Magaña-Chavez, Maria G., and Baños, Luguis de los Santos
- Subjects
Nonlinear Sciences - Cellular Automata and Lattice Gases ,Computer Science - Formal Languages and Automata Theory ,Mathematics - Dynamical Systems ,37B15, 68Q80 - Abstract
A one-dimensional cellular automaton $\tau : A^\mathbb{Z} \to A^\mathbb{Z}$ is a transformation of the full shift defined via a finite neighborhood $S \subset \mathbb{Z}$ and a local function $\mu : A^S \to A$. We study the family of cellular automata whose finite neighborhood $S$ is an interval containing $0$, and there exists a pattern $p \in A^S$ satisfying that $\mu(z) = z(0)$ if and only if $z \neq p$; this means that these cellular automata have a unique \emph{active transition}. Despite its simplicity, this family presents interesting and subtle problems, as the behavior of the cellular automaton completely depends on the structure of $p$. We show that every cellular automaton $\tau$ with a unique active transition $p \in A^S$ is either idempotent or strictly almost equicontinuous, and we completely characterize each one of these situations in terms of $p$. In essence, the idempotence of $\tau$ depends on the existence of a certain subpattern of $p$ with a translational symmetry., Comment: 14 pages
- Published
- 2024
20. Ensemble learning of the atrial fiber orientation with physics-informed neural networks
- Author
-
Magaña, Efraín, Pezzuto, Simone, and Costabal, Francisco Sahli
- Subjects
Computer Science - Machine Learning ,Electrical Engineering and Systems Science - Image and Video Processing ,Quantitative Biology - Tissues and Organs - Abstract
The anisotropic structure of the myocardium is a key determinant of the cardiac function. To date, there is no imaging modality to assess in-vivo the cardiac fiber structure. We recently proposed Fibernet, a method for the automatic identification of the anisotropic conduction -- and thus fibers -- in the atria from local electrical recordings. Fibernet uses cardiac activation as recorded during electroanatomical mappings to infer local conduction properties using physics-informed neural networks. In this work, we extend Fibernet to cope with the uncertainty in the estimated fiber field. Specifically, we use an ensemble of neural networks to produce multiple samples, all fitting the observed data, and compute posterior statistics. We also introduce a methodology to select the best fiber orientation members and define the input of the neural networks directly on the atrial surface. With these improvements, we outperform the previous methodology in terms of fiber orientation error in 8 different atrial anatomies. Currently, our approach can estimate the fiber orientation and conduction velocities in under 7 minutes with quantified uncertainty, which opens the door to its application in clinical practice. We hope the proposed methodology will enable further personalization of cardiac digital twins for precision medicine.
- Published
- 2024
21. Continuity of the solution map of some active scalar equations in H\'older and Zygmund spaces
- Author
-
Magaña, Marc
- Subjects
Mathematics - Analysis of PDEs ,35Q35 (Primary), 35F20, 35B30 (Secondary) - Abstract
We prove that the solution map for a family of non-linear transport equations in $\mathbb{R}^n$, with a velocity field given by the convolution of the density with a kernel that is smooth away from the origin and homogeneous of degree $-(n-1)$, is continuous in both the little H\"older class and the little Zygmund class. For particular choices of the kernel, one recovers well-known equations such as the 2D Euler or the 3D quasi-geostrophic equations.
- Published
- 2024
22. Search for gravitational waves emitted from SN 2023ixf
- Author
-
The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, Abac, A. G., Abbott, R., Abouelfettouh, I., Acernese, F., Ackley, K., Adhicary, S., Adhikari, N., Adhikari, R. X., Adkins, V. K., Agarwal, D., Agathos, M., Abchouyeh, M. Aghaei, Aguiar, O. D., Aguilar, I., Aiello, L., Ain, A., Akutsu, T., Albanesi, S., Alfaidi, R. A., Al-Jodah, A., Alléné, C., Allocca, A., Al-Shammari, S., Altin, P. A., Alvarez-Lopez, S., Amato, A., Amez-Droz, L., Amorosi, A., Amra, C., Ananyeva, A., Anderson, S. B., Anderson, W. G., Andia, M., Ando, M., Andrade, T., Andres, N., Andrés-Carcasona, M., Andrić, T., Anglin, J., Ansoldi, S., Antelis, J. M., Antier, S., Aoumi, M., Appavuravther, E. Z., Appert, S., Apple, S. K., Arai, K., Araya, A., Araya, M. C., Areeda, J. S., Argianas, L., Aritomi, N., Armato, F., Arnaud, N., Arogeti, M., Aronson, S. M., Ashton, G., Aso, Y., Assiduo, M., Melo, S. Assis de Souza, Aston, S. M., Astone, P., Attadio, F., Aubin, F., AultONeal, K., Avallone, G., Babak, S., Badaracco, F., Badger, C., Bae, S., Bagnasco, S., Bagui, E., Baier, J. G., Baiotti, L., Bajpai, R., Baka, T., Ball, M., Ballardin, G., Ballmer, S. W., Banagiri, S., Banerjee, B., Bankar, D., Baral, P., Barayoga, J. C., Barish, B. C., Barker, D., Barneo, P., Barone, F., Barr, B., Barsotti, L., Barsuglia, M., Barta, D., Bartoletti, A. M., Barton, M. A., Bartos, I., Basak, S., Basalaev, A., Bassiri, R., Basti, A., Bates, D. E., Bawaj, M., Baxi, P., Bayley, J. C., Baylor, A. C., Baynard II, P. A., Bazzan, M., Bedakihale, V. M., Beirnaert, F., Bejger, M., Belardinelli, D., Bell, A. S., Benedetto, V., Benoit, W., Bentley, J. D., Yaala, M. Ben, Bera, S., Berbel, M., Bergamin, F., Berger, B. K., Bernuzzi, S., Beroiz, M., Bersanetti, D., Bertolini, A., Betzwieser, J., Beveridge, D., Bevins, N., Bhandare, R., Bhardwaj, U., Bhatt, R., Bhattacharjee, D., Bhaumik, S., Bhowmick, S., Bianchi, A., Bilenko, I. A., Billingsley, G., Binetti, A., Bini, S., Birnholtz, O., Biscoveanu, S., Bisht, A., Bitossi, M., Bizouard, M. -A., Blackburn, J. K., Blagg, L. A., Blair, C. D., Blair, D. G., Bobba, F., Bode, N., Boileau, G., Boldrini, M., Bolingbroke, G. N., Bolliand, A., Bonavena, L. D., Bondarescu, R., Bondu, F., Bonilla, E., Bonilla, M. S., Bonino, A., Bonnand, R., Booker, P., Borchers, A., Boschi, V., Bose, S., Bossilkov, V., Boudart, V., Boudon, A., Bozzi, A., Bradaschia, C., Brady, P. R., Braglia, M., Branch, A., Branchesi, M., Brandt, J., Braun, I., Breschi, M., Briant, T., Brillet, A., Brinkmann, M., Brockill, P., Brockmueller, E., Brooks, A. F., Brown, B. C., Brown, D. D., Brozzetti, M. L., Brunett, S., Bruno, G., Bruntz, R., Bryant, J., Bucci, F., Buchanan, J., Bulashenko, O., Bulik, T., Bulten, H. J., Buonanno, A., Burtnyk, K., Buscicchio, R., Buskulic, D., Buy, C., Byer, R. L., Davies, G. S. Cabourn, Cabras, G., Cabrita, R., Cáceres-Barbosa, V., Cadonati, L., Cagnoli, G., Cahillane, C., Bustillo, J. Calderón, Callister, T. A., Calloni, E., Camp, J. B., Canepa, M., Santoro, G. Caneva, Cannon, K. C., Cao, H., Capistran, L. A., Capocasa, E., Capote, E., Carapella, G., Carbognani, F., Carlassara, M., Carlin, J. B., Carpinelli, M., Carrillo, G., Carter, J. J., Carullo, G., Diaz, J. Casanueva, Casentini, C., Castro-Lucas, S. Y., Caudill, S., Cavaglià, M., Cavalieri, R., Cella, G., Cerdá-Durán, P., Cesarini, E., Chaibi, W., Chakraborty, P., Subrahmanya, S. Chalathadka, Chan, J. C. L., Chan, M., Chandra, K., Chang, R. -J., Chao, S., Charlton, E. L., Charlton, P., Chassande-Mottin, E., Chatterjee, C., Chatterjee, Debarati, Chatterjee, Deep, Chaturvedi, M., Chaty, S., Chen, A., Chen, A. H. -Y., Chen, D., Chen, H., Chen, H. Y., Chen, J., Chen, K. H., Chen, Y., Chen, Yanbei, Chen, Yitian, Cheng, H. P., Chessa, P., Cheung, H. T., Cheung, S. Y., Chiadini, F., Chiarini, G., Chierici, R., Chincarini, A., Chiofalo, M. L., Chiummo, A., Chou, C., Choudhary, S., Christensen, N., Chua, S. S. Y., Chugh, P., Ciani, G., Ciecielag, P., Cieślar, M., Cifaldi, M., Ciolfi, R., Clara, F., Clark, J. A., Clarke, J., Clarke, T. A., Clearwater, P., Clesse, S., Coccia, E., Codazzo, E., Cohadon, P. -F., Colace, S., Colleoni, M., Collette, C. G., Collins, J., Colloms, S., Colombo, A., Colpi, M., Compton, C. M., Connolly, G., Conti, L., Corbitt, T. R., Cordero-Carrión, I., Corezzi, S., Cornish, N. J., Corsi, A., Cortese, S., Costa, C. A., Cottingham, R., Coughlin, M. W., Couineaux, A., Coulon, J. -P., Countryman, S. T., Coupechoux, J. -F., Couvares, P., Coward, D. M., Cowart, M. J., Coyne, R., Craig, K., Creed, R., Creighton, J. D. E., Creighton, T. D., Cremonese, P., Criswell, A. W., Crockett-Gray, J. C. G., Crook, S., Crouch, R., Csizmazia, J., Cudell, J. R., Cullen, T. J., Cumming, A., Cuoco, E., Cusinato, M., Dabadie, P., Canton, T. Dal, Dall'Osso, S., Pra, S. Dal, Dálya, G., D'Angelo, B., Danilishin, S., D'Antonio, S., Danzmann, K., Darroch, K. E., Dartez, L. P., Dasgupta, A., Datta, S., Dattilo, V., Daumas, A., Davari, N., Dave, I., Davenport, A., Davier, M., Davies, T. F., Davis, D., Davis, L., Davis, M. C., Davis, P. J., Dax, M., De Bolle, J., Deenadayalan, M., Degallaix, J., De Laurentis, M., Deléglise, S., De Lillo, F., Dell'Aquila, D., Del Pozzo, W., De Marco, F., De Matteis, F., D'Emilio, V., Demos, N., Dent, T., Depasse, A., DePergola, N., De Pietri, R., De Rosa, R., De Rossi, C., DeSalvo, R., De Simone, R., Dhani, A., Diab, R., Díaz, M. C., Di Cesare, M., Dideron, G., Didio, N. A., Dietrich, T., Di Fiore, L., Di Fronzo, C., Di Giovanni, M., Di Girolamo, T., Diksha, D., Di Michele, A., Ding, J., Di Pace, S., Di Palma, I., Di Renzo, F., Divyajyoti, Dmitriev, A., Doctor, Z., Dohmen, E., Doleva, P. P., Dominguez, D., D'Onofrio, L., Donovan, F., Dooley, K. L., Dooney, T., Doravari, S., Dorosh, O., Drago, M., Driggers, J. C., Ducoin, J. -G., Dunn, L., Dupletsa, U., D'Urso, D., Duval, H., Duverne, P. -A., Dwyer, S. E., Eassa, C., Ebersold, M., Eckhardt, T., Eddolls, G., Edelman, B., Edo, T. B., Edy, O., Effler, A., Eichholz, J., Einsle, H., Eisenmann, M., Eisenstein, R. A., Ejlli, A., Eleveld, R. M., Emma, M., Endo, K., Engl, A. J., Enloe, E., Errico, L., Essick, R. C., Estellés, H., Estevez, D., Etzel, T., Evans, M., Evstafyeva, T., Ewing, B. E., Ezquiaga, J. M., Fabrizi, F., Faedi, F., Fafone, V., Fairhurst, S., Farah, A. M., Farr, B., Farr, W. M., Favaro, G., Favata, M., Fays, M., Fazio, M., Feicht, J., Fejer, M. M., Felicetti, R., Fenyvesi, E., Ferguson, D. L., Ferraiuolo, S., Ferrante, I., Ferreira, T. A., Fidecaro, F., Figura, P., Fiori, A., Fiori, I., Fishbach, M., Fisher, R. P., Fittipaldi, R., Fiumara, V., Flaminio, R., Fleischer, S. M., Fleming, L. S., Floden, E., Foley, E. M., Fong, H., Font, J. A., Fornal, B., Forsyth, P. W. F., Franceschetti, K., Franchini, N., Frasca, S., Frasconi, F., Mascioli, A. Frattale, Frei, Z., Freise, A., Freitas, O., Frey, R., Frischhertz, W., Fritschel, P., Frolov, V. V., Fronzé, G. G., Fuentes-Garcia, M., Fujii, S., Fujimori, T., Fulda, P., Fyffe, M., Gadre, B., Gair, J. R., Galaudage, S., Galdi, V., Gallagher, H., Gallardo, S., Gallego, B., Gamba, R., Gamboa, A., Ganapathy, D., Ganguly, A., Garaventa, B., García-Bellido, J., Núñez, C. García, García-Quirós, C., Gardner, J. W., Gardner, K. A., Gargiulo, J., Garron, A., Garufi, F., Gasbarra, C., Gateley, B., Gayathri, V., Gemme, G., Gennai, A., Gennari, V., George, J., George, R., Gerberding, O., Gergely, L., Ghosh, Archisman, Ghosh, Sayantan, Ghosh, Shaon, Ghosh, Shrobana, Ghosh, Suprovo, Ghosh, Tathagata, Giacoppo, L., Giaime, J. A., Giardina, K. D., Gibson, D. R., Gibson, D. T., Gier, C., Giri, P., Gissi, F., Gkaitatzis, S., Glanzer, J., Glotin, F., Godfrey, J., Godwin, P., Goebbels, N. L., Goetz, E., Golomb, J., Lopez, S. Gomez, Goncharov, B., Gong, Y., González, G., Goodarzi, P., Goode, S., Goodwin-Jones, A. W., Gosselin, M., Göttel, A. S., Gouaty, R., Gould, D. W., Govorkova, K., Goyal, S., Grace, B., Grado, A., Graham, V., Granados, A. E., Granata, M., Granata, V., Gras, S., Grassia, P., Gray, A., Gray, C., Gray, R., Greco, G., Green, A. C., Green, S. M., Green, S. R., Gretarsson, A. M., Gretarsson, E. M., Griffith, D., Griffiths, W. L., Griggs, H. L., Grignani, G., Grimaldi, A., Grimaud, C., Grote, H., Guerra, D., Guetta, D., Guidi, G. M., Guimaraes, A. R., Gulati, H. K., Gulminelli, F., Gunny, A. M., Guo, H., Guo, W., Guo, Y., Gupta, Anchal, Gupta, Anuradha, Gupta, Ish, Gupta, N. C., Gupta, P., Gupta, S. K., Gupta, T., Gupte, N., Gurs, J., Gutierrez, N., Guzman, F., H, H. -Y., Haba, D., Haberland, M., Haino, S., Hall, E. D., Hamilton, E. Z., Hammond, G., Han, W. -B., Haney, M., Hanks, J., Hanna, C., Hannam, M. D., Hannuksela, O. A., Hanselman, A. G., Hansen, H., Hanson, J., Harada, R., Hardison, A. R., Haris, K., Harmark, T., Harms, J., Harry, G. M., Harry, I. W., Hart, J., Haskell, B., Haster, C. -J., Hathaway, J. S., Haughian, K., Hayakawa, H., Hayama, K., Hayes, R., Heffernan, A., Heidmann, A., Heintze, M. C., Heinze, J., Heinzel, J., Heitmann, H., Hellman, F., Hello, P., Helmling-Cornell, A. F., Hemming, G., Henderson-Sapir, O., Hendry, M., Heng, I. S., Hennes, E., Henshaw, C., Hertog, T., Heurs, M., Hewitt, A. L., Heyns, J., Higginbotham, S., Hild, S., Hill, S., Himemoto, Y., Hirata, N., Hirose, C., Hoang, S., Hochheim, S., Hofman, D., Holland, N. A., Holley-Bockelmann, K., Holmes, Z. J., Holz, D. E., Honet, L., Hong, C., Hornung, J., Hoshino, S., Hough, J., Hourihane, S., Howell, E. J., Hoy, C. G., Hrishikesh, C. A., Hsieh, H. -F., Hsiung, C., Hsu, H. C., Hsu, W. -F., Hu, P., Hu, Q., Huang, H. Y., Huang, Y. -J., Huddart, A. D., Hughey, B., Hui, D. C. Y., Hui, V., Husa, S., Huxford, R., Huynh-Dinh, T., Iampieri, L., Iandolo, G. A., Ianni, M., Iess, A., Imafuku, H., Inayoshi, K., Inoue, Y., Iorio, G., Iqbal, M. H., Irwin, J., Ishikawa, R., Isi, M., Ismail, M. A., Itoh, Y., Iwanaga, H., Iwaya, M., Iyer, B. R., JaberianHamedan, V., Jacquet, C., Jacquet, P. -E., Jadhav, S. J., Jadhav, S. P., Jain, T., James, A. L., James, P. A., Jamshidi, R., Janquart, J., Janssens, K., Janthalur, N. N., Jaraba, S., Jaranowski, P., Jaume, R., Javed, W., Jennings, A., Jia, W., Jiang, J., Kubisz, J., Johanson, C., Johns, G. R., Johnson, N. A., Johnston, M. C., Johnston, R., Johny, N., Jones, D. H., Jones, D. I., Jones, R., Jose, S., Joshi, P., Ju, L., Jung, K., Junker, J., Juste, V., Kajita, T., Kaku, I., Kalaghatgi, C., Kalogera, V., Kamiizumi, M., Kanda, N., Kandhasamy, S., Kang, G., Kanner, J. B., Kapadia, S. J., Kapasi, D. P., Karat, S., Karathanasis, C., Kashyap, R., Kasprzack, M., Kastaun, W., Kato, T., Katsavounidis, E., Katzman, W., Kaushik, R., Kawabe, K., Kawamoto, R., Kazemi, A., Keitel, D., Kelley-Derzon, J., Kennington, J., Kesharwani, R., Key, J. S., Khadela, R., Khadka, S., Khalili, F. Y., Khan, F., Khan, I., Khanam, T., Khursheed, M., Khusid, N. M., Kiendrebeogo, W., Kijbunchoo, N., Kim, C., Kim, J. C., Kim, K., Kim, M. H., Kim, S., Kim, Y. -M., Kimball, C., Kinley-Hanlon, M., Kinnear, M., Kissel, J. S., Klimenko, S., Knee, A. M., Knust, N., Kobayashi, K., Obergaulinger, M., Koch, P., Koehlenbeck, S. M., Koekoek, G., Kohri, K., Kokeyama, K., Koley, S., Kolitsidou, P., Kolstein, M., Komori, K., Kong, A. K. H., Kontos, A., Korobko, M., Kossak, R. V., Kou, X., Koushik, A., Kouvatsos, N., Kovalam, M., Kozak, D. B., Kranzhoff, S. L., Kringel, V., Krishnendu, N. V., Królak, A., Kruska, K., Kuehn, G., Kuijer, P., Kulkarni, S., Ramamohan, A. Kulur, Kumar, A., Kumar, Praveen, Kumar, Prayush, Kumar, Rahul, Kumar, Rakesh, Kume, J., Kuns, K., Kuntimaddi, N., Kuroyanagi, S., Kurth, N. J., Kuwahara, S., Kwak, K., Kwan, K., Kwok, J., Lacaille, G., Lagabbe, P., Laghi, D., Lai, S., Laity, A. H., Lakkis, M. H., Lalande, E., Lalleman, M., Lalremruati, P. C., Landry, M., Lane, B. B., Lang, R. N., Lange, J., Lantz, B., La Rana, A., La Rosa, I., Lartaux-Vollard, A., Lasky, P. D., Lawrence, J., Lawrence, M. N., Laxen, M., Lazzarini, A., Lazzaro, C., Leaci, P., Lecoeuche, Y. K., Lee, H. M., Lee, H. W., Lee, K., Lee, R. -K., Lee, R., Lee, S., Lee, Y., Legred, I. N., Lehmann, J., Lehner, L., Jean, M. Le, Lemaître, A., Lenti, M., Leonardi, M., Lequime, M., Leroy, N., Lesovsky, M., Letendre, N., Lethuillier, M., Levin, S. E., Levin, Y., Leyde, K., Li, A. K. Y., Li, K. L., Li, T. G. F., Li, X., Li, Z., Lihos, A., Lin, C-Y., Lin, C. -Y., Lin, E. T., Lin, F., Lin, H., Lin, L. C. -C., Lin, Y. -C., Linde, F., Linker, S. D., Littenberg, T. B., Liu, A., Liu, G. C., Liu, Jian, Villarreal, F. Llamas, Llobera-Querol, J., Lo, R. K. L., Locquet, J. -P., London, L. T., Longo, A., Lopez, D., Portilla, M. Lopez, Lorenzini, M., Lorenzo-Medina, A., Loriette, V., Lormand, M., Losurdo, G., Lott IV, T. P., Lough, J. D., Loughlin, H. A., Lousto, C. O., Lowry, M. J., Lu, N., Lück, H., Lumaca, D., Lundgren, A. P., Lussier, A. W., Ma, L. -T., Ma, S., Ma'arif, M., Macas, R., Macedo, A., MacInnis, M., Maciy, R. R., Macleod, D. M., MacMillan, I. A. O., Macquet, A., Macri, D., Maeda, K., Maenaut, S., Hernandez, I. Magaña, Magare, S. S., Magazzù, C., Magee, R. M., Maggio, E., Maggiore, R., Magnozzi, M., Mahesh, M., Mahesh, S., Maini, M., Majhi, S., Majorana, E., Makarem, C. N., Makelele, E., Malaquias-Reis, J. A., Mali, U., Maliakal, S., Malik, A., Man, N., Mandic, V., Mangano, V., Mannix, B., Mansell, G. L., Mansingh, G., Manske, M., Mantovani, M., Mapelli, M., Marchesoni, F., Pina, D. Marín, Marion, F., Márka, S., Márka, Z., Markosyan, A. S., Markowitz, A., Maros, E., Marsat, S., Martelli, F., Martin, I. W., Martin, R. M., Martinez, B. B., Martinez, M., Martinez, V., Martini, A., Martinovic, K., Martins, J. C., Martynov, D. V., Marx, E. J., Massaro, L., Masserot, A., Masso-Reid, M., Mastrodicasa, M., Mastrogiovanni, S., Matcovich, T., Matiushechkina, M., Matsuyama, M., Mavalvala, N., Maxwell, N., McCarrol, G., McCarthy, R., McClelland, D. E., McCormick, S., McCuller, L., McEachin, S., McElhenny, C., McGhee, G. I., McGinn, J., McGowan, K. B. M., McIver, J., McLeod, A., McRae, T., Meacher, D., Meijer, Q., Melatos, A., Mellaerts, S., Menendez-Vazquez, A., Menoni, C. S., Mera, F., Mercer, R. A., Mereni, L., Merfeld, K., Merilh, E. L., Mérou, J. R., Merritt, J. D., Merzougui, M., Messenger, C., Messick, C., Meyer-Conde, M., Meylahn, F., Mhaske, A., Miani, A., Miao, H., Michaloliakos, I., Michel, C., Michimura, Y., Middleton, H., Miller, A. L., Miller, S., Millhouse, M., Milotti, E., Milotti, V., Minenkov, Y., Mio, N., Mir, Ll. M., Mirasola, L., Miravet-Tenés, M., Miritescu, C. -A., Mishra, A. K., Mishra, A., Mishra, C., Mishra, T., Mitchell, A. L., Mitchell, J. G., Mitra, S., Mitrofanov, V. P., Mittleman, R., Miyakawa, O., Miyamoto, S., Miyoki, S., Mo, G., Mobilia, L., Mohapatra, S. R. P., Mohite, S. R., Molina-Ruiz, M., Mondal, C., Mondin, M., Montani, M., Moore, C. J., Moraru, D., More, A., More, S., Moreno, G., Morgan, C., Morisaki, S., Moriwaki, Y., Morras, G., Moscatello, A., Mourier, P., Mours, B., Mow-Lowry, C. M., Muciaccia, F., Mukherjee, Arunava, Mukherjee, D., Mukherjee, Samanwaya, Mukherjee, Soma, Mukherjee, Subroto, Mukherjee, Suvodip, Mukund, N., Mullavey, A., Munch, J., Mundi, J., Mungioli, C. L., Oberg, W. R. Munn, Murakami, Y., Murakoshi, M., Murray, P. G., Muusse, S., Nabari, D., Nadji, S. L., Nagar, A., Nagarajan, N., Nagler, K. N., Nakagaki, K., Nakamura, K., Nakano, H., Nakano, M., Nandi, D., Napolano, V., Narayan, P., Nardecchia, I., Narikawa, T., Narola, H., Naticchioni, L., Nayak, R. K., Neilson, J., Nelson, A., Nelson, T. J. N., Nery, M., Neunzert, A., Ng, S., Quynh, L. Nguyen, Nichols, S. A., Nielsen, A. B., Nieradka, G., Niko, A., Nishino, Y., Nishizawa, A., Nissanke, S., Nitoglia, E., Niu, W., Nocera, F., Norman, M., North, C., Novak, J., Siles, J. F. Nuño, Nuttall, L. K., Obayashi, K., Oberling, J., O'Dell, J., Oertel, M., Offermans, A., Oganesyan, G., Oh, J. J., Oh, K., O'Hanlon, T., Ohashi, M., Ohkawa, M., Ohme, F., Oliveira, A. S., Oliveri, R., O'Neal, B., Oohara, K., O'Reilly, B., Ormsby, N. D., Orselli, M., O'Shaughnessy, R., O'Shea, S., Oshima, Y., Oshino, S., Ossokine, S., Osthelder, C., Ota, I., Ottaway, D. J., Ouzriat, A., Overmier, H., Owen, B. J., Pace, A. E., Pagano, R., Page, M. A., Pai, A., Pal, A., Pal, S., Palaia, M. A., Pálfi, M., Palma, P. P., Palomba, C., Palud, P., Pan, H., Pan, J., Pan, K. C., Panai, R., Panda, P. K., Pandey, S., Panebianco, L., Pang, P. T. H., Pannarale, F., Pannone, K. A., Pant, B. C., Panther, F. H., Paoletti, F., Paolone, A., Papalexakis, E. E., Papalini, L., Papigkiotis, G., Paquis, A., Parisi, A., Park, B. -J., Park, J., Parker, W., Pascale, G., Pascucci, D., Pasqualetti, A., Passaquieti, R., Passenger, L., Passuello, D., Patane, O., Pathak, D., Pathak, M., Patra, A., Patricelli, B., Patron, A. S., Paul, K., Paul, S., Payne, E., Pearce, T., Pedraza, M., Pegna, R., Pele, A., Arellano, F. E. Peña, Penn, S., Penuliar, M. D., Perego, A., Pereira, Z., Perez, J. J., Périgois, C., Perna, G., Perreca, A., Perret, J., Perriès, S., Perry, J. W., Pesios, D., Petracca, S., Petrillo, C., Pfeiffer, H. P., Pham, H., Pham, K. A., Phukon, K. S., Phurailatpam, H., Piarulli, M., Piccari, L., Piccinni, O. J., Pichot, M., Piendibene, M., Piergiovanni, F., Pierini, L., Pierra, G., Pierro, V., Pietrzak, M., Pillas, M., Pilo, F., Pinard, L., Pinto, I. M., Pinto, M., Piotrzkowski, B. J., Pirello, M., Pitkin, M. D., Placidi, A., Placidi, E., Planas, M. L., Plastino, W., Poggiani, R., Polini, E., Pompili, L., Poon, J., Porcelli, E., Porter, E. K., Posnansky, C., Poulton, R., Powell, J., Pracchia, M., Pradhan, B. K., Pradier, T., Prajapati, A. K., Prasai, K., Prasanna, R., Prasia, P., Pratten, G., Principe, G., Principe, M., Prodi, G. A., Prokhorov, L., Prosposito, P., Puecher, A., Pullin, J., Punturo, M., Puppo, P., Pürrer, M., Qi, H., Qin, J., Quéméner, G., Quetschke, V., Quigley, C., Quinonez, P. J., Raab, F. J., Raabith, S. S., Raaijmakers, G., Raja, S., Rajan, C., Rajbhandari, B., Ramirez, K. E., Vidal, F. A. Ramis, Ramos-Buades, A., Rana, D., Ranjan, S., Ransom, K., Rapagnani, P., Ratto, B., Rawat, S., Ray, A., Raymond, V., Razzano, M., Read, J., Payo, M. Recaman, Regimbau, T., Rei, L., Reid, S., Reitze, D. H., Relton, P., Renzini, A. I., Rettegno, P., Revenu, B., Reyes, R., Rezaei, A. S., Ricci, F., Ricci, M., Ricciardone, A., Richardson, J. W., Richardson, M., Rijal, A., Riles, K., Riley, H. K., Rinaldi, S., Rittmeyer, J., Robertson, C., Robinet, F., Robinson, M., Rocchi, A., Rolland, L., Rollins, J. G., Romano, A. E., Romano, R., Romero, A., Romero-Shaw, I. M., Romie, J. H., Ronchini, S., Roocke, T. J., Rosa, L., Rosauer, T. J., Rose, C. A., Rosińska, D., Ross, M. P., Rossello, M., Rowan, S., Roy, S. K., Roy, S., Rozza, D., Ruggi, P., Ruhama, N., Morales, E. Ruiz, Ruiz-Rocha, K., Sachdev, S., Sadecki, T., Sadiq, J., Saffarieh, P., Sah, M. R., Saha, S. S., Saha, S., Sainrat, T., Menon, S. Sajith, Sakai, K., Sakellariadou, M., Sakon, S., Salafia, O. S., Salces-Carcoba, F., Salconi, L., Saleem, M., Salemi, F., Sallé, M., Salvador, S., Sanchez, A., Sanchez, E. J., Sanchez, J. H., Sanchez, L. E., Sanchis-Gual, N., Sanders, J. R., Sänger, E. M., Santoliquido, F., Saravanan, T. R., Sarin, N., Sasaoka, S., Sasli, A., Sassi, P., Sassolas, B., Satari, H., Sato, R., Sato, Y., Sauter, O., Savage, R. L., Sawada, T., Sawant, H. L., Sayah, S., Scacco, V., Schaetzl, D., Scheel, M., Schiebelbein, A., Schiworski, M. G., Schmidt, P., Schmidt, S., Schnabel, R., Schneewind, M., Schofield, R. M. S., Schouteden, K., Schulte, B. W., Schutz, B. F., Schwartz, E., Scialpi, M., Scott, J., Scott, S. M., Seetharamu, T. C., Seglar-Arroyo, M., Sekiguchi, Y., Sellers, D., Sengupta, A. S., Sentenac, D., Seo, E. G., Seo, J. W., Sequino, V., Serra, M., Servignat, G., Sevrin, A., Shaffer, T., Shah, U. S., Shaikh, M. A., Shao, L., Sharma, A. K., Sharma, P., Sharma-Chaudhary, S., Shaw, M. R., Shawhan, P., Shcheblanov, N. S., Sheridan, E., Shikano, Y., Shikauchi, M., Shimode, K., Shinkai, H., Shiota, J., Shoemaker, D. H., Shoemaker, D. M., Short, R. W., ShyamSundar, S., Sider, A., Siegel, H., Sieniawska, M., Sigg, D., Silenzi, L., Simmonds, M., Singer, L. P., Singh, A., Singh, D., Singh, M. K., Singh, S., Singha, A., Sintes, A. M., Sipala, V., Skliris, V., Slagmolen, B. J. J., Slaven-Blair, T. J., Smetana, J., Smith, J. R., Smith, L., Smith, R. J. E., Smith, W. J., Soldateschi, J., Somiya, K., Song, I., Soni, K., Soni, S., Sordini, V., Sorrentino, F., Sorrentino, N., Sotani, H., Soulard, R., Southgate, A., Spagnuolo, V., Spencer, A. P., Spera, M., Spinicelli, P., Spoon, J. B., Sprague, C. A., Srivastava, A. K., Stachurski, F., Steer, D. A., Steinlechner, J., Steinlechner, S., Stergioulas, N., Stevens, P., StPierre, M., Stratta, G., Strong, M. D., Strunk, A., Sturani, R., Stuver, A. L., Suchenek, M., Sudhagar, S., Sueltmann, N., Suleiman, L., Sullivan, K. D., Sun, L., Sunil, S., Suresh, J., Sutton, P. J., Suzuki, T., Suzuki, Y., Swinkels, B. L., Syx, A., Szczepańczyk, M. J., Szewczyk, P., Tacca, M., Tagoshi, H., Tait, S. C., Takahashi, H., Takahashi, R., Takamori, A., Takase, T., Takatani, K., Takeda, H., Takeshita, K., Talbot, C., Tamaki, M., Tamanini, N., Tanabe, D., Tanaka, K., Tanaka, S. J., Tanaka, T., Tang, D., Tanioka, S., Tanner, D. B., Tao, L., Tapia, R. D., Martín, E. N. Tapia San, Tarafder, R., Taranto, C., Taruya, A., Tasson, J. D., Teloi, M., Tenorio, R., Themann, H., Theodoropoulos, A., Thirugnanasambandam, M. P., Thomas, L. M., Thomas, M., Thomas, P., Thompson, J. E., Thondapu, S. R., Thorne, K. A., Thrane, E., Tissino, J., Tiwari, A., Tiwari, P., Tiwari, S., Tiwari, V., Todd, M. R., Toivonen, A. M., Toland, K., Tolley, A. E., Tomaru, T., Tomita, K., Tomura, T., Tong-Yu, C., Toriyama, A., Toropov, N., Torres-Forné, A., Torrie, C. I., Toscani, M., Melo, I. Tosta e, Tournefier, E., Trapananti, A., Travasso, F., Traylor, G., Trevor, M., Tringali, M. C., Tripathee, A., Troian, G., Troiano, L., Trovato, A., Trozzo, L., Trudeau, R. J., Tsang, T. T. L., Tso, R., Tsuchida, S., Tsukada, L., Tsutsui, T., Turbang, K., Turconi, M., Turski, C., Ubach, H., Uchikata, N., Uchiyama, T., Udall, R. P., Uehara, T., Uematsu, M., Ueno, K., Ueno, S., Undheim, V., Ushiba, T., Vacatello, M., Vahlbruch, H., Vaidya, N., Vajente, G., Vajpeyi, A., Valdes, G., Valencia, J., Valentini, M., Vallejo-Peña, S. A., Vallero, S., Valsan, V., van Bakel, N., van Beuzekom, M., van Dael, M., Brand, J. F. J. van den, Broeck, C. Van Den, Vander-Hyde, D. C., van der Sluys, M., Van de Walle, A., van Dongen, J., Vandra, K., van Haevermaet, H., van Heijningen, J. V., Van Hove, P., VanKeuren, M., Vanosky, J., van Putten, M. H. P. M., van Ranst, Z., van Remortel, N., Vardaro, M., Vargas, A. F., Varghese, J. J., Varma, V., Vasúth, M., Vecchio, A., Vedovato, G., Veitch, J., Veitch, P. J., Venikoudis, S., Venneberg, J., Verdier, P., Verkindt, D., Verma, B., Verma, P., Verma, Y., Vermeulen, S. M., Vetrano, F., Veutro, A., Vibhute, A. M., Viceré, A., Vidyant, S., Viets, A. D., Vijaykumar, A., Vilkha, A., Villa-Ortega, V., Vincent, E. T., Vinet, J. -Y., Viret, S., Virtuoso, A., Vitale, S., Vives, A., Vocca, H., Voigt, D., von Reis, E. R. G., von Wrangel, J. S. A., Vyatchanin, S. P., Wade, L. E., Wade, M., Wagner, K. J., Wajid, A., Walker, M., Wallace, G. S., Wallace, L., Wang, H., Wang, J. Z., Wang, W. H., Wang, Z., Waratkar, G., Warner, J., Was, M., Washimi, T., Washington, N. Y., Watarai, D., Wayt, K. E., Weaver, B. R., Weaver, B., Weaving, C. R., Webster, S. A., Weinert, M., Weinstein, A. J., Weiss, R., Wellmann, F., Wen, L., Weßels, P., Wette, K., Whelan, J. T., Whiting, B. F., Whittle, C., Wildberger, J. B., Wilk, O. S., Wilken, D., Wilkin, A. T., Willadsen, D. J., Willetts, K., Williams, D., Williams, M. J., Williams, N. S., Willis, J. L., Willke, B., Wils, M., Winterflood, J., Wipf, C. C., Woan, G., Woehler, J., Wofford, J. K., Wolfe, N. E., Wong, H. T., Wong, H. W. Y., Wong, I. C. F., Wright, J. L., Wright, M., Wu, C., Wu, D. S., Wu, H., Wuchner, E., Wysocki, D. M., Xu, V. A., Xu, Y., Yadav, N., Yamamoto, H., Yamamoto, K., Yamamoto, T. S., Yamamoto, T., Yamamura, S., Yamazaki, R., Yan, S., Yan, T., Yang, F. W., Yang, F., Yang, K. Z., Yang, Y., Yarbrough, Z., Yasui, H., Yeh, S. -W., Yelikar, A. B., Yin, X., Yokoyama, J., Yokozawa, T., Yoo, J., Yu, H., Yuan, S., Yuzurihara, H., Zadrożny, A., Zanolin, M., Zeeshan, M., Zelenova, T., Zendri, J. -P., Zeoli, M., Zerrad, M., Zevin, M., Zhang, A. C., Zhang, L., Zhang, R., Zhang, T., Zhang, Y., Zhao, C., Zhao, Yue, Zhao, Yuhang, Zheng, Y., Zhong, H., Zhou, R., Zhu, X. -J., Zhu, Z. -H., Zimmerman, A. B., Zucker, M. E., and Zweizig, J.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
We present the results of a search for gravitational-wave transients associated with core-collapse supernova SN 2023ixf, which was observed in the galaxy Messier 101 via optical emission on 2023 May 19th, during the LIGO-Virgo-KAGRA 15th Engineering Run. We define a five-day on-source window during which an accompanying gravitational-wave signal may have occurred. No gravitational waves have been identified in data when at least two gravitational-wave observatories were operating, which covered $\sim 14\%$ of this five-day window. We report the search detection efficiency for various possible gravitational-wave emission models. Considering the distance to M101 (6.7 Mpc), we derive constraints on the gravitational-wave emission mechanism of core-collapse supernovae across a broad frequency spectrum, ranging from 50 Hz to 2 kHz where we assume the GW emission occurred when coincident data are available in the on-source window. Considering an ellipsoid model for a rotating proto-neutron star, our search is sensitive to gravitational-wave energy $1 \times 10^{-5} M_{\odot} c^2$ and luminosity $4 \times 10^{-5} M_{\odot} c^2/\text{s}$ for a source emitting at 50 Hz. These constraints are around an order of magnitude more stringent than those obtained so far with gravitational-wave data. The constraint on the ellipticity of the proto-neutron star that is formed is as low as $1.04$, at frequencies above $1200$ Hz, surpassing results from SN 2019ejj., Comment: Main paper: 6 pages, 4 figures and 1 table. Total with appendices: 20 pages, 4 figures, and 1 table
- Published
- 2024
23. A search using GEO600 for gravitational waves coincident with fast radio bursts from SGR 1935+2154
- Author
-
The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, Abac, A. G., Abbott, R., Abouelfettouh, I., Acernese, F., Ackley, K., Adhicary, S., Adhikari, N., Adhikari, R. X., Adkins, V. K., Agarwal, D., Agathos, M., Abchouyeh, M. Aghaei, Aguiar, O. D., Aguilar, I., Aiello, L., Ain, A., Ajith, P., Akutsu, T., Albanesi, S., Alfaidi, R. A., Al-Jodah, A., Alléné, C., Allocca, A., Al-Shammari, S., Altin, P. A., Alvarez-Lopez, S., Amato, A., Amez-Droz, L., Amorosi, A., Amra, C., Ananyeva, A., Anderson, S. B., Anderson, W. G., Andia, M., Ando, M., Andrade, T., Andres, N., Andrés-Carcasona, M., Andrić, T., Anglin, J., Ansoldi, S., Antelis, J. M., Antier, S., Aoumi, M., Appavuravther, E. Z., Appert, S., Apple, S. K., Arai, K., Araya, A., Araya, M. C., Areeda, J. S., Argianas, L., Aritomi, N., Armato, F., Arnaud, N., Arogeti, M., Aronson, S. M., Ashton, G., Aso, Y., Assiduo, M., Melo, S. Assis de Souza, Aston, S. M., Astone, P., Attadio, F., Aubin, F., AultONeal, K., Avallone, G., Azrad, D., Babak, S., Badaracco, F., Badger, C., Bae, S., Bagnasco, S., Bagui, E., Baier, J. G., Baiotti, L., Bajpai, R., Baka, T., Ball, M., Ballardin, G., Ballmer, S. W., Banagiri, S., Banerjee, B., Bankar, D., Baral, P., Barayoga, J. C., Barish, B. C., Barker, D., Barneo, P., Barone, F., Barr, B., Barsotti, L., Barsuglia, M., Barta, D., Bartoletti, A. M., Barton, M. A., Bartos, I., Basak, S., Basalaev, A., Bassiri, R., Basti, A., Bates, D. E., Bawaj, M., Baxi, P., Bayley, J. C., Baylor, A. C., Baynard II, P. A., Bazzan, M., Bedakihale, V. M., Beirnaert, F., Bejger, M., Belardinelli, D., Bell, A. S., Benedetto, V., Benoit, W., Bentley, J. D., Yaala, M. Ben, Bera, S., Berbel, M., Bergamin, F., Berger, B. K., Bernuzzi, S., Beroiz, M., Bersanetti, D., Bertolini, A., Betzwieser, J., Beveridge, D., Bevins, N., Bhandare, R., Bhardwaj, U., Bhatt, R., Bhattacharjee, D., Bhaumik, S., Bhowmick, S., Bianchi, A., Bilenko, I. A., Billingsley, G., Binetti, A., Bini, S., Birnholtz, O., Biscoveanu, S., Bisht, A., Bitossi, M., Bizouard, M. -A., Blackburn, J. K., Blagg, L. A., Blair, C. D., Blair, D. G., Bobba, F., Bode, N., Boileau, G., Boldrini, M., Bolingbroke, G. N., Bolliand, A., Bonavena, L. D., Bondarescu, R., Bondu, F., Bonilla, E., Bonilla, M. S., Bonino, A., Bonnand, R., Booker, P., Borchers, A., Boschi, V., Bose, S., Bossilkov, V., Boudart, V., Boudon, A., Bozzi, A., Bradaschia, C., Brady, P. R., Braglia, M., Branch, A., Branchesi, M., Brandt, J., Braun, I., Breschi, M., Briant, T., Brillet, A., Brinkmann, M., Brockill, P., Brockmueller, E., Brooks, A. F., Brown, B. C., Brown, D. D., Brozzetti, M. L., Brunett, S., Bruno, G., Bruntz, R., Bryant, J., Bucci, F., Buchanan, J., Bulashenko, O., Bulik, T., Bulten, H. J., Buonanno, A., Burtnyk, K., Buscicchio, R., Buskulic, D., Buy, C., Byer, R. L., Davies, G. S. Cabourn, Cabras, G., Cabrita, R., Cáceres-Barbosa, V., Cadonati, L., Cagnoli, G., Cahillane, C., Bustillo, J. Calderón, Callister, T. A., Calloni, E., Camp, J. B., Canepa, M., Santoro, G. Caneva, Cannon, K. C., Cao, H., Capistran, L. A., Capocasa, E., Capote, E., Carapella, G., Carbognani, F., Carlassara, M., Carlin, J. B., Carpinelli, M., Carrillo, G., Carter, J. J., Carullo, G., Diaz, J. Casanueva, Casentini, C., Castro-Lucas, S. Y., Caudill, S., Cavaglià, M., Cavalieri, R., Cella, G., Cerdá-Durán, P., Cesarini, E., Chaibi, W., Chakraborty, P., Subrahmanya, S. Chalathadka, Chan, J. C. L., Chan, M., Chandra, K., Chang, R. -J., Chao, S., Charlton, E. L., Charlton, P., Chassande-Mottin, E., Chatterjee, C., Chatterjee, Debarati, Chatterjee, Deep, Chaturvedi, M., Chaty, S., Chen, A., Chen, A. H. -Y., Chen, D., Chen, H., Chen, H. Y., Chen, J., Chen, K. H., Chen, Y., Chen, Yanbei, Chen, Yitian, Cheng, H. P., Chessa, P., Cheung, H. T., Cheung, S. Y., Chiadini, F., Chiarini, G., Chierici, R., Chincarini, A., Chiofalo, M. L., Chiummo, A., Chou, C., Choudhary, S., Christensen, N., Chua, S. S. Y., Chugh, P., Ciani, G., Ciecielag, P., Cieślar, M., Cifaldi, M., Ciolfi, R., Clara, F., Clark, J. A., Clarke, J., Clarke, T. A., Clearwater, P., Clesse, S., Coccia, E., Codazzo, E., Cohadon, P. -F., Colace, S., Colleoni, M., Collette, C. G., Collins, J., Colloms, S., Colombo, A., Colpi, M., Compton, C. M., Connolly, G., Conti, L., Corbitt, T. R., Cordero-Carrión, I., Corezzi, S., Cornish, N. J., Corsi, A., Cortese, S., Costa, C. A., Cottingham, R., Coughlin, M. W., Couineaux, A., Coulon, J. -P., Countryman, S. T., Coupechoux, J. -F., Couvares, P., Coward, D. M., Cowart, M. J., Coyne, R., Craig, K., Creed, R., Creighton, J. D. E., Creighton, T. D., Cremonese, P., Criswell, A. W., Crockett-Gray, J. C. G., Crook, S., Crouch, R., Csizmazia, J., Cudell, J. R., Cullen, T. J., Cumming, A., Cuoco, E., Cusinato, M., Dabadie, P., Canton, T. Dal, Dall'Osso, S., Pra, S. Dal, Dálya, G., D'Angelo, B., Danilishin, S., D'Antonio, S., Danzmann, K., Darroch, K. E., Dartez, L. P., Dasgupta, A., Datta, S., Dattilo, V., Daumas, A., Davari, N., Dave, I., Davenport, A., Davier, M., Davies, T. F., Davis, D., Davis, L., Davis, M. C., Davis, P. J., Dax, M., De Bolle, J., Deenadayalan, M., Degallaix, J., De Laurentis, M., Deléglise, S., De Lillo, F., Dell'Aquila, D., Del Pozzo, W., De Marco, F., De Matteis, F., D'Emilio, V., Demos, N., Dent, T., Depasse, A., DePergola, N., De Pietri, R., De Rosa, R., De Rossi, C., DeSalvo, R., De Simone, R., Dhani, A., Diab, R., Díaz, M. C., Di Cesare, M., Dideron, G., Didio, N. A., Dietrich, T., Di Fiore, L., Di Fronzo, C., Di Giovanni, M., Di Girolamo, T., Diksha, D., Di Michele, A., Ding, J., Di Pace, S., Di Palma, I., Di Renzo, F., Divyajyoti, Dmitriev, A., Doctor, Z., Dohmen, E., Doleva, P. P., Dominguez, D., D'Onofrio, L., Donovan, F., Dooley, K. L., Dooney, T., Doravari, S., Dorosh, O., Drago, M., Driggers, J. C., Ducoin, J. -G., Dunn, L., Dupletsa, U., D'Urso, D., Duval, H., Duverne, P. -A., Dwyer, S. E., Eassa, C., Ebersold, M., Eckhardt, T., Eddolls, G., Edelman, B., Edo, T. B., Edy, O., Effler, A., Eichholz, J., Einsle, H., Eisenmann, M., Eisenstein, R. A., Ejlli, A., Eleveld, R. M., Emma, M., Endo, K., Engl, A. J., Enloe, E., Errico, L., Essick, R. C., Estellés, H., Estevez, D., Etzel, T., Evans, M., Evstafyeva, T., Ewing, B. E., Ezquiaga, J. M., Fabrizi, F., Faedi, F., Fafone, V., Fairhurst, S., Farah, A. M., Farr, B., Farr, W. M., Favaro, G., Favata, M., Fays, M., Fazio, M., Feicht, J., Fejer, M. M., Felicetti, R. ., Fenyvesi, E., Ferguson, D. L., Ferraiuolo, S., Ferrante, I., Ferreira, T. A., Fidecaro, F., Figura, P., Fiori, A., Fiori, I., Fishbach, M., Fisher, R. P., Fittipaldi, R., Fiumara, V., Flaminio, R., Fleischer, S. M., Fleming, L. S., Floden, E., Foley, E. M., Fong, H., Font, J. A., Fornal, B., Forsyth, P. W. F., Franceschetti, K., Franchini, N., Frasca, S., Frasconi, F., Mascioli, A. Frattale, Frei, Z., Freise, A., Freitas, O., Frey, R., Frischhertz, W., Fritschel, P., Frolov, V. V., Fronzé, G. G., Fuentes-Garcia, M., Fujii, S., Fujimori, T., Fulda, P., Fyffe, M., Gadre, B., Gair, J. R., Galaudage, S., Galdi, V., Gallagher, H., Gallardo, S., Gallego, B., Gamba, R., Gamboa, A., Ganapathy, D., Ganguly, A., Garaventa, B., García-Bellido, J., Núñez, C. García, García-Quirós, C., Gardner, J. W., Gardner, K. A., Gargiulo, J., Garron, A., Garufi, F., Gasbarra, C., Gateley, B., Gayathri, V., Gemme, G., Gennai, A., Gennari, V., George, J., George, R., Gerberding, O., Gergely, L., Ghonge, S., Ghosh, Archisman, Ghosh, Sayantan, Ghosh, Shaon, Ghosh, Shrobana, Ghosh, Suprovo, Ghosh, Tathagata, Giacoppo, L., Giaime, J. A., Giardina, K. D., Gibson, D. R., Gibson, D. T., Gier, C., Giri, P., Gissi, F., Gkaitatzis, S., Glanzer, J., Glotin, F., Godfrey, J., Godwin, P., Goebbels, N. L., Goetz, E., Golomb, J., Lopez, S. Gomez, Goncharov, B., Gong, Y., González, G., Goodarzi, P., Goode, S., Goodwin-Jones, A. W., Gosselin, M., Göttel, A. S., Gouaty, R., Gould, D. W., Govorkova, K., Goyal, S., Grace, B., Grado, A., Graham, V., Granados, A. E., Granata, M., Granata, V., Gras, S., Grassia, P., Gray, A., Gray, C., Gray, R., Greco, G., Green, A. C., Green, S. M., Green, S. R., Gretarsson, A. M., Gretarsson, E. M., Griffith, D., Griffiths, W. L., Griggs, H. L., Grignani, G., Grimaldi, A., Grimaud, C., Grote, H., Guerra, D., Guetta, D., Guidi, G. M., Guimaraes, A. R., Gulati, H. K., Gulminelli, F., Gunny, A. M., Guo, H., Guo, W., Guo, Y., Gupta, Anchal, Gupta, Anuradha, Gupta, Ish, Gupta, N. C., Gupta, P., Gupta, S. K., Gupta, T., Gupte, N., Gurs, J., Gutierrez, N., Guzman, F., H, H. -Y., Haba, D., Haberland, M., Haino, S., Hall, E. D., Hamilton, E. Z., Hammond, G., Han, W. -B., Haney, M., Hanks, J., Hanna, C., Hannam, M. D., Hannuksela, O. A., Hanselman, A. G., Hansen, H., Hanson, J., Harada, R., Hardison, A. R., Haris, K., Harmark, T., Harms, J., Harry, G. M., Harry, I. W., Hart, J., Haskell, B., Haster, C. -J., Hathaway, J. S., Haughian, K., Hayakawa, H., Hayama, K., Hayes, R., Heffernan, A., Heidmann, A., Heintze, M. C., Heinze, J., Heinzel, J., Heitmann, H., Hellman, F., Hello, P., Helmling-Cornell, A. F., Hemming, G., Henderson-Sapir, O., Hendry, M., Heng, I. S., Hennes, E., Henshaw, C., Hertog, T., Heurs, M., Hewitt, A. L., Heyns, J., Higginbotham, S., Hild, S., Hill, S., Himemoto, Y., Hirata, N., Hirose, C., Ho, W. C. G., Hoang, S., Hochheim, S., Hofman, D., Holland, N. A., Holley-Bockelmann, K., Holmes, Z. J., Holz, D. E., Honet, L., Hong, C., Hornung, J., Hoshino, S., Hough, J., Hourihane, S., Howell, E. J., Hoy, C. G., Hrishikesh, C. A., Hsieh, H. -F., Hsiung, C., Hsu, H. C., Hsu, W. -F., Hu, P., Hu, Q., Huang, H. Y., Huang, Y. -J., Huddart, A. D., Hughey, B., Hui, D. C. Y., Hui, V., Husa, S., Huxford, R., Huynh-Dinh, T., Iampieri, L., Iandolo, G. A., Ianni, M., Iess, A., Imafuku, H., Inayoshi, K., Inoue, Y., Iorio, G., Iqbal, M. H., Irwin, J., Ishikawa, R., Isi, M., Ismail, M. A., Itoh, Y., Iwanaga, H., Iwaya, M., Iyer, B. R., JaberianHamedan, V., Jacquet, C., Jacquet, P. -E., Jadhav, S. J., Jadhav, S. P., Jain, T., James, A. L., James, P. A., Jamshidi, R., Janquart, J., Janssens, K., Janthalur, N. N., Jaraba, S., Jaranowski, P., Jaume, R., Javed, W., Jennings, A., Jia, W., Jiang, J., Kubisz, J., Johanson, C., Johns, G. R., Johnson, N. A., Johnston, M. C., Johnston, R., Johny, N., Jones, D. H., Jones, D. I., Jones, R., Jose, S., Joshi, P., Ju, L., Jung, K., Junker, J., Juste, V., Kajita, T., Kaku, I., Kalaghatgi, C., Kalogera, V., Kamiizumi, M., Kanda, N., Kandhasamy, S., Kang, G., Kanner, J. B., Kapadia, S. J., Kapasi, D. P., Karat, S., Karathanasis, C., Kashyap, R., Kasprzack, M., Kastaun, W., Kato, T., Katsavounidis, E., Katzman, W., Kaushik, R., Kawabe, K., Kawamoto, R., Kazemi, A., Keitel, D., Kelley-Derzon, J., Kennington, J., Kesharwani, R., Key, J. S., Khadela, R., Khadka, S., Khalili, F. Y., Khan, F., Khan, I., Khanam, T., Khursheed, M., Khusid, N. M., Kiendrebeogo, W., Kijbunchoo, N., Kim, C., Kim, J. C., Kim, K., Kim, M. H., Kim, S., Kim, Y. -M., Kimball, C., Kinley-Hanlon, M., Kinnear, M., Kissel, J. S., Klimenko, S., Knee, A. M., Knust, N., Kobayashi, K., Koch, P., Koehlenbeck, S. M., Koekoek, G., Kohri, K., Kokeyama, K., Koley, S., Kolitsidou, P., Kolstein, M., Komori, K., Kong, A. K. H., Kontos, A., Korobko, M., Kossak, R. V., Kou, X., Koushik, A., Kouvatsos, N., Kovalam, M., Kozak, D. B., Kranzhoff, S. L., Kringel, V., Krishnendu, N. V., Królak, A., Kruska, K., Kuehn, G., Kuijer, P., Kulkarni, S., Ramamohan, A. Kulur, Kumar, A., Kumar, Praveen, Kumar, Prayush, Kumar, Rahul, Kumar, Rakesh, Kume, J., Kuns, K., Kuntimaddi, N., Kuroyanagi, S., Kurth, N. J., Kuwahara, S., Kwak, K., Kwan, K., Kwok, J., Lacaille, G., Lagabbe, P., Laghi, D., Lai, S., Laity, A. H., Lakkis, M. H., Lalande, E., Lalleman, M., Lalremruati, P. C., Landry, M., Lane, B. B., Lang, R. N., Lange, J., Lantz, B., La Rana, A., La Rosa, I., Lartaux-Vollard, A., Lasky, P. D., Lawrence, J., Lawrence, M. N., Laxen, M., Lazzarini, A., Lazzaro, C., Leaci, P., Lecoeuche, Y. K., Lee, H. M., Lee, H. W., Lee, K., Lee, R. -K., Lee, R., Lee, S., Lee, Y., Legred, I. N., Lehmann, J., Lehner, L., Jean, M. Le, Lemaître, A., Lenti, M., Leonardi, M., Lequime, M., Leroy, N., Lesovsky, M., Letendre, N., Lethuillier, M., Levin, S. E., Levin, Y., Leyde, K., Li, A. K. Y., Li, K. L., Li, T. G. F., Li, X., Li, Z., Lihos, A., Lin, C-Y., Lin, C. -Y., Lin, E. T., Lin, F., Lin, H., Lin, L. C. -C., Lin, Y. -C., Linde, F., Linker, S. D., Littenberg, T. B., Liu, A., Liu, G. C., Liu, Jian, Villarreal, F. Llamas, Llobera-Querol, J., Lo, R. K. L., Locquet, J. -P., London, L. T., Longo, A., Lopez, D., Portilla, M. Lopez, Lorenzini, M., Lorenzo-Medina, A., Loriette, V., Lormand, M., Losurdo, G., Lott IV, T. P., Lough, J. D., Loughlin, H. A., Lousto, C. O., Lowry, M. J., Lu, N., Lück, H., Lumaca, D., Lundgren, A. P., Lussier, A. W., Ma, L. -T., Ma, S., Ma'arif, M., Macas, R., Macedo, A., MacInnis, M., Maciy, R. R., Macleod, D. M., MacMillan, I. A. O., Macquet, A., Macri, D., Maeda, K., Maenaut, S., Hernandez, I. Magaña, Magare, S. S., Magazzù, C., Magee, R. M., Maggio, E., Maggiore, R., Magnozzi, M., Mahesh, M., Mahesh, S., Maini, M., Majhi, S., Majorana, E., Makarem, C. N., Makelele, E., Malaquias-Reis, J. A., Mali, U., Maliakal, S., Malik, A., Man, N., Mandic, V., Mangano, V., Mannix, B., Mansell, G. L., Mansingh, G., Manske, M., Mantovani, M., Mapelli, M., Marchesoni, F., Pina, D. Marín, Marion, F., Márka, S., Márka, Z., Markosyan, A. S., Markowitz, A., Maros, E., Marsat, S., Martelli, F., Martin, I. W., Martin, R. M., Martinez, B. B., Martinez, M., Martinez, V., Martini, A., Martinovic, K., Martins, J. C., Martynov, D. V., Marx, E. J., Massaro, L., Masserot, A., Masso-Reid, M., Mastrodicasa, M., Mastrogiovanni, S., Matcovich, T., Matiushechkina, M., Matsuyama, M., Mavalvala, N., Maxwell, N., McCarrol, G., McCarthy, R., McCormick, S., McCuller, L., McEachin, S., McElhenny, C., McGhee, G. I., McGinn, J., McGowan, K. B. M., McIver, J., McLeod, A., McRae, T., Meacher, D., Meijer, Q., Melatos, A., Mellaerts, S., Menendez-Vazquez, A., Menoni, C. S., Mera, F., Mercer, R. A., Mereni, L., Merfeld, K., Merilh, E. L., Mérou, J. R., Merritt, J. D., Merzougui, M., Messenger, C., Messick, C., Meyer-Conde, M., Meylahn, F., Mhaske, A., Miani, A., Miao, H., Michaloliakos, I., Michel, C., Michimura, Y., Middleton, H., Miller, A. L., Miller, S., Millhouse, M., Milotti, E., Milotti, V., Minenkov, Y., Mio, N., Mir, Ll. M., Mirasola, L., Miravet-Tenés, M., Miritescu, C. -A., Mishra, A. K., Mishra, A., Mishra, C., Mishra, T., Mitchell, A. L., Mitchell, J. G., Mitra, S., Mitrofanov, V. P., Mittleman, R., Miyakawa, O., Miyamoto, S., Miyoki, S., Mo, G., Mobilia, L., Mohapatra, S. R. P., Mohite, S. R., Molina-Ruiz, M., Mondal, C., Mondin, M., Montani, M., Moore, C. J., Moraru, D., More, A., More, S., Moreno, G., Morgan, C., Morisaki, S., Moriwaki, Y., Morras, G., Moscatello, A., Mourier, P., Mours, B., Mow-Lowry, C. M., Muciaccia, F., Mukherjee, Arunava, Mukherjee, D., Mukherjee, Samanwaya, Mukherjee, Soma, Mukherjee, Subroto, Mukherjee, Suvodip, Mukund, N., Mullavey, A., Munch, J., Mundi, J., Mungioli, C. L., Oberg, W. R. Munn, Murakami, Y., Murakoshi, M., Murray, P. G., Muusse, S., Nabari, D., Nadji, S. L., Nagar, A., Nagarajan, N., Nagler, K. N., Nakagaki, K., Nakamura, K., Nakano, H., Nakano, M., Nandi, D., Napolano, V., Narayan, P., Nardecchia, I., Narola, H., Naticchioni, L., Nayak, R. K., Neilson, J., Nelson, A., Nelson, T. J. N., Nery, M., Neunzert, A., Ng, S., Quynh, L. Nguyen, Nichols, S. A., Nielsen, A. B., Nieradka, G., Niko, A., Nishino, Y., Nishizawa, A., Nissanke, S., Nitoglia, E., Niu, W., Nocera, F., Norman, M., North, C., Novak, J., Siles, J. F. Nuño, Nuttall, L. K., Obayashi, K., Oberling, J., O'Dell, J., Oertel, M., Offermans, A., Oganesyan, G., Oh, J. J., Oh, K., O'Hanlon, T., Ohashi, M., Ohkawa, M., Ohme, F., Oliveira, A. S., Oliveri, R., O'Neal, B., Oohara, K., O'Reilly, B., Ormsby, N. D., Orselli, M., O'Shaughnessy, R., O'Shea, S., Oshima, Y., Oshino, S., Ossokine, S., Osthelder, C., Ota, I., Ottaway, D. J., Ouzriat, A., Overmier, H., Owen, B. J., Pace, A. E., Pagano, R., Page, M. A., Pai, A., Pal, A., Pal, S., Palaia, M. A., Pálfi, M., Palma, P. P., Palomba, C., Palud, P., Pan, H., Pan, J., Pan, K. C., Panai, R., Panda, P. K., Pandey, S., Panebianco, L., Pang, P. T. H., Pannarale, F., Pannone, K. A., Pant, B. C., Panther, F. H., Paoletti, F., Paolone, A., Papalexakis, E. E., Papalini, L., Papigkiotis, G., Paquis, A., Parisi, A., Park, B. -J., Park, J., Parker, W., Pascale, G., Pascucci, D., Pasqualetti, A., Passaquieti, R., Passenger, L., Passuello, D., Patane, O., Pathak, D., Pathak, M., Patra, A., Patricelli, B., Patron, A. S., Paul, K., Paul, S., Payne, E., Pearce, T., Pedraza, M., Pegna, R., Pele, A., Arellano, F. E. Peña, Penn, S., Penuliar, M. D., Perego, A., Pereira, Z., Perez, J. J., Périgois, C., Perna, G., Perreca, A., Perret, J., Perriès, S., Perry, J. W., Pesios, D., Petracca, S., Petrillo, C., Pfeiffer, H. P., Pham, H., Pham, K. A., Phukon, K. S., Phurailatpam, H., Piarulli, M., Piccari, L., Piccinni, O. J., Pichot, M., Piendibene, M., Piergiovanni, F., Pierini, L., Pierra, G., Pierro, V., Pietrzak, M., Pillas, M., Pilo, F., Pinard, L., Pinto, I. M., Pinto, M., Piotrzkowski, B. J., Pirello, M., Pitkin, M. D., Placidi, A., Placidi, E., Planas, M. L., Plastino, W., Poggiani, R., Polini, E., Pompili, L., Poon, J., Porcelli, E., Porter, E. K., Posnansky, C., Poulton, R., Powell, J., Pracchia, M., Pradhan, B. K., Pradier, T., Prajapati, A. K., Prasai, K., Prasanna, R., Prasia, P., Pratten, G., Principe, G., Principe, M., Prodi, G. A., Prokhorov, L., Prosposito, P., Puecher, A., Pullin, J., Punturo, M., Puppo, P., Pürrer, M., Qi, H., Qin, J., Quéméner, G., Quetschke, V., Quigley, C., Quinonez, P. J., Quitzow-James, R., Raab, F. J., Raabith, S. S., Raaijmakers, G., Raja, S., Rajan, C., Rajbhandari, B., Ramirez, K. E., Vidal, F. A. Ramis, Ramos-Buades, A., Rana, D., Ranjan, S., Ransom, K., Rapagnani, P., Ratto, B., Rawat, S., Ray, A., Raymond, V., Razzano, M., Read, J., Payo, M. Recaman, Regimbau, T., Rei, L., Reid, S., Reitze, D. H., Relton, P., Renzini, A. I., Rettegno, P., Revenu, B., Reyes, R., Rezaei, A. S., Ricci, F., Ricci, M., Ricciardone, A., Richardson, J. W., Richardson, M., Rijal, A., Riles, K., Riley, H. K., Rinaldi, S., Rittmeyer, J., Robertson, C., Robinet, F., Robinson, M., Rocchi, A., Rolland, L., Rollins, J. G., Romano, A. E., Romano, R., Romero, A., Romero-Shaw, I. M., Romie, J. H., Ronchini, S., Roocke, T. J., Rosa, L., Rosauer, T. J., Rose, C. A., Rosińska, D., Ross, M. P., Rossello, M., Rowan, S., Roy, S. K., Roy, S., Rozza, D., Ruggi, P., Ruhama, N., Morales, E. Ruiz, Ruiz-Rocha, K., Sachdev, S., Sadecki, T., Sadiq, J., Saffarieh, P., Sah, M. R., Saha, S. S., Saha, S., Sainrat, T., Menon, S. Sajith, Sakai, K., Sakellariadou, M., Sakon, S., Salafia, O. S., Salces-Carcoba, F., Salconi, L., Saleem, M., Salemi, F., Sallé, M., Salvador, S., Sanchez, A., Sanchez, E. J., Sanchez, J. H., Sanchez, L. E., Sanchis-Gual, N., Sanders, J. R., Sänger, E. M., Santoliquido, F., Saravanan, T. R., Sarin, N., Sasaoka, S., Sasli, A., Sassi, P., Sassolas, B., Satari, H., Sato, R., Sato, Y., Sauter, O., Savage, R. L., Sawada, T., Sawant, H. L., Sayah, S., Scacco, V., Schaetzl, D., Scheel, M., Schiebelbein, A., Schiworski, M. G., Schmidt, P., Schmidt, S., Schnabel, R., Schneewind, M., Schofield, R. M. S., Schouteden, K., Schulte, B. W., Schutz, B. F., Schwartz, E., Scialpi, M., Scott, J., Scott, S. M., Seetharamu, T. C., Seglar-Arroyo, M., Sekiguchi, Y., Sellers, D., Sengupta, A. S., Sentenac, D., Seo, E. G., Seo, J. W., Sequino, V., Serra, M., Servignat, G., Sevrin, A., Shaffer, T., Shah, U. S., Shaikh, M. A., Shao, L., Sharma, A. K., Sharma, P., Sharma-Chaudhary, S., Shaw, M. R., Shawhan, P., Shcheblanov, N. S., Sheridan, E., Shikano, Y., Shikauchi, M., Shimode, K., Shinkai, H., Shiota, J., Shoemaker, D. H., Shoemaker, D. M., Short, R. W., ShyamSundar, S., Sider, A., Siegel, H., Sieniawska, M., Sigg, D., Silenzi, L., Simmonds, M., Singer, L. P., Singh, A., Singh, D., Singh, M. K., Singh, S., Singha, A., Sintes, A. M., Sipala, V., Skliris, V., Slagmolen, B. J. J., Slaven-Blair, T. J., Smetana, J., Smith, J. R., Smith, L., Smith, R. J. E., Smith, W. J., Soldateschi, J., Somiya, K., Song, I., Soni, K., Soni, S., Sordini, V., Sorrentino, F., Sorrentino, N., Sotani, H., Soulard, R., Southgate, A., Spagnuolo, V., Spencer, A. P., Spera, M., Spinicelli, P., Spoon, J. B., Sprague, C. A., Srivastava, A. K., Stachurski, F., Steer, D. A., Steinlechner, J., Steinlechner, S., Stergioulas, N., Stevens, P., StPierre, M., Stratta, G., Strong, M. D., Strunk, A., Sturani, R., Stuver, A. L., Suchenek, M., Sudhagar, S., Sueltmann, N., Suleiman, L., Sullivan, K. D., Sun, L., Sunil, S., Suresh, J., Sutton, P. J., Suzuki, T., Suzuki, Y., Swinkels, B. L., Syx, A., Szczepańczyk, M. J., Szewczyk, P., Tacca, M., Tagoshi, H., Tait, S. C., Takahashi, H., Takahashi, R., Takamori, A., Takase, T., Takatani, K., Takeda, H., Takeshita, K., Talbot, C., Tamaki, M., Tamanini, N., Tanabe, D., Tanaka, K., Tanaka, S. J., Tanaka, T., Tang, D., Tanioka, S., Tanner, D. B., Tao, L., Tapia, R. D., Martín, E. N. Tapia San, Tarafder, R., Taranto, C., Taruya, A., Tasson, J. D., Teloi, M., Tenorio, R., Themann, H., Theodoropoulos, A., Thirugnanasambandam, M. P., Thomas, L. M., Thomas, M., Thomas, P., Thompson, J. E., Thondapu, S. R., Thorne, K. A., Thrane, E., Tissino, J., Tiwari, A., Tiwari, P., Tiwari, S., Tiwari, V., Todd, M. R., Toivonen, A. M., Toland, K., Tolley, A. E., Tomaru, T., Tomita, K., Tomura, T., Tong-Yu, C., Toriyama, A., Toropov, N., Torres-Forné, A., Torrie, C. I., Toscani, M., Melo, I. Tosta e, Tournefier, E., Trapananti, A., Travasso, F., Traylor, G., Trevor, M., Tringali, M. C., Tripathee, A., Troian, G., Troiano, L., Trovato, A., Trozzo, L., Trudeau, R. J., Tsang, T. T. L., Tso, R., Tsuchida, S., Tsukada, L., Tsutsui, T., Turbang, K., Turconi, M., Turski, C., Ubach, H., Uchiyama, T., Udall, R. P., Uehara, T., Uematsu, M., Ueno, K., Ueno, S., Undheim, V., Ushiba, T., Vacatello, M., Vahlbruch, H., Vaidya, N., Vajente, G., Vajpeyi, A., Valdes, G., Valencia, J., Valentini, M., Vallejo-Peña, S. A., Vallero, S., Valsan, V., van Bakel, N., van Beuzekom, M., van Dael, M., Brand, J. F. J. van den, Broeck, C. Van Den, Vander-Hyde, D. C., van der Sluys, M., Van de Walle, A., van Dongen, J., Vandra, K., van Haevermaet, H., van Heijningen, J. V., Van Hove, P., VanKeuren, M., Vanosky, J., van Putten, M. H. P. M., van Ranst, Z., van Remortel, N., Vardaro, M., Vargas, A. F., Varghese, J. J., Varma, V., Vasúth, M., Vecchio, A., Vedovato, G., Veitch, J., Veitch, P. J., Venikoudis, S., Venneberg, J., Verdier, P., Verkindt, D., Verma, B., Verma, P., Verma, Y., Vermeulen, S. M., Vetrano, F., Veutro, A., Vibhute, A. M., Viceré, A., Vidyant, S., Viets, A. D., Vijaykumar, A., Vilkha, A., Villa-Ortega, V., Vincent, E. T., Vinet, J. -Y., Viret, S., Virtuoso, A., Vitale, S., Vives, A., Vocca, H., Voigt, D., von Reis, E. R. G., von Wrangel, J. S. A., Vyatchanin, S. P., Wade, L. E., Wade, M., Wagner, K. J., Wajid, A., Walker, M., Wallace, G. S., Wallace, L., Wang, H., Wang, J. Z., Wang, W. H., Wang, Z., Waratkar, G., Warner, J., Was, M., Washimi, T., Washington, N. Y., Watarai, D., Wayt, K. E., Weaver, B. R., Weaver, B., Weaving, C. R., Webster, S. A., Weinert, M., Weinstein, A. J., Weiss, R., Wellmann, F., Wen, L., Weßels, P., Wette, K., Whelan, J. T., Whiting, B. F., Whittle, C., Wildberger, J. B., Wilk, O. S., Wilken, D., Wilkin, A. T., Willadsen, D. J., Willetts, K., Williams, D., Williams, M. J., Williams, N. S., Willis, J. L., Willke, B., Wils, M., Winterflood, J., Wipf, C. C., Woan, G., Woehler, J., Wofford, J. K., Wolfe, N. E., Wong, H. T., Wong, H. W. Y., Wong, I. C. F., Wright, J. L., Wright, M., Wu, C., Wu, D. S., Wu, H., Wuchner, E., Wysocki, D. M., Xu, V. A., Xu, Y., Yadav, N., Yamamoto, H., Yamamoto, K., Yamamoto, T. S., Yamamoto, T., Yamamura, S., Yamazaki, R., Yan, S., Yan, T., Yang, F. W., Yang, F., Yang, K. Z., Yang, Y., Yarbrough, Z., Yasui, H., Yeh, S. -W., Yelikar, A. B., Yin, X., Yokoyama, J., Yokozawa, T., Yoo, J., Yu, H., Yuan, S., Yuzurihara, H., Zadrożny, A., Zanolin, M., Zeeshan, M., Zelenova, T., Zendri, J. -P., Zeoli, M., Zerrad, M., Zevin, M., Zhang, A. C., Zhang, L., Zhang, R., Zhang, T., Zhang, Y., Zhao, C., Zhao, Yue, Zhao, Yuhang, Zheng, Y., Zhong, H., Zhou, R., Zhu, X. -J., Zhu, Z. -H., Zucker, M. E., and Zweizig, J.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
The magnetar SGR 1935+2154 is the only known Galactic source of fast radio bursts (FRBs). FRBs from SGR 1935+2154 were first detected by CHIME/FRB and STARE2 in 2020 April, after the conclusion of the LIGO, Virgo, and KAGRA Collaborations' O3 observing run. Here we analyze four periods of gravitational wave (GW) data from the GEO600 detector coincident with four periods of FRB activity detected by CHIME/FRB, as well as X-ray glitches and X-ray bursts detected by NICER and NuSTAR close to the time of one of the FRBs. We do not detect any significant GW emission from any of the events. Instead, using a short-duration GW search (for bursts $\leq$ 1 s) we derive 50\% (90\%) upper limits of $10^{48}$ ($10^{49}$) erg for GWs at 300 Hz and $10^{49}$ ($10^{50}$) erg at 2 kHz, and constrain the GW-to-radio energy ratio to $\leq 10^{14} - 10^{16}$. We also derive upper limits from a long-duration search for bursts with durations between 1 and 10 s. These represent the strictest upper limits on concurrent GW emission from FRBs., Comment: 15 pages of text including references, 4 figures, 5 tables
- Published
- 2024
24. On a model of variable curvature that mimics the observed Universe acceleration
- Author
-
Esteban-Gutiérrez, A., García-Aspeitia, Miguel A., Hernández-Almada, A., Magaña, Juan, and Motta, V.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics ,General Relativity and Quantum Cosmology - Abstract
We present a new model based on General Relativity in where a subtle change of curvature at late times is able to produce the observed Universe acceleration and an oscillating behavior in the effective equation of state, similar to what has been claimed by recent results from the Dark Energy Spectroscopic Instrument and Baryon Acoustic Oscillation observations. This model is reassembled in the gap between traditional FLRW homogeneous and isotropic models and those Stephani models providing inhomogeneity functions in the time derivatives to explore other forms of varying curvature functions. Remarkably, in addition to an accelerated phase close to the usual $\Lambda$CDM equivalent transition from decelerated to accelerated Universe at $z \sim 0.6$, we also predict a slight decelerated behavior at $z=0$ in agreement with diverse Dark Energy parameterizations. To test our model, we considered the corresponding curvature transition to be sufficiently small (i.e., having $\dot{\kappa}\approx0$ preserved) and defined by a smooth step-like function with a slight change between two curvature values. We implemented a MCMC Likelihood analysis using cosmic chronometers and Type Ia supernovae (local Universe observations) data in order to constraint the free parameters of the model and reconstruct $H(z)$, $q(z)$, $w_{eff}(z)$ and its comparison with the $\Lambda$CDM model. As a result, our model provides an alternative to understand the Universe acceleration without the need of a cosmological constant, obtaining the same fraction of matter density as in the traditional standard model. The behavior of the proposed model points towards a new and intriguing way to test slight violations to the cosmological principle, in particular the case of inhomogenities during low phase transitions., Comment: 13 pages, 4 figures
- Published
- 2024
25. Fractional Einstein-Gauss-Bonnet scalar field cosmology
- Author
-
Micolta-Riascos, Bayron, Millano, Alfredo D., Leon, Genly, Droguett, Byron, González, Esteban, and Magaña, Juan
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics ,General Relativity and Quantum Cosmology ,High Energy Physics - Theory - Abstract
Our paper introduces a new theoretical framework called the Fractional Einstein--Gauss--Bonnet scalar field cosmology, which has important physical implications. Using fractional calculus to modify the gravitational action integral, we derived a modified Friedmann equation and a modified Klein--Gordon equation. Our research reveals non-trivial solutions associated with exponential potential, exponential couplings to the Gauss--Bonnet term, and a logarithmic scalar field, which are dependent on two cosmological parameters, $m$ and $\alpha_{0}=t_{0}H_{0}$ and the fractional derivative order $\mu$. By employing linear stability theory, we reveal the phase space structure and analyze the dynamic effects of the Gauss--Bonnet couplings. The scaling behavior at some equilibrium points reveals that the geometric corrections in the coupling to the Gauss--Bonnet scalar can mimic the behavior of the dark sector in modified gravity. Using data from cosmic chronometers, type Ia supernovae, supermassive Black Hole Shadows, and strong gravitational lensing, we estimated the values of $m$ and $\alpha_{0}$, indicating that the solution is consistent with an accelerated expansion at late times with the values $\alpha_0=1.38\pm 0.05$, $m=1.44\pm 0.05$, and $\mu=1.48 \pm 0.17$ (consistent with $\Omega_{m,0}=0.311\pm 0.016$ and $h=0.712\pm 0.007$), resulting in an age of the Universe $t_{0}=19.0\pm 0.7$ [Gyr] at 1$\sigma$ CL. Ultimately, we obtained late-time accelerating power-law solutions supported by the most recent cosmological data, and we proposed an alternative explanation for the origin of cosmic acceleration other than $\Lambda$CDM. Our results generalize and significantly improve previous achievements in the literature, highlighting the practical implications of fractional calculus in cosmology., Comment: 56 pages, 16 compound figures. This article belongs to the Special Issue Fractional Gravity/Cosmology in Classical and Quantum Regimes, Second Edition https://www.mdpi.com/journal/fractalfract/special_issues/fractional_cosmology_ii
- Published
- 2024
- Full Text
- View/download PDF
26. The i-TED Compton Camera Array for real-time boron imaging and determination during treatments in Boron Neutron Capture Therapy
- Author
-
Torres-Sánchez, Pablo, Lerendegui-Marco, Jorge, Balibrea-Correa, Javier, Babiano-Suárez, Victor, Gameiro, Bernardo, Ladarescu, Ion, Álvarez-Rodríguez, Patricia, Daugas, Jean-Michel, Koester, Ulli, Michelagnoli, Caterina, Pedrosa-Rivera, Maria, Porras, Ignacio, Ruiz-Magaña, Maria José, Ruiz-Ruiz, Carmen, and Domingo-Pardo, César
- Subjects
Physics - Medical Physics - Abstract
This paper explores the adaptation and application of i-TED Compton imagers for real-time dosimetry in Boron Neutron Capture Therapy (BNCT). The i-TED array, previously utilized in nuclear astrophysics experiments at CERN, is being optimized for detecting and imaging 478 keV gamma-rays, critical for accurate BNCT dosimetry. Detailed Monte Carlo simulations were used to optimize the i-TED detector configuration and enhance its performance in the challenging radiation environment typical of BNCT. Additionally, advanced 3D image reconstruction algorithms, including a combination of back-projection and List-Mode Maximum Likelihood Expectation Maximization (LM-MLEM), are implemented and validated through simulations. Preliminary experimental tests at the Institut Laue-Langevin (ILL) demonstrate the potential of i-TED in a clinical setting, with ongoing experiments focusing on improving imaging capabilities in realistic BNCT conditions., Comment: 9 pages, 7 figures, submitted to the Special Issue of Applied Radiation and Isotopes associated to the 20th International Congress on Neutron Capture Therapy (20th ICNCT)
- Published
- 2024
- Full Text
- View/download PDF
27. Reasons for undergoing amyloid imaging among diverse enrollees in the A4 study
- Author
-
Magana‐Ramirez, Christina M, Irizarry‐Martinez, Gimarie, Gillen, Daniel L, and Grill, Joshua D
- Subjects
Biomedical and Clinical Sciences ,Clinical Sciences ,Alzheimer's Disease ,Alzheimer's Disease including Alzheimer's Disease Related Dementias (AD/ADRD) ,Dementia ,Aging ,Neurodegenerative ,Acquired Cognitive Impairment ,Neurosciences ,Clinical Research ,Brain Disorders ,Neurological ,Humans ,Male ,Female ,Alzheimer Disease ,Aged ,Biomarkers ,Positron-Emission Tomography ,Amyloid ,Ethnicity ,Motivation ,Middle Aged ,disclosure ,diversity ,preclinical ,recruitment ,Geriatrics ,Clinical sciences ,Biological psychology - Abstract
IntroductionUnderstanding attitudes toward participation among diverse preclinical Alzheimer's disease (AD) trial participants could yield insights to instruct future recruitment.MethodsUsing data from the Anti-Amyloid Treatment in Asymptomatic AD (A4) Study, we examined differences among mutually exclusive racial and ethnic groups in views and perceptions of amyloid imaging (VPAI), a measure of motivations to undergo amyloid biomarker testing in the setting of preclinical AD. We used linear regression to quantify differences at baseline.ResultsCompared to non-Hispanic or Latino (NH) White participants, Hispanic or Latino (3.52 points, 95% confidence interval [CI]: [2.61, 4.42]); NH Asian (2.97 points, 95% CI: [1.71, 4.22]); and NH Black participants (2.79 points, 95% CI: [1.96, 3.63]) participants demonstrated higher levels of endorsement of the VPAI items at baseline.DiscussionDifferences may exist among participants from differing ethnic and racial groups in motivations to undergo biomarker testing in the setting of a preclinical AD trial.HighlightsRepresentative samples in AD clinical trials are vital to result in generalizability. We assessed motivations to undergo amyloid imaging in a preclinical AD trial. Racial and ethnic minority groups showed higher endorsement of VPAI items. Differences were driven by perceived risk, plan/prepare, and curiosity domains. Few observations among racial and ethnic groups changed after biomarker disclosure.
- Published
- 2024
28. DESI Peculiar Velocity Survey -- Fundamental Plane
- Author
-
Said, Khaled, Howlett, Cullan, Davis, Tamara, Lucey, John, Saulder, Christoph, Douglass, Kelly, Kim, Alex G., Kremin, Anthony, Ross, Caitlin, Aldering, Greg, Aguilar, Jessica Nicole, Ahlen, Steven, BenZvi, Segev, Bianchi, Davide, Brooks, David, Claybaugh, Todd, Dawson, Kyle, de la Macorra, Axel, Dey, Biprateep, Doel, Peter, Fanning, Kevin, Ferraro, Simone, Font-Ribera, Andreu, Forero-Romero, Jaime E., Gaztañaga, Enrique, Gontcho, Satya Gontcho A, Guy, Julien, Honscheid, Klaus, Kehoe, Robert, Kisner, Theodore, Lambert, Andrew, Landriau, Martin, Guillou, Laurent Le, Manera, Marc, Meisner, Aaron, Miquel, Ramon, Moustakas, John, Muñoz-Gutiérrez, Andrea, Myers, Adam, Nie, Jundan, Palanque-Delabrouille, Nathalie, Percival, Will, Prada, Francisco, Rossi, Graziano, Sanchez, Eusebio, Schlegel, David, Schubnell, Michael, Silber, Joseph Harry, Sprayberry, David, Tarlé, Gregory, Magana, Mariana Vargas, Weaver, Benjamin Alan, Wechsler, Risa, Zhou, Zhimin, and Zou, Hu
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics ,Astrophysics - Astrophysics of Galaxies - Abstract
The Dark Energy Spectroscopic Instrument (DESI) Peculiar Velocity Survey aims to measure the peculiar velocities of early and late type galaxies within the DESI footprint using both the Fundamental Plane and Tully-Fisher relations. Direct measurements of peculiar velocities can significantly improve constraints on the growth rate of structure, reducing uncertainty by a factor of approximately 2.5 at redshift 0.1 compared to the DESI Bright Galaxy Survey's redshift space distortion measurements alone. We assess the quality of stellar velocity dispersion measurements from DESI spectroscopic data. These measurements, along with photometric data from the Legacy Survey, establish the Fundamental Plane relation and determine distances and peculiar velocities of early-type galaxies. During Survey Validation, we obtain spectra for 6698 unique early-type galaxies, up to a photometric redshift of 0.15. 64\% of observed galaxies (4267) have relative velocity dispersion errors below 10\%. This percentage increases to 75\% if we restrict our sample to galaxies with spectroscopic redshifts below 0.1. We use the measured central velocity dispersion, along with photometry from the DESI Legacy Imaging Surveys, to fit the Fundamental Plane parameters using a 3D Gaussian maximum likelihood algorithm that accounts for measurement uncertainties and selection cuts. In addition, we conduct zero-point calibration using the absolute distance measurements to the Coma cluster, leading to a value of the Hubble constant, $H_0 = 76.05 \pm 0.35$(statistical) $\pm 0.49$(systematic FP) $\pm 4.86$(statistical due to calibration) $\mathrm{km \ s^{-1} Mpc^{-1}}$. This $H_0$ value is within $2\sigma$ of Planck Cosmic Microwave Background results and within $1\sigma$, of other low redshift distance indicator-based measurements., Comment: 18 pages, 9 figures, 2 tables. Submitted for publication in MNRAS
- Published
- 2024
29. Detection of the large-scale tidal field with galaxy multiplet alignment in the DESI Y1 spectroscopic survey
- Author
-
Lamman, Claire, Eisenstein, Daniel, Forero-Romero, Jaime E., Aguilar, Jessica Nicole, Ahlen, Steven, Bailey, Stephen, Bianchi, Davide, Brooks, David, Claybaugh, Todd, de la Macorra, Axel, Doel, Peter, Ferraro, Simone, Font-Ribera, Andreu, Gaztañaga, Enrique, Gontcho, Satya Gontcho A, Gutierrez, Gaston, Honscheid, Klaus, Howlett, Cullan, Kremin, Anthony, Lambert, Andrew, Landriau, Martin, Guillou, Laurent Le, Levi, Michael E., Meisner, Aaron, Miquel, Ramon, Moustakas, John, Newman, Jeffrey A., Niz, Gustavo, Prada, Francisco, Pérez-Ràfols, Ignasi, Ross, Ashley J., Rossi, Graziano, Sanchez, Eusebio, Schubnell, Michael, Sprayberry, David, Tarlé, Gregory, Vargas-Magaña, Mariana, Weaver, Benjamin Alan, and Zou, Hu
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We explore correlations between the orientations of small galaxy groups, or "multiplets", and the large-scale gravitational tidal field. Using data from the Dark Energy Spectroscopic Instrument (DESI) Y1 survey, we detect the intrinsic alignment (IA) of multiplets to the galaxy-traced matter field out to separations of 100 Mpc/h. Unlike traditional IA measurements of individual galaxies, this estimator is not limited by imaging of galaxy shapes and allows for direct IA detection beyond redshift z = 1. Multiplet alignment is a form of higher-order clustering, for which the scale-dependence traces the underlying tidal field and amplitude is a result of small-scale (< 1 Mpc/h) dynamics. Within samples of bright galaxies (BGS), luminous red galaxies (LRG) and emission-line galaxies (ELG), we find similar scale-dependence regardless of intrinsic luminosity or colour. This is promising for measuring tidal alignment in galaxy samples that typically display no intrinsic alignment. DESI's LRG mock galaxy catalogues created from the AbacusSummit N-body simulations produce a similar alignment signal, though with a 33% lower amplitude at all scales. An analytic model using a non-linear power spectrum (NLA) only matches the signal down to 20 Mpc/h. Our detection demonstrates that galaxy clustering in the non-linear regime of structure formation preserves an interpretable memory of the large-scale tidal field. Multiplet alignment complements traditional two-point measurements by retaining directional information imprinted by tidal forces, and contains additional line-of-sight information compared to weak lensing. This is a more effective estimator than the alignment of individual galaxies in dense, blue, or faint galaxy samples., Comment: For an accessible summary of this paper, see https://cmlamman.github.io/doc/multipletIA_summary.pdf
- Published
- 2024
30. Observation of anomalous classical-to-quantum transitions in many-body systems
- Author
-
You, Chenglong, Hong, Mingyuan, Mostafavi, Fatemeh, Ferdous, Jannatul, León-Montiel, Roberto de J., Dawkins, Riley B., and Magaña-Loaiza, Omar S.
- Subjects
Quantum Physics ,Physics - Optics - Abstract
The correspondence principle bridges the quantum and classical worlds by establishing a direct link between their dynamics. This well-accepted tenant of quantum physics has been explored in quantum systems wherein the number of particles is increased to macroscopic scales. However, theoretical investigations of nanoscale structures have revealed discrepancies when attempting to bridge classical and quantum physics. Here, we report on the experimental observation of anomalous classical-to-quantum transitions in open many-body optical systems. We demonstrate, for the first time, the lack of classical-to-quantum correspondence between a macroscopic optical system and its constituent quantum multiphoton subsystems. In contrast to common belief, we demonstrate that the coherence dynamics of many-body quantum subsystems with up to forty particles can indeed be opposite to that exhibited by the hosting macroscopic system. By employing complex-Gaussian statistics, we show that these effects are universal for open many-body systems. Consequently, our work can have important implications for other fields of physics ranging from condensed matter to nuclear physics.
- Published
- 2024
31. High-Precision Ringdown Surrogate Model for Non-Precessing Binary Black Holes
- Author
-
Zertuche, Lorena Magaña, Stein, Leo C., Mitman, Keefe, Field, Scott E., Varma, Vijay, Boyle, Michael, Deppe, Nils, Kidder, Lawrence E., Moxon, Jordan, Pfeiffer, Harald P., Scheel, Mark A., Nelli, Kyle C., Throwe, William, and Vu, Nils L.
- Subjects
General Relativity and Quantum Cosmology - Abstract
Highly precise and robust waveform models are required as improvements in detector sensitivity enable us to test general relativity with more precision than ever before. In this work, we introduce a spin-aligned surrogate ringdown model. This ringdown surrogate, NRSur3dq8_RD, is built with numerical waveforms produced using Cauchy-characteristic evolution. In addition, these waveforms are in the superrest frame of the remnant black hole allowing us to do a correct analysis of the ringdown spectrum. The novel prediction of our surrogate model is complex-valued quasinormal mode (QNM) amplitudes, with median relative errors of $10^{-2}-10^{-3}$ over the parameter space. Like previous remnant surrogates, we also predict the remnant black hole's mass and spin. The QNM mode amplitude errors translate into median errors on ringdown waveforms of $10^{-4}$. The high accuracy and QNM mode content provided by our surrogate will enable high-precision ringdown analyses such as tests of general relativity. Our ringdown model is publicly available through the python package surfinBH., Comment: 11+2 pages, 13 figures, 1 table. This new model is publicly available through surfinBH https://pypi.org/project/surfinBH/
- Published
- 2024
32. Automatic identification of the area covered by acorn trees in the dehesa (pastureland) Extremadura of Spain
- Author
-
Benjamin, Ojeda-Magaña, Ruben, Ruelas, Joel, Quintanilla-Dominguez, Leopoldo, Gomez-Barba, Juan, Lopez de Herrera, Jose, Robledo-Hernandez, and Ana, Tarquis
- Subjects
Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Artificial Intelligence ,I.4.6 - Abstract
The acorn is the fruit of the oak and is an important crop in the Spanish dehesa extreme\~na, especially for the value it provides in the Iberian pig food to obtain the "acorn" certification. For this reason, we want to maximise the production of Iberian pigs with the appropriate weight. Hence the need to know the area covered by the crowns of the acorn trees, to determine the covered wooded area (CWA, from the Spanish Superficie Arbolada Cubierta SAC) and thereby estimate the number of Iberian pigs that can be released per hectare, as indicated by the royal decree 4/2014. In this work, we propose the automatic estimation of the CWA, through aerial digital images (orthophotos) of the pastureland of Extremadura, and with this, to offer the possibility of determining the number of Iberian pigs to be released in a specific plot of land. Among the main issues for automatic detection are, first, the correct identification of acorn trees, secondly, correctly discriminating the shades of the acorn trees and, finally, detect the arbuscles (young acorn trees not yet productive, or shrubs that are not oaks). These difficulties represent a real challenge, both for the automatic segmentation process and for manual segmentation. In this work, the proposed method for automatic segmentation is based on the clustering algorithm proposed by Gustafson-Kessel (GK) but the modified version of Babuska (GK-B) and on the use of real orthophotos. The obtained results are promising both in their comparison with the real images and when compared with the images segmented by hand. The whole set of orthophotos used in this work correspond to an approximate area of 142 hectares, and the results are of great interest to producers of certified "acorn" pork., Comment: 22 pages, 15 Figures, 2 Tables
- Published
- 2024
- Full Text
- View/download PDF
33. Swift-BAT GUANO follow-up of gravitational-wave triggers in the third LIGO-Virgo-KAGRA observing run
- Author
-
Raman, Gayathri, Ronchini, Samuele, Delaunay, James, Tohuvavohu, Aaron, Kennea, Jamie A., Parsotan, Tyler, Ambrosi, Elena, Bernardini, Maria Grazia, Campana, Sergio, Cusumano, Giancarlo, D'Ai, Antonino, D'Avanzo, Paolo, D'Elia, Valerio, De Pasquale, Massimiliano, Dichiara, Simone, Evans, Phil, Hartmann, Dieter, Kuin, Paul, Melandri, Andrea, O'Brien, Paul, Osborne, Julian P., Page, Kim, Palmer, David M., Sbarufatti, Boris, Tagliaferri, Gianpiero, Troja, Eleonora, Abac, A. G., Abbott, R., Abe, H., Abouelfettouh, I., Acernese, F., Ackley, K., Adamcewicz, C., Adhicary, S., Adhikari, N., Adhikari, R. X., Adkins, V. K., Adya, V. B., Affeldt, C., Agarwal, D., Agathos, M., Aguiar, O. D., Aguilar, I., Aiello, L., Ain, A., Akutsu, T., Albanesi, S., Alfaidi, R. A., Al-Jodah, A., Alléné, C., Allocca, A., Al-Shammari, S., Altin, P. A., Alvarez-Lopez, S., Amato, A., Amez-Droz, L., Amorosi, A., Amra, C., Anand, S., Ananyeva, A., Anderson, S. B., Anderson, W. G., Andia, M., Ando, M., Andrade, T., Andres, N., Andrés-Carcasona, M., Andrić, T., Anglin, J., Ansoldi, S., Antelis, J. M., Antier, S., Aoumi, M., Appavuravther, E. Z., Appert, S., Apple, S. K., Arai, K., Araya, A., Araya, M. C., Areeda, J. S., Aritomi, N., Armato, F., Arnaud, N., Arogeti, M., Aronson, S. M., Ashton, G., Aso, Y., Assiduo, M., Melo, S. Assis de Souza, Aston, S. M., Astone, P., Aubin, F., AultONeal, K., Avallone, G., Babak, S., Badaracco, F., Badger, C., Bae, S., Bagnasco, S., Bagui, E., Bai, Y., Baier, J. G., Bajpai, R., Baka, T., Ball, M., Ballardin, G., Ballmer, S. W., Banagiri, S., Banerjee, B., Bankar, D., Baral, P., Barayoga, J. C., Barish, B. C., Barker, D., Barneo, P., Barone, F., Barr, B., Barsotti, L., Barsuglia, M., Barta, D., Barthelmy, S. D., Barton, M. A., Bartos, I., Basak, S., Basalaev, A., Bassiri, R., Basti, A., Bawaj, M., Baxi, P., Bayley, J. C., Baylor, A. C., Bazzan, M., Bécsy, B., Bedakihale, V. M., Beirnaert, F., Bejger, M., Belardinelli, D., Bell, A. S., Benedetto, V., Beniwal, D., Benoit, W., Bentley, J. D., Yaala, M. Ben, Bera, S., Berbel, M., Bergamin, F., Berger, B. K., Bernuzzi, S., Beroiz, M., Berry, C. P. L., Bersanetti, D., Bertolini, A., Betzwieser, J., Beveridge, D., Bevins, N., Bhandare, R., Bhardwaj, U., Bhatt, R., Bhattacharjee, D., Bhaumik, S., Bhowmick, S., Bianchi, A., Bilenko, I. A., Billingsley, G., Binetti, A., Bini, S., Birnholtz, O., Biscoveanu, S., Bisht, A., Bitossi, M., Bizouard, M. -A., Blackburn, J. K., Blair, C. D., Blair, D. G., Bobba, F., Bode, N., Bogaert, G., Boileau, G., Boldrini, M., Bolingbroke, G. N., Bolliand, A., Bonavena, L. D., Bondarescu, R., Bondu, F., Bonilla, E., Bonilla, M. S., Bonino, A., Bonnand, R., Booker, P., Borchers, A., Boschi, V., Bose, S., Bossilkov, V., Boudart, V., Boumerdassi, A., Bozzi, A., Bradaschia, C., Brady, P. R., Braglia, M., Branch, A., Branchesi, M., Breschi, M., Briant, T., Brillet, A., Brinkmann, M., Brockill, P., Brockmueller, E., Brooks, A. F., Brown, D. D., Brozzetti, M. L., Brunett, S., Bruno, G., Bruntz, R., Bryant, J., Bucci, F., Buchanan, J., Bulashenko, O., Bulik, T., Bulten, H. J., Buonanno, A., Burtnyk, K., Buscicchio, R., Buskulic, D., Buy, C., Byer, R. L., Davies, G. S. Cabourn, Cabras, G., Cabrita, R., Cadonati, L., Cagnoli, G., Cahillane, C., Bustillo, J. Calderón, Callaghan, J. D., Callister, T. A., Calloni, E., Camp, J. B., Canepa, M., Santoro, G. Caneva, Cannavacciuolo, M., Cannon, K. C., Cao, H., Cao, Z., Capistran, L. A., Capocasa, E., Capote, E., Carapella, G., Carbognani, F., Carlassara, M., Carlin, J. B., Carpinelli, M., Carrillo, G., Carter, J. J., Carullo, G., Diaz, J. Casanueva, Casentini, C., Castaldi, G., Castro-Lucas, S. Y., Caudill, S., Cavaglià, M., Cavalieri, R., Cella, G., Cerdá-Durán, P., Cesarini, E., Chaibi, W., Chakraborty, P., Subrahmanya, S. Chalathadka, Chan, C., Chan, J. C. L., Chan, K. H. M., Chan, M., Chan, W. L., Chandra, K., Chang, R. -J., Chanial, P., Chao, S., Chapman-Bird, C., Charlton, E. L., Charlton, P., Chassande-Mottin, E., Chatterjee, C., Chatterjee, Debarati, Chatterjee, Deep, Chaturvedi, M., Chaty, S., Chen, A., Chen, A. H. -Y., Chen, D., Chen, H., Chen, H. Y., Chen, K. H., Chen, X., Chen, Yi-Ru, Chen, Yanbei, Chen, Yitian, Cheng, H. P., Chessa, P., Cheung, H. T., Chia, H. Y., Chiadini, F., Chiang, C., Chiarini, G., Chiba, A., Chiba, R., Chierici, R., Chincarini, A., Chiofalo, M. L., Chiummo, A., Chou, C., Choudhary, S., Christensen, N., Chua, S. S. Y., Chung, K. W., Ciani, G., Ciecielag, P., Cieślar, M., Cifaldi, M., Ciobanu, A. A., Ciolfi, R., Clara, F., Clark, J. A., Clarke, T. A., Clearwater, P., Clesse, S., Cleva, F., Coccia, E., Codazzo, E., Cohadon, P. -F., Colleoni, M., Collette, C. G., Collins, J., Colloms, S., Colombo, A., Colpi, M., Compton, C. M., Conti, L., Cooper, S. J., Corbitt, T. R., Cordero-Carrión, I., Corezzi, S., Cornish, N. J., Corsi, A., Cortese, S., Costa, C. A., Cottingham, R., Coughlin, M. W., Couineaux, A., Coulon, J. -P., Countryman, S. T., Coupechoux, J. -F., Cousins, B., Couvares, P., Coward, D. M., Cowart, M. J., Coyne, D. C., Coyne, R., Craig, K., Creed, R., Creighton, J. D. E., Creighton, T. D., Cremonese, P., Criswell, A. W., Crockett-Gray, J. C. G., Croquette, M., Crouch, R., Crowder, S. G., Cudell, J. R., Cullen, T. J., Cumming, A., Cuoco, E., Cusinato, M., Dabadie, P., Canton, T. Dal, Dall'Osso, S., Dálya, G., D'Angelo, B., Danilishin, S., D'Antonio, S., Danzmann, K., Darroch, K. E., Dartez, L. P., Dasgupta, A., Datta, S., Dattilo, V., Daumas, A., Davari, N., Dave, I., Davenport, A., Davier, M., Davies, T. F., Davis, D., Davis, L., Davis, M. C., Daw, E. J., Dax, M., De Bolle, J., Deenadayalan, M., Degallaix, J., De Laurentis, M., Deléglise, S., Del Favero, V., De Lillo, F., Dell'Aquila, D., Del Pozzo, W., De Marco, F., De Matteis, F., D'Emilio, V., Demos, N., Dent, T., Depasse, A., DePergola, N., De Pietri, R., De Rosa, R., De Rossi, C., De Simone, R., Dhani, A., Dhurandhar, S., Diab, R., Díaz, M. C., Di Cesare, M., Dideron, G., Didio, N. A., Dietrich, T., Di Fiore, L., Di Fronzo, C., Di Giovanni, F., Di Giovanni, M., Di Girolamo, T., Diksha, D., Di Michele, A., Ding, J., Di Pace, S., Di Palma, I., Di Renzo, F., Divyajyoti, Dmitriev, A., Doctor, Z., Dohmen, E., Doleva, P. P., Donahue, L., D'Onofrio, L., Donovan, F., Dooley, K. L., Dooney, T., Doravari, S., Dorosh, O., Drago, M., Driggers, J. C., Drori, Y., Ducoin, J. -G., Dunn, L., Dupletsa, U., D'Urso, D., Duval, H., Duverne, P. -A., Dwyer, S. E., Eassa, C., Ebersold, M., Eckhardt, T., Eddolls, G., Edelman, B., Edo, T. B., Edy, O., Effler, A., Eichholz, J., Einsle, H., Eisenmann, M., Eisenstein, R. A., Ejlli, A., Emma, M., Engelby, E., Engl, A. J., Errico, L., Essick, R. C., Estellés, H., Estevez, D., Etzel, T., Evans, M., Evstafyeva, T., Ewing, B. E., Ezquiaga, J. M., Fabrizi, F., Faedi, F., Fafone, V., Fairhurst, S., Fan, P. C., Farah, A. M., Farr, B., Farr, W. M., Favaro, G., Favata, M., Fays, M., Fazio, M., Feicht, J., Fejer, M. M., Fenyvesi, E., Ferguson, D. L., Ferrante, I., Ferreira, T. A., Fidecaro, F., Fiori, A., Fiori, I., Fishbach, M., Fisher, R. P., Fittipaldi, R., Fiumara, V., Flaminio, R., Fleischer, S. M., Fleming, L. S., Floden, E., Foley, E. M., Fong, H., Font, J. A., Fornal, B., Forsyth, P. W. F., Franceschetti, K., Franchini, N., Frasca, S., Frasconi, F., Mascioli, A. Frattale, Frei, Z., Freise, A., Freitas, O., Frey, R., Frischhertz, W., Fritschel, P., Frolov, V. V., Fronzé, G. G., Fuentes-Garcia, M., Fujii, S., Fukunaga, I., Fulda, P., Fyffe, M., Gabella, W. E., Gadre, B., Gair, J. R., Galaudage, S., Gallardo, S., Gallego, B., Gamba, R., Gamboa, A., Ganapathy, D., Ganguly, A., Gaonkar, S. G., Garaventa, B., Garcia-Bellido, J., García-Núñez, C., García-Quirós, C., Gardner, J. W., Gardner, K. A., Gargiulo, J., Garron, A., Garufi, F., Gasbarra, C., Gateley, B., Gayathri, V., Gemme, G., Gennai, A., George, J., George, R., Gerberding, O., Gergely, L., Ghadiri, N., Ghosh, Archisman, Ghosh, Shaon, Ghosh, Shrobana, Ghosh, Suprovo, Ghosh, Tathagata, Giacoppo, L., Giaime, J. A., Giardina, K. D., Gibson, D. R., Gibson, D. T., Gier, C., Giri, P., Gissi, F., Gkaitatzis, S., Glanzer, J., Gleckl, A. E., Glotin, F., Godfrey, J., Godwin, P., Goebbels, N. L., Goetz, E., Golomb, J., Lopez, S. Gomez, Goncharov, B., González, G., Goodarzi, P., Goodwin-Jones, A. W., Gosselin, M., Göttel, A. S., Gouaty, R., Gould, D. W., Goyal, S., Grace, B., Grado, A., Graham, V., Granados, A. E., Granata, M., Granata, V., Argianas, L. Granda, Gras, S., Grassia, P., Gray, C., Gray, R., Greco, G., Green, A. C., Green, S. M., Green, S. R., Gretarsson, A. M., Gretarsson, E. M., Griffith, D., Griffiths, W. L., Griggs, H. L., Grignani, G., Grimaldi, A., Grimaud, C., Grote, H., Gruson, A. S., Guerra, D., Guetta, D., Guidi, G. M., Guimaraes, A. R., Gulati, H. K., Gulminelli, F., Gunny, A. M., Guo, H., Guo, W., Guo, Y., Gupta, Anchal, Gupta, Anuradha, Gupta, Ish, Gupta, N. C., Gupta, P., Gupta, S. K., Gupta, T., Gupte, N., Gurav, R., Gurs, J., Gutierrez, N., Guzman, F., Haba, D., Haberland, M., Haegel, L., Hain, G., Haino, S., Hall, E. D., Hamilton, E. Z., Hammond, G., Han, W. -B., Haney, M., Hanks, J., Hanna, C., Hannam, M. D., Hannuksela, O. A., Hanselman, A. G., Hansen, H., Hanson, J., Harada, R., Harder, T., Haris, K., Harmark, T., Harms, J., Harry, G. M., Harry, I. W., Haskell, B., Haster, C. -J., Hathaway, J. S., Haughian, K., Hayakawa, H., Hayama, K., Healy, J., Heffernan, A., Heidmann, A., Heintze, M. C., Heinze, J., Heinzel, J., Heitmann, H., Hellman, F., Hello, P., Helmling-Cornell, A. F., Hemming, G., Hendry, M., Heng, I. S., Hennes, E., Hennig, J. -S., Hennig, M., Henshaw, C., Hernandez, A., Hertog, T., Heurs, M., Hewitt, A. L., Higginbotham, S., Hild, S., Hill, P., Hill, S., Himemoto, Y., Hines, A. S., Hirata, N., Hirose, C., Ho, J., Hoang, S., Hochheim, S., Hofman, D., Holland, N. A., Holley-Bockelmann, K., Hollows, I. J., Holmes, Z. J., Holz, D. E., Hong, C., Hornung, J., Hoshino, S., Hough, J., Hourihane, S., Howell, E. J., Hoy, C. G., Hoyland, D., Hrishikesh, C. A., Hsieh, H. -F., Hsiung, C., Hsu, H. C., Hsu, S. -C., Hsu, W. -F., Hu, P., Hu, Q., Huang, H. Y., Huang, Y. -J., Huang, Y., Huang, Y. T., Huddart, A. D., Hughey, B., Hui, D. C. Y., Hui, V., Hur, R., Husa, S., Huxford, R., Huynh-Dinh, T., Iakovlev, A., Iandolo, G. A., Iess, A., Inayoshi, K., Inoue, Y., Iorio, G., Irwin, J., Isi, M., Ismail, M. A., Itoh, Y., Iwaya, M., Iyer, B. R., JaberianHamedan, V., Jacquet, P. -E., Jadhav, S. J., Jadhav, S. P., Jain, T., James, A. L., James, P. A., Jamshidi, R., Jan, A. Z., Jani, K., Janiurek, L., Janquart, J., Janssens, K., Janthalur, N. N., Jaraba, S., Jaranowski, P., Jasal, P., Jaume, R., Javed, W., Jennings, A., Jia, W., Jiang, J., Jin, H. -B., Johansmeyer, K., Johns, G. R., Johnson, N. A., Johnston, R., Johny, N., Jones, D. H., Jones, D. I., Jones, R., Jose, S., Joshi, P., Ju, L., Jung, K., Junker, J., Juste, V., Kajita, T., Kalaghatgi, C., Kalogera, V., Kamiizumi, M., Kanda, N., Kandhasamy, S., Kang, G., Kanner, J. B., Kapadia, S. J., Kapasi, D. P., Karat, S., Karathanasis, C., Karki, S., Kashyap, R., Kasprzack, M., Kastaun, W., Kato, J., Kato, T., Katsanevas, S., Katsavounidis, E., Katzman, W., Kaur, T., Kaushik, R., Kawabe, K., Keitel, D., Kelley-Derzon, J., Kennington, J., Kesharwani, R., Key, J. S., Khadka, S., Khalili, F. Y., Khan, F., Khan, I., Khanam, T., Khazanov, E. A., Khursheed, M., Kiendrebeogo, W., Kijbunchoo, N., Kim, C., Kim, J. C., Kim, K., Kim, M. H., Kim, S., Kim, W. S., Kim, Y. -M., Kimball, C., Kimura, N., Kinley-Hanlon, M., Kinnear, M., Kissel, J. S., Kiyota, T., Klimenko, S., Klinger, T., Knee, A. M., Knust, N., Koch, P., Koehlenbeck, S. M., Koekoek, G., Kohri, K., Kokeyama, K., Koley, S., Kolitsidou, P., Kolstein, M., Komori, K., Kong, A. K. H., Kontos, A., Korobko, M., Kossak, R. V., Kou, X., Koushik, A., Kouvatsos, N., Kovalam, M., Koyama, N., Kozak, D. B., Kranzhoff, S. L., Kringel, V., Krishnendu, N. V., Królak, A., Kuehn, G., Kuijer, P., Kulkarni, S., Ramamohan, A. Kulur, Kumar, A., Kumar, Praveen, Kumar, Prayush, Kumar, Rahul, Kumar, Rakesh, Kume, J., Kuns, K., Kuroyanagi, S., Kuwahara, S., Kwak, K., Kwan, K., Lacaille, G., Lagabbe, P., Laghi, D., Lai, S., Laity, A. H., Lakkis, M. H., Lalande, E., Lalleman, M., Landry, M., Lane, B. B., Lang, R. N., Lange, J., Lantz, B., La Rana, A., La Rosa, I., Lartaux-Vollard, A., Lasky, P. D., Lawrence, J., Laxen, M., Lazzarini, A., Lazzaro, C., Leaci, P., LeBohec, S., Lecoeuche, Y. K., Lee, H. M., Lee, H. W., Lee, K., Lee, R. -K., Lee, R., Lee, S., Lee, Y., Legred, I. N., Lehmann, J., Lehner, L., Lemaître, A., Lenti, M., Leonardi, M., Leonova, E., Lequime, M., Leroy, N., Lesovsky, M., Letendre, N., Lethuillier, M., Levesque, C., Levin, Y., Leyde, K., Li, A. K. Y., Li, K. L., Li, T. G. F., Li, X., Lin, Chien-Yu, Lin, Chun-Yu, Lin, E. T., Lin, F., Lin, H., Lin, L. C. -C., Linde, F., Linker, S. D., Littenberg, T. B., Liu, A., Liu, G. C., Liu, Jian, Llamas, F., Llobera-Querol, J., Lo, R. K. L., Locquet, J. -P., London, L., Longo, A., Lopez, D., Portilla, M. Lopez, Lorenzini, M., Loriette, V., Lormand, M., Losurdo, G., Lott IV, T. P., Lough, J. D., Loughlin, H. A., Lousto, C. O., Lowry, M. J., Lück, H., Lumaca, D., Lundgren, A. P., Lussier, A. W., Ma, L. -T., Ma, S., Ma'arif, M., Macas, R., MacInnis, M., Maciy, R. R., Macleod, D. M., MacMillan, I. A. O., Macquet, A., Macri, D., Maeda, K., Maenaut, S., Hernandez, I. Magaña, Magare, S. S., Magazzù, C., Magee, R. M., Maggio, E., Maggiore, R., Magnozzi, M., Mahesh, M., Mahesh, S., Maini, M., Majhi, S., Majorana, E., Makarem, C. N., Malaquias-Reis, J. A., Maliakal, S., Malik, A., Man, N., Mandic, V., Mangano, V., Mannix, B., Mansell, G. L., Manske, M., Mantovani, M., Mapelli, M., Marchesoni, F., Pina, D. Marín, Marion, F., Márka, S., Márka, Z., Markakis, C., Markosyan, A. S., Markowitz, A., Maros, E., Marquina, A., Marsat, S., Martelli, F., Martin, I. W., Martin, R. M., Martinez, B. B., Martinez, M., Martinez, V., Martini, A., Martinovic, K., Martins, J. C., Martynov, D. V., Marx, E. J., Massaro, L., Masserot, A., Masso-Reid, M., Mastrodicasa, M., Mastrogiovanni, S., Mateu-Lucena, M., Matiushechkina, M., Matsuyama, M., Mavalvala, N., Maxwell, N., McCarrol, G., McCarthy, R., McClelland, D. E., McCormick, S., McCuller, L., McGhee, G. I., McGowan, K. B. M., Mchedlidze, M., McIsaac, C., McIver, J., McKinney, K., McLeod, A., McRae, T., McWilliams, S. T., Meacher, D., Mehta, A. K., Meijer, Q., Melatos, A., Mellaerts, S., Menendez-Vazquez, A., Menoni, C. S., Mercer, R. A., Mereni, L., Merfeld, K., Merilh, E. L., Mérou, J. R., Merritt, J. D., Merzougui, M., Messenger, C., Messick, C., Meyer-Conde, M., Meylahn, F., Mhaske, A., Miani, A., Miao, H., Michaloliakos, I., Michel, C., Michimura, Y., Middleton, H., Miller, A. L., Miller, S., Millhouse, M., Milotti, E., Minenkov, Y., Mio, N., Mir, Ll. M., Mirasola, L., Miravet-Tenés, M., Miritescu, C. -A., Mishra, A. K., Mishra, A., Mishra, C., Mishra, T., Mitchell, A. L., Mitchell, J. G., Mitra, S., Mitrofanov, V. P., Mitselmakher, G., Mittleman, R., Miyakawa, O., Miyamoto, S., Miyoki, S., Mo, G., Mobilia, L., Modafferi, L. M., Mohapatra, S. R. P., Mohite, S. R., Molina-Ruiz, M., Mondal, C., Mondin, M., Montani, M., Moore, C. J., Morales, M., Moraru, D., Morawski, F., More, A., More, S., Moreno, C., Moreno, G., Morisaki, S., Moriwaki, Y., Morras, G., Moscatello, A., Mourier, P., Mours, B., Mow-Lowry, C. M., Mozzon, S., Muciaccia, F., Mukherjee, D., Mukherjee, Samanwaya, Mukherjee, Soma, Mukherjee, Subroto, Mukherjee, Suvodip, Mukund, N., Mullavey, A., Munch, J., Mungioli, C. L., Munn, M., Oberg, W. R. Munn, Murakoshi, M., Murray, P. G., Muusse, S., Nadji, S. L., Nagar, A., Nagarajan, N., Nagler, K. N., Nakamura, K., Nakano, H., Nakano, M., Nandi, D., Napolano, V., Narayan, P., Nardecchia, I., Narola, H., Naticchioni, L., Nayak, R. K., Neil, B. F., Neilson, J., Nelson, A., Nelson, T. J. N., Nery, M., Neunzert, A., Ng, S., Nguyen, C., Nguyen, P., Quynh, L. Nguyen, Nichols, S. A., Nielsen, A. B., Nieradka, G., Niko, A., Nishino, Y., Nishizawa, A., Nissanke, S., Nitoglia, E., Niu, W., Nocera, F., Norman, M., North, C., Novak, J., Siles, J. F. Nuño, Nurbek, G., Nuttall, L. K., Obayashi, K., Oberling, J., O'Dell, J., Oertel, M., Offermans, A., Oganesyan, G., Oh, J. J., Oh, K., Oh, S. H., O'Hanlon, T., Ohashi, M., Ohkawa, M., Ohme, F., Ohta, H., Oliveira, A. S., Oliveri, R., Oloworaran, V., O'Neal, B., Oohara, K., O'Reilly, B., Ormsby, N. D., Orselli, M., O'Shaughnessy, R., Oshima, Y., Oshino, S., Ossokine, S., Osthelder, C., Ottaway, D. J., Ouzriat, A., Overmier, H., Owen, B. J., Pace, A. E., Pagano, R., Page, M. A., Pai, A., Pai, S. A., Pal, A., Pal, S., Palaia, M. A., Palashov, O., Pálfi, M., Palma, P. P., Palomba, C., Pan, K. C., Panda, P. K., Panebianco, L., Pang, P. T. H., Pannarale, F., Pant, B. C., Panther, F. H., Panzer, C. D., Paoletti, F., Paoli, A., Paolone, A., Papalexakis, E. E., Papalini, L., Papigkiotis, G., Parisi, A., Park, J., Parker, W., Pascale, G., Pascucci, D., Pasqualetti, A., Passaquieti, R., Passuello, D., Patane, O., Patel, M., Pathak, D., Pathak, M., Patra, A., Patricelli, B., Patron, A. S., Paul, S., Payne, E., Pearce, T., Pedraza, M., Pegna, R., Pele, A., Arellano, F. E. Peña, Penn, S., Penuliar, M. D., Perego, A., Pereira, A., Perez, J. J., Périgois, C., Perkins, C. C., Perna, G., Perreca, A., Perret, J., Perriès, S., Perry, J. W., Pesios, D., Petrillo, C., Pfeiffer, H. P., Pham, H., Pham, K. A., Phukon, K. S., Phurailatpam, H., Piccinni, O. J., Pichot, M., Piendibene, M., Piergiovanni, F., Pierini, L., Pierra, G., Pierro, V., Pietrzak, M., Pillas, M., Pilo, F., Pinard, L., Pineda-Bosque, C., Pinto, I. M., Pinto, M., Piotrzkowski, B. J., Pirello, M., Pitkin, M. D., Placidi, A., Placidi, E., Planas, M. L., Plastino, W., Poggiani, R., Polini, E., Pompili, L., Poon, J., Porcelli, E., Portell, J., Porter, E. K., Posnansky, C., Poulton, R., Powell, J., Pracchia, M., Pradhan, B. K., Pradier, T., Prajapati, A. K., Prasai, K., Prasanna, R., Prasia, P., Pratten, G., Principe, M., Prodi, G. A., Prokhorov, L., Prosposito, P., Prudenzi, L., Puecher, A., Pullin, J., Punturo, M., Puosi, F., Puppo, P., Pürrer, M., Qi, H., Qin, J., Quéméner, G., Quetschke, V., Quigley, C., Quinonez, P. J., Quitzow-James, R., Raab, F. J., Raaijmakers, G., Radulesco, N., Raffai, P., Rail, S. X., Raja, S., Rajan, C., Rajbhandari, B., Ramirez, D. S., Ramirez, K. E., Vidal, F. A. Ramis, Ramos-Buades, A., Rana, D., Randel, E., Ranjan, S., Rapagnani, P., Ratto, B., Rawat, S., Ray, A., Raymond, V., Razzano, M., Read, J., Payo, M. Recaman, Regimbau, T., Rei, L., Reid, S., Reid, S. W., Reitze, D. H., Relton, P., Renzini, A., Rettegno, P., Revenu, B., Reza, A., Rezac, M., Rezaei, A. S., Ricci, F., Ricci, M., Richards, D., Richardson, C. J., Richardson, J. W., Rijal, A., Riles, K., Riley, H. K., Rinaldi, S., Rittmeyer, J., Robertson, C., Robinet, F., Robinson, M., Rocchi, A., Rolland, L., Rollins, J. G., Romanelli, M., Romano, A. E., Romano, R., Romero, A., Romero-Shaw, I. M., Romie, J. H., Roocke, T. J., Rosa, L., Rosauer, T. J., Rose, C. A., Rosińska, D., Ross, M. P., Rossello, M., Rowan, S., Roy, S. K., Roy, S., Rozza, D., Ruggi, P., Morales, E. Ruiz, Ruiz-Rocha, K., Sachdev, S., Sadecki, T., Sadiq, J., Saffarieh, P., Sah, M. R., Saha, S. S., Sainrat, T., Menon, S. Sajith, Sakai, K., Sakellariadou, M., Sako, T., Sakon, S., Salafia, O. S., Salces-Carcoba, F., Salconi, L., Saleem, M., Salemi, F., Sallé, M., Salvador, S., Sanchez, A., Sanchez, E. J., Sanchez, J. H., Sanchez, L. E., Sanchis-Gual, N., Sanders, J. R., Sänger, E. M., Saravanan, T. R., Sarin, N., Sasli, A., Sassi, P., Sassolas, B., Satari, H., Sato, R., Sato, S., Sato, Y., Sauter, O., Savage, R. L., Sawada, T., Sawant, H. L., Sayah, S., Schaetzl, D., Scheel, M., Scheuer, J., Schiworski, M. G., Schmidt, P., Schmidt, S., Schnabel, R., Schneewind, M., Schofield, R. M. S., Schouteden, K., Schuler, H., Schulte, B. W., Schutz, B. F., Schwartz, E., Scott, J., Scott, S. M., Seetharamu, T. C., Seglar-Arroyo, M., Sekiguchi, Y., Sellers, D., Sengupta, A. S., Sentenac, D., Seo, E. G., Seo, J. W., Sequino, V., Sergeev, A., Serra, M., Servignat, G., Setyawati, Y., Shaffer, T., Shah, U. S., Shahriar, M. S., Shaikh, M. A., Shams, B., Shao, L., Sharma, A. K., Sharma, P., Sharma-Chaudhary, S., Shawhan, P., Shcheblanov, N. S., Shen, B., Shikano, Y., Shikauchi, M., Shimode, K., Shinkai, H., Shiota, J., Shoemaker, D. H., Shoemaker, D. M., Short, R. W., ShyamSundar, S., Sider, A., Siegel, H., Sieniawska, M., Sigg, D., Silenzi, L., Simmonds, M., Singer, L. P., Singh, A., Singh, D., Singh, M. K., Singha, A., Sintes, A. M., Sipala, V., Skliris, V., Slagmolen, B. J. J., Slaven-Blair, T. J., Smetana, J., Smith, J. R., Smith, L., Smith, R. J. E., Smith, W. J., Soldateschi, J., Somala, S. N., Somiya, K., Soni, K., Soni, S., Sordini, V., Sorrentino, F., Sorrentino, N., Soulard, R., Souradeep, T., Southgate, A., Sowell, E., Spagnuolo, V., Spencer, A. P., Spera, M., Spinicelli, P., Srivastava, A. K., Stachurski, F., Steer, D. A., Steinlechner, J., Steinlechner, S., Stergioulas, N., Stevens, P., StPierre, M., Strang, L. C., Stratta, G., Strong, M. D., Strunk, A., Sturani, R., Stuver, A. L., Suchenek, M., Sudhagar, S., Sueltmann, N., Sullivan, A. G., Sullivan, K. D., Sun, L., Sunil, S., Sur, A., Suresh, J., Sutton, P. J., Suzuki, Takamasa, Suzuki, Takanori, Swinkels, B. L., Syx, A., Szczepańczyk, M. J., Szewczyk, P., Tacca, M., Tagoshi, H., Tait, S. C., Takahashi, H., Takahashi, R., Takamori, A., Takatani, K., Takeda, H., Takeda, M., Talbot, C. J., Talbot, C., Tamaki, M., Tamanini, N., Tanabe, D., Tanaka, K., Tanaka, S. J., Tanaka, T., Tanasijczuk, A. J., Tang, D., Tanioka, S., Tanner, D. B., Tao, L., Tapia, R. D., Martín, E. N. Tapia San, Tarafder, R., Taranto, C., Taruya, A., Tasson, J. D., Teloi, M., Tenorio, R., Themann, H., Theodoropoulos, A., Thirugnanasambandam, M. P., Thomas, L. M., Thomas, M., Thomas, P., Thompson, J. E., Thondapu, S. R., Thorne, K. A., Thrane, E., Tissino, J., Tiwari, A., Tiwari, Shubhanshu, Tiwari, Srishti, Tiwari, V., Todd, M. R., Toivonen, A. M., Toland, K., Tolley, A. E., Tomaru, T., Tomita, K., Tomura, T., Tong-Yu, C., Toriyama, A., Toropov, N., Torres-Forné, A., Torrie, C. I., Toscani, M., Melo, I. Tosta e, Tournefier, E., Trani, A. A., Trapananti, A., Travasso, F., Traylor, G., Trenado, J., Trevor, M., Tringali, M. C., Tripathee, A., Troiano, L., Trovato, A., Trozzo, L., Trudeau, R. J., Tsang, T. T. L., Tso, R., Tsuchida, S., Tsukada, L., Tsutsui, T., Turbang, K., Turconi, M., Turski, C., Ubach, H., Ubhi, A. S., Uchikata, N., Uchiyama, T., Udall, R. P., Uehara, T., Ueno, K., Unnikrishnan, C. S., Ushiba, T., Utina, A., Vacatello, M., Vahlbruch, H., Vaidya, N., Vajente, G., Vajpeyi, A., Valdes, G., Valencia, J., Valentini, M., Vallejo-Peña, S. A., Vallero, S., Valsan, V., van Bakel, N., van Beuzekom, M., van Dael, M., Brand, J. F. J. van den, Broeck, C. Van Den, Vander-Hyde, D. C., van der Sluys, M., Van de Walle, A., van Dongen, J., Vandra, K., van Haevermaet, H., van Heijningen, J. V., Vanosky, J., van Putten, M. H. P. M., van Ranst, Z., van Remortel, N., Vardaro, M., Vargas, A. F., Varma, V., Vasúth, M., Vecchio, A., Vedovato, G., Veitch, J., Veitch, P. J., Venikoudis, S., Venneberg, J., Verdier, P., Verkindt, D., Verma, B., Verma, P., Verma, Y., Vermeulen, S. M., Veske, D., Vetrano, F., Veutro, A., Vibhute, A. M., Viceré, A., Vidyant, S., Viets, A. D., Vijaykumar, A., Vilkha, A., Villa-Ortega, V., Vincent, E. T., Vinet, J. -Y., Viret, S., Virtuoso, A., Vitale, S., Vocca, H., Voigt, D., von Reis, E. R. G., von Wrangel, J. S. A., Vyatchanin, S. P., Wade, L. E., Wade, M., Wagner, K. J., Walet, R. C., Walker, M., Wallace, G. S., Wallace, L., Wang, H., Wang, J. Z., Wang, W. H., Wang, Z., Waratkar, G., Ward, R. L., Warner, J., Was, M., Washimi, T., Washington, N. Y., Watarai, D., Wayt, K. E., Weaver, B., Weaving, C. R., Webster, S. A., Weinert, M., Weinstein, A. J., Weiss, R., Weller, C. M., Weller, R. A., Wellmann, F., Wen, L., Weßels, P., Wette, K., Whelan, J. T., White, D. D., Whiting, B. F., Whittle, C., Wildberger, J. B., Wilk, O. S., Wilken, D., Willetts, K., Williams, D., Williams, M. J., Williams, N. S., Willis, J. L., Willke, B., Wils, M., Wipf, C. C., Woan, G., Woehler, J., Wofford, J. K., Wolfe, N. E., Wong, D., Wong, H. T., Wong, H. W. Y., Wong, I. C. F., Wright, J. L., Wright, M., Wu, C., Wu, D. S., Wu, H., Wysocki, D. M., Xiao, L., Xu, V. A., Xu, Y., Yadav, N., Yamamoto, H., Yamamoto, K., Yamamoto, M., Yamamoto, T. S., Yamamoto, T., Yamamura, S., Yamazaki, R., Yan, S., Yan, T., Yang, F. W., Yang, F., Yang, K. Z., Yang, L. -C., Yang, Y., Yarbrough, Z., Yeh, S. -W., Yelikar, A. B., Yeung, S. M. C., Yin, X., Yokoyama, J., Yokozawa, T., Yoo, J., Yu, H., Yuzurihara, H., Zadrożny, A., Zannelli, A. J., Zanolin, M., Zeeshan, M., Zelenova, T., Zendri, J. -P., Zeoli, M., Zerrad, M., Zevin, M., Zhang, A. C., Zhang, J., Zhang, L., Zhang, R., Zhang, T., Zhang, Y., Zhao, C., Zhao, Yue, Zhao, Yuhang, Zheng, Y., Zhong, H., Zhong, S., Zhou, R., Zhu, Z. -H., Zimmerman, A. B., Zucker, M. E., and Zweizig, J.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena ,General Relativity and Quantum Cosmology - Abstract
We present results from a search for X-ray/gamma-ray counterparts of gravitational-wave (GW) candidates from the third observing run (O3) of the LIGO-Virgo-KAGRA (LVK) network using the Swift Burst Alert Telescope (Swift-BAT). The search includes 636 GW candidates received in low latency, 86 of which have been confirmed by the offline analysis and included in the third cumulative Gravitational-Wave Transient Catalogs (GWTC-3). Targeted searches were carried out on the entire GW sample using the maximum--likelihood NITRATES pipeline on the BAT data made available via the GUANO infrastructure. We do not detect any significant electromagnetic emission that is temporally and spatially coincident with any of the GW candidates. We report flux upper limits in the 15-350 keV band as a function of sky position for all the catalog candidates. For GW candidates where the Swift-BAT false alarm rate is less than 10$^{-3}$ Hz, we compute the GW--BAT joint false alarm rate. Finally, the derived Swift-BAT upper limits are used to infer constraints on the putative electromagnetic emission associated with binary black hole mergers., Comment: 50 pages, 10 figures, 4 tables
- Published
- 2024
34. Data-Driven Probabilistic Methodology for Aircraft Conflict Detection Under Wind Uncertainty
- Author
-
de la Mota, Jaime, Cerezo-Magaña, María, Olivares, Alberto, and Staffetti, Ernesto
- Subjects
Mathematics - Optimization and Control - Abstract
Assuming the availability of a reliable aircraft trajectory planner, this paper presents a probabilistic methodology to detect conflicts between aircraft, in the cruise phase of the flight, in the presence of wind prediction uncertainties quantified by ensemble weather forecasts, which are regarded as realizations of correlated random processes and employed to derive the eastward and northward components of the wind velocity. First, the Karhunen-Lo`eve expansion is used to obtain a series expansion of the wind components in terms of a set of uncorrelated random variables and deterministic coefficients. Then, the uncertainty induced by these uncorrelated random variables in the outputs of the aircraft trajectory planner is quantified by means of the arbitrary polynomial chaos technique. Finally, the probability density function of the great circle distance between each pair of aircraft is derived from the polynomial expansions using a Gaussian kernel density estimator and employed to estimate the probability of conflict. The arbitrary polynomial chaos technique allows the effects of uncertainties in complex nonlinear dynamical system, such as those underlying aircraft trajectory planners, to be quantified with high computational efficiency, only requiring the existence of a finite number of statistical moments of the random variables of the Karhunen-Lo`eve expansion, while avoiding any assumption on their probability distributions. In order to demonstrate the effectiveness of the proposed conflict detection method, numerical experiments are conducted through an optimal control based aircraft trajectory planner for a given wind forecast represented by an ensemble prediction system.
- Published
- 2024
- Full Text
- View/download PDF
35. A Stochastic Switched Optimal Control Approach to Formation Mission Design for Commercial Aircraft
- Author
-
Cerezo-Magaña, María, Olivares, Alberto, and Staffetti, Ernesto
- Subjects
Mathematics - Optimization and Control - Abstract
This paper studies the formation mission design problem for commercial aircraft in the presence of uncertainties. Specifically, it considers uncertainties in the departure times of the aircraft and in the fuel burn savings for the trailing aircraft. Given several commercial flights, the problem consists in arranging them in formation or solo flights and finding the trajectories that minimize the expected value of the direct operating cost of the flights. The formation mission design problem is formulated as an optimal control problem of a stochastic switched dynamical system and solved using nonintrusive generalized polynomial chaos based stochastic collocation. The stochastic collocation method converts the stochastic switched optimal control problem into an augmented deterministic switched optimal control problem. With this approach, a small number of sample points of the random parameters are used to jointly solve particular instances of the switched optimal control problem. The obtained solutions are then expressed as orthogonal polynomial expansions in terms of the random parameters using these sample points. This technique allows statistical and global sensitivity analysis of the stochastic solutions to be conducted at a low computational cost. The aim of this study is to establish if, in the presence of uncertainties, a formation mission is beneficial with respect to solo flight in terms of the expected value of the direct operating costs. Several numerical experiments have been conducted in which uncertainties on the departure times and on the fuel saving during formation flight have been considered. The obtained results demonstrate that benefits can be achieved even in the presence of these uncertainties.
- Published
- 2024
- Full Text
- View/download PDF
36. Formation Mission Design for Commercial Aircraft Using Switched Optimal Control Techniques
- Author
-
Cerezo-Magaña, María, Olivares, Alberto, and Staffetti, Ernesto
- Subjects
Mathematics - Optimization and Control - Abstract
In this article, the formation mission design problem for commercial aircraft is studied. Given the departure times and the departure and arrival locations of several commercial flights, the relevant weather forecast, and the expected fuel savings during formation flight, the problem consists in establishing how to organize them in formation or solo flights and in finding the trajectories that minimize the overall direct operating cost of the flights. Each aircraft can fly solo or in different positions inside a formation. Therefore, the mission is modeled as a switched dynamical system, in which the discrete state describes the combination of flight modes of the individual aircraft and logical constraints in disjunctive form establish the switching logic among the discrete states of the system. The formation mission design problem has been formulated as an optimal control problem of a switched dynamical system and solved using an embedding approach, which allows switching decision among discrete states to be modeled without relying on binary variables. The resulting problem is a classical optimal control problem which has been solved using a knotting pseudospectral method. Several numerical experiments have been conducted to demonstrate the effectiveness of this approach. The obtained results show that formation flight has great potential to reduce fuel consumption and emissions.
- Published
- 2024
- Full Text
- View/download PDF
37. A new bump in the night: evidence of a new feature in the binary black hole mass distribution at $70~M_{\odot}$ from gravitational-wave observations
- Author
-
Hernandez, Ignacio Magaña and Palmese, Antonella
- Subjects
Astrophysics - High Energy Astrophysical Phenomena ,General Relativity and Quantum Cosmology - Abstract
We analyze the confident binary black hole (BBH) detections from the third Gravitational-Wave Transient Catalog (GWTC-3) with an alternative mass population model in order to capture features in the mass distribution beyond the Powerlaw + Peak model. We find that the peak of a second power law characterizes the $\sim 30-35~ M_\odot$ bump, such that the data marginally prefers a mixture of two power laws for the mass distribution of binary components over a Powerlaw + Peak model with a Bayes Factor $\log_{10}\mathcal{B}$ of 0.1. This result may imply that the $\sim 30-35~ M_\odot$ feature represents the onset of a second population of BBH mergers (e.g. from a dynamical formation channel) rather than a specific mass feature over a broader distribution. When an additional Gaussian bump is allowed within our power law mixture model, we find a new feature in the BH mass spectrum at $\sim65-70~M_\odot$. This new feature may be consistent with hierarchical mergers, and constitute $\sim2\%$ of the BBH population. This model also recovers a maximum mass of $58^{+30}_{-14}~M_\odot$ for the second power law, consistent with the onset of a pair-instability supernova mass gap., Comment: Comments are welcomed
- Published
- 2024
38. Fiducial-Cosmology-dependent systematics for the DESI 2024 BAO Analysis
- Author
-
Pérez-Fernández, A., Medina-Varela, L., Ruggeri, R., Vargas-Magaña, M., Seo, H., Padmanabhan, N., Ishak, M., Aguilar, J., Ahlen, S., Alam, S., Alves, O., Brieden, S., Brooks, D., Rosell, A. Carnero, Chen, X., Claybaugh, T., Cole, S., Dawson, K., de la Macorra, A., de Mattia, A., Dey, Arjun, Ding, Z., Doel, P., Fanning, K., Garcia-Quintero, C., Gaztañaga, E., Gontcho, S. Gontcho A, Gutierrez, G., Honscheid, K., Juneau, S., Kirkby, D., Kisner, T., Lambert, A., Landriau, M., Lasker, J., Guillou, L. Le, Manera, M., Martini, P., Meisner, A., Mena-Fernández, J., Miquel, R., Moustakas, J., Myers, A. D., Nadathur, S., Newman, J. A., Niz, G., Paillas, E., Palanque-Delabrouille, N., Percival, W. J., Poppett, C., Prada, F., Rashkovetskyi, M., Rocher, A., Rossi, G., Sanchez, A., Sanchez, E., Schubnell, M., Sprayberry, D., Tarlé, G., Valcin, D., Weaver, B. A., Yu, J., and Zou, H.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
When measuring the Baryon Acoustic Oscillations (BAO) scale from galaxy surveys, one typically assumes a fiducial cosmology when converting redshift measurements into comoving distances and also when defining input parameters for the reconstruction algorithm. A parameterised template for the model to be fitted is also created based on a (possibly different) fiducial cosmology. This model reliance can be considered a form of data compression, and the data is then analysed allowing that the true answer is different from the fiducial cosmology assumed. In this study, we evaluate the impact of the fiducial cosmology assumed in the BAO analysis of the Dark Energy Spectroscopic Instrument (DESI) survey Data Release 1 (DR1) on the final measurements in DESI 2024 III. We utilise a suite of mock galaxy catalogues with survey realism that mirrors the DESI DR1 tracers: the bright galaxy sample (BGS), the luminous red galaxies (LRG), the emission line galaxies (ELG) and the quasars (QSO), spanning a redshift range from 0.1 to 2.1. We compare the four secondary AbacusSummit cosmologies against DESI's fiducial cosmology (Planck 2018). The secondary cosmologies explored include a lower cold dark matter density, a thawing dark energy universe, a higher number of effective species, and a lower amplitude of matter clustering. The mocks are processed through the BAO pipeline by consistently iterating the grid, template, and reconstruction reference cosmologies. We determine a conservative systematic contribution to the error of $0.1\%$ for both the isotropic and anisotropic dilation parameters $\alpha_{\rm iso}$ and $\alpha_{\rm AP}$. We then directly test the impact of the fiducial cosmology on DESI DR1 data., Comment: Supporting publication of DESI 2024 III: Baryon Acoustic Oscillations from Galaxies and Quasars
- Published
- 2024
39. Mitigation of DESI fiber assignment incompleteness effect on two-point clustering with small angular scale truncated estimators
- Author
-
Pinon, M., de Mattia, A., McDonald, P., Burtin, E., Ruhlmann-Kleider, V., White, M., Bianchi, D., Ross, A. J., Aguilar, J., Ahlen, S., Brooks, D., Cahn, R. N., Chaussidon, E., Claybaugh, T., Cole, S., de la Macorra, A., Dey, B., Doel, P., Fanning, K., Forero-Romero, J. E., Gaztañaga, E., Gontcho, S. Gontcho A, Howlett, C., Kirkby, D., Kisner, T., Kremin, A., Lambert, A., Landriau, M., Lasker, J., Guillou, L. Le, Levi, M. E., Manera, M., Martini, P., Meisner, A., Miquel, R., Moustakas, J., Myers, A. D., Niz, G., Palanque-Delabrouille, N., Percival, W. J., Poppett, C., Rossi, G., Sanchez, E., Schlegel, D., Schubnell, M., Seo, H., Sprayberry, D., Tarlé, G., Vargas-Magaña, M., Weaver, B. A., Zarrouk, P., Zhou, R., and Zou, H.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present a method to mitigate the effects of fiber assignment incompleteness in two-point power spectrum and correlation function measurements from galaxy spectroscopic surveys, by truncating small angular scales from estimators. We derive the corresponding modified correlation function and power spectrum windows to account for the small angular scale truncation in the theory prediction. We validate this approach on simulations reproducing the Dark Energy Spectroscopic Instrument (DESI) Data Release 1 (DR1) with and without fiber assignment. We show that we recover unbiased cosmological constraints using small angular scale truncated estimators from simulations with fiber assignment incompleteness, with respect to standard estimators from complete simulations. Additionally, we present an approach to remove the sensitivity of the fits to high $k$ modes in the theoretical power spectrum, by applying a transformation to the data vector and window matrix. We find that our method efficiently mitigates the effect of fiber assignment incompleteness in two-point correlation function and power spectrum measurements, at low computational cost and with little statistical loss., Comment: 36 pages, 23 figures, typos corrected, clarifications added
- Published
- 2024
40. Whole Blood vs Serum-Derived Exosomes for Host and Pathogen-Specific Tuberculosis Biomarker Identification: RNA-Seq-Based Machine-Learning Approach
- Author
-
Magana-Arachchi, Dhammika, Madegedara, Dushantha, and Bandara, Upeka
- Published
- 2024
- Full Text
- View/download PDF
41. Blinding scheme for the scale-dependence bias signature of local primordial non-Gaussianity for DESI 2024
- Author
-
Chaussidon, E., de Mattia, A., Yèche, C., Aguilar, J., Ahlen, S., Brooks, D., Claybaugh, T., Cole, S., de la Macorra, A., Doel, P., Fanning, K., Gaztañaga, E., Gontcho, S. Gontcho A, Howlett, C., Kisner, T., Lambert, A., Guillou, L. Le, Manera, M., Meisner, A., Miquel, R., Niz, G., Palanque-Delabrouille, N., Percival, W. J., Prada, F., Ross, A. J., Rossi, G., Sanchez, E., Schlegel, D., Schubnell, M., Seo, H., Sprayberry, D., Tarlé, G., Vargas-Magaña, M., Weaver, B. A., and Zou, H.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The next generation of spectroscopic surveys is expected to achieve an unprecedented level of accuracy in the measurement of cosmological parameters. To avoid confirmation bias and thereby improve the reliability of these results, blinding procedures become a standard practice in the cosmological analyses of such surveys. Blinding is especially crucial when the impact of observational systematics is important relative to the cosmological signal, and a detection of that signal would have significant implications. This is the case for local primordial non-gaussianity, as probed by the scale-dependent bias of the galaxy power spectrum at large scales that are heavily sensitive to the dependence of the target selection on the imaging quality, known as imaging systematics. We propose a blinding method for the scale-dependent bias signature of local primordial non-gaussianity at the density field level which consists in generating a set of weights for the data that replicate the scale-dependent bias. The applied blinding is predictable, and can be straightforwardly combined with other catalog-level blinding procedures that have been designed for the baryon acoustic oscillation and redshift space distortion signals. The procedure is validated through simulations that replicate data from the first year of observation of the Dark Energy Spectroscopic Instrument, but may find applications to other upcoming spectroscopic surveys.
- Published
- 2024
42. Spatial light mode analogues of generalized quantum coherent states
- Author
-
Rodríguez, M. P. Morales, Herrera, E. García, Loaiza, O. Magaña, Perez-Garcia, B., Gutíerrez, F. Marroquín, and Rodríguez-Lara, B. M.
- Subjects
Physics - Optics ,Quantum Physics - Abstract
We use the spatial degree of freedom of light modes to construct optical analogues of generalized quantum coherent states for Hermite- and Laguerre-Gauss modes. Our optical analogues preserve the statistical properties of their quantum counterparts, encoded in their amplitude and phase distributions. We explore three basic symmetries that provide generalized displaced, rotated, and squeezed coherent states. Given the substantial interest in squeezed states for probing matter, we believe that the optical analogues introduced here have significant implications for optical sensing. Specifically, the single-particle nature of our spatial modes makes them robust candidates for sensing photosensitive materials. Overall, our approach opens the door to optical metrology and sensing protocols that mimic those already existing in the quantum realm, and facilitates further exploration of the quantum state zoo through classical optical analogues., Comment: 42 pages, 14 figures
- Published
- 2024
- Full Text
- View/download PDF
43. The Construction of Large-scale Structure Catalogs for the Dark Energy Spectroscopic Instrument
- Author
-
Ross, A. J., Aguilar, J., Ahlen, S., Alam, S., Anand, A., Bailey, S., Bianchi, D., Brieden, S., Brooks, D., Burtin, E., Rosell, A. Carnero, Chaussidon, E., Claybaugh, T., Cole, S., Dawson, K., de la Macorra, A., de Mattia, A., Dey, Arjun, Dey, Biprateep, Doel, P., Fanning, K., Ferraro, S., Ereza, J., Font-Ribera, A., Forero-Romero, J. E., Gaztañaga, E., Gil-Marín, H., Gontcho, S. Gontcho A, Gonzalez-Morales, A. X., Guy, J., Hahn, C., Heydenreich, S., Honscheid, K., Howlett, C., Ishak, M., Karim, T., Kirkby, D., Kisner, T., Kong, H., Kremin, A., Krolewski, A., Lambert, A., Landriau, M., Lasker, J., Guillou, L. Le, Levi, M. E., Manera, M., Martini, P., McDonald, P., Meisner, A., Miquel, R., Moon, J., Moustakas, J., Muñoz-Gutiérrez, A., Myers, A. D., Nadathur, S., Napolitano, L., Newman, J. A., Nie, J., Niz, G., Palanque-Delabrouille, N., Percival, W. J., Poppett, C., Prada, F., Raichoor, A., Ravoux, C., Rezaie, M., Rosado-Marin, A., Rossi, G., Samushia, L., Sanchez, E., Schlafly, E. F., Schlegel, D., Seo, H., Smith, A., Sprayberry, D., Tarlé, G., Valcin, D., Vargas-Magaña, M., Weaver, B. A., Wilson, M., Yu, J., Zarrouk, P., Zhao, C., Zhou, R., and Zou, H.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present the technical details on how large-scale structure (LSS) catalogs are constructed from redshifts measured from spectra observed by the Dark Energy Spectroscopic Instrument (DESI). The LSS catalogs provide the information needed to determine the relative number density of DESI tracers as a function of redshift and celestial coordinates and, e.g., determine clustering statistics. We produce catalogs that are weighted subsamples of the observed data, each matched to a weighted `random' catalog that forms an unclustered sampling of the probability density that DESI could have observed those data at each location. Precise knowledge of the DESI observing history and associated hardware performance allows for a determination of the DESI footprint and the number of times DESI has covered it at sub-arcsecond level precision. This enables the completeness of any DESI sample to be modeled at this same resolution. The pipeline developed to create LSS catalogs has been designed to easily allow robustness tests and enable future improvements. We describe how it allows ongoing work improving the match between galaxy and random catalogs, such as including further information when assigning redshifts to randoms, accounting for fluctuations in target density, accounting for variation in the redshift success rate, and accommodating blinding schemes., Comment: Accepted (by JCAP) version of supporting publication of DESI 2024II: Sample definitions, characteristics, and two-point clustering statistics
- Published
- 2024
44. Forward modeling fluctuations in the DESI LRGs target sample using image simulations
- Author
-
Kong, Hui, Ross, Ashley J., Honscheid, Klaus, Lang, Dustin, Porredon, Anna, de Mattia, Arnaud, Rezaie, Mehdi, Zhou, Rongpu, Schlafly, Edward, Moustakas, John, Rosado-Marin, Alberto, Aguilar, Jessica Nicole, Ahlen, Steven, Brooks, David, Chaussidon, Edmond, Claybaugh, Todd, Cole, Shaun, de la Macorra, Axel, Dey, Arjun, Dey, Biprateep, Doel, Peter, Fanning, Kevin, Forero-Romero, Jaime E., Gaztanaga, Enrique, Gontcho, Satya Gontcho A, Gutierrez, Gaston, Howlett, Cullan, Juneau, Stephanie, Kremin, Anthony, Landriau, Martin, Levi, Michael, Manera, Marc, Martini, Paul, Meisner, Aaron, Miquel, Ramon, Mueller, Eva-Maria, Myers, Adam, Newman, Jeffrey A., Nie, Jundan, Niz, Gustavo, Percival, Will, Poppett, Claire, Prada, Francisco, Rossi, Graziano, Sanchez, Eusebio, Schlegel, David, Schubnell, Michael, Seo, Hee-Jong, Sprayberry, David, Tarle, Gregory, Magana, Mariana Vargas, Weaver, Benjamin Alan, and Zou, Hu
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We use the forward modeling pipeline, Obiwan, to study the imaging systematics of the Luminous Red Galaxies (LRGs) targeted by the Dark Energy Spectroscopic Instrument (DESI). We update the Obiwan pipeline, which had previously been developed to simulate the optical images used to target DESI data, to further simulate WISE images in the infrared. This addition makes it possible to simulate the DESI LRGs sample, which utilizes WISE data in the target selection. Deep DESI imaging data combined with a method to account for biases in their shapes is used to define a truth sample of potential LRG targets. We simulate a total of 15 million galaxies to obtain a simulated LRG sample (Obiwan LRGs) that predicts the variations in target density due to imaging properties. We find that the simulations predict the trends with depth observed in the data, including how they depend on the intrinsic brightness of the galaxies. We observe that faint LRGs are the main contributing power of the imaging systematics trend induced by depth. We also find significant trends in the data against Galactic extinction that are not predicted by Obiwan. These trends depend strongly on the particular map of Galactic extinction chosen to test against, implying Large-Scale Structure systematic contamination (e.g. Cosmic-Infrared Background) in the Galactic extinction maps is a likely root cause. We additionally observe that the DESI LRGs sample exhibits a complex dependency on a combination of seeing, depth, and intrinsic galaxy brightness, which is not replicated by Obiwan, suggesting discrepancies between the current simulation settings and the actual observations. The detailed findings we present should be used to guide any observational systematics mitigation treatment for the clustering of the DESI LRG sample., Comment: 46 pages, 26 figures
- Published
- 2024
45. Multiphoton Quantum Imaging using Natural Light
- Author
-
Mostafavi, Fatemeh, Hong, Mingyuan, Dawkins, Riley B., Ferdous, Jannatul, Jin, Rui-Bo, Leon-Montiel, Roberto de J., You, Chenglong, and Magana-Loaiza, Omar S.
- Subjects
Quantum Physics ,Physics - Optics - Abstract
It is thought that schemes for quantum imaging are fragile against realistic environments in which the background noise is often stronger than the nonclassical signal of the imaging photons. Unfortunately, it is unfeasible to produce brighter quantum light sources to alleviate this problem. Here, we overcome this paradigmatic limitation by developing a quantum imaging scheme that relies on the use of natural sources of light. This is achieved by performing conditional detection on the photon number of the thermal light field scattered by a remote object. Specifically, the conditional measurements in our scheme enable us to extract quantum features of the detected thermal photons to produce quantum images with improved signal-to-noise ratios. This technique shows a remarkable exponential enhancement in the contrast of quantum images. Surprisingly, this measurement scheme enables the possibility of producing images from the vacuum fluctuations of the light field. This is experimentally demonstrated through the implementation of a single-pixel camera with photon-number-resolving capabilities. As such, we believe that our scheme opens a new paradigm in the field of quantum imaging. It also unveils the potential of combining natural light sources with nonclassical detection schemes for the development of robust quantum technologies.
- Published
- 2024
46. DESI 2024: Reconstructing Dark Energy using Crossing Statistics with DESI DR1 BAO data
- Author
-
Calderon, R., Lodha, K., Shafieloo, A., Linder, E., Sohn, W., de Mattia, A., Cervantes-Cota, J. L., Crittenden, R., Davis, T. M., Ishak, M., Kim, A. G., Matthewson, W., Niz, G., Park, S., Aguilar, J., Ahlen, S., Allen, S., Brooks, D., Claybaugh, T., de la Macorra, A., Dey, A., Dey, B., Doel, P., Forero-Romero, J. E., Gaztañaga, E., Gontcho, S. Gontcho A, Honscheid, K., Howlett, C., Juneau, S., Kremin, A., Landriau, M., Guillou, L. Le, Levi, M. E., Manera, M., Miquel, R., Moustakas, J., Newman, J. A., Palanque-Delabrouille, N., Percival, W. J., Poppett, C., Prada, F., Rezaie, M., Rossi, G., Ruhlmann-Kleider, V., Sanchez, E., Schlegel, D., Schubnell, M., Seo, H., Sprayberry, D., Tarlé, G., Taylor, P., Vargas-Magaña, M., Weaver, B. A., Zarrouk, P., and Zou, H.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We implement Crossing Statistics to reconstruct in a model-agnostic manner the expansion history of the universe and properties of dark energy, using DESI Data Release 1 (DR1) BAO data in combination with one of three different supernova compilations (PantheonPlus, Union3, and DES-SN5YR) and Planck CMB observations. Our results hint towards an evolving and emergent dark energy behaviour, with negligible presence of dark energy at $z\gtrsim 1$, at varying significance depending on the data sets combined. In all these reconstructions, the cosmological constant lies outside the $95\%$ confidence intervals for some redshift ranges. This dark energy behaviour, reconstructed using Crossing Statistics, is in agreement with results from the conventional $w_0$--$w_a$ dark energy equation of state parametrization reported in the DESI Key cosmology paper. Our results add an extensive class of model-agnostic reconstructions with acceptable fits to the data, including models where cosmic acceleration slows down at low redshifts. We also report constraints on $H_0r_d$ from our model-agnostic analysis, independent of the pre-recombination physics., Comment: 25 pages, 10 figures. Version accepted in JCAP
- Published
- 2024
- Full Text
- View/download PDF
47. Systematic Effects in Galaxy-Galaxy Lensing with DESI
- Author
-
Lange, J. U., Blake, C., Saulder, C., Jeffrey, N., DeRose, J., Beltz-Mohrmann, G., Emas, N., Garcia-Quintero, C., Hadzhiyska, B., Heydenreich, S., Ishak, M., Joudaki, S., Jullo, E., Krolewski, A., Leauthaud, A., Medina-Varela, L., Porredon, A., Rossi, G., Ruggeri, R., Xhakaj, E., Yuan, S., Aguilar, J., Ahlen, S., Brooks, D., Claybaugh, T., de la Macorra, A., Doel, P., Fanning, K., Ferraro, S., Font-Ribera, A., Forero-Romero, J. E., Gaztañaga, E., Gontcho, S. Gontcho A, Juneau, S., Kehoe, R., Kisner, T., Kremin, A., Landriau, M., Levi, M. E., Manera, M., Miquel, R., Moustakas, J., Mueller, E., Myers, A. D., Nie, J., Niz, G., Palanque-Delabrouille, N., Poppett, C., Rezaie, M., Sanchez, E., Schubnell, M., Seo, H., Silber, J., Sprayberry, D., Tarlé, G., Vargas-Magaña, M., Wechsler, R. H., Zhou, Z., and Zou, H.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The Dark Energy Spectroscopic Instrument (DESI) survey will measure spectroscopic redshifts for millions of galaxies across roughly $14,000 \, \mathrm{deg}^2$ of the sky. Cross-correlating targets in the DESI survey with complementary imaging surveys allows us to measure and analyze shear distortions caused by gravitational lensing in unprecedented detail. In this work, we analyze a series of mock catalogs with ray-traced gravitational lensing and increasing sophistication to estimate systematic effects on galaxy-galaxy lensing estimators such as the tangential shear $\gamma_{\mathrm{t}}$ and the excess surface density $\Delta\Sigma$. We employ mock catalogs tailored to the specific imaging surveys overlapping with the DESI survey: the Dark Energy Survey (DES), the Hyper Suprime-Cam (HSC) survey, and the Kilo-Degree Survey (KiDS). Among others, we find that fiber incompleteness can have significant effects on galaxy-galaxy lensing estimators but can be corrected effectively by up-weighting DESI targets with fibers by the inverse of the fiber assignment probability. Similarly, we show that intrinsic alignment and lens magnification are expected to be statistically significant given the precision forecasted for the DESI year-1 data set. Our study informs several analysis choices for upcoming cross-correlation studies of DESI with DES, HSC, and KiDS., Comment: 18 pages, 13 figures, version accepted for publication
- Published
- 2024
- Full Text
- View/download PDF
48. An analysis of parameter compression and full-modeling techniques with Velocileptors for DESI 2024 and beyond
- Author
-
Maus, M., Chen, S., White, M., Aguilar, J., Ahlen, S., Aviles, A., Brieden, S., Brooks, D., Claybaugh, T., Cole, S., de la Macorra, A., Dey, Arjun, Doel, P., Ferraro, S., Findlay, N., Forero-Romero, J. E., Gaztañaga, E., Gil-Marín, H., Gontcho, S. Gontcho A, Hahn, C., Honscheid, K., Howlett, C., Ishak, M., Juneau, S., Kremin, A., Lai, Y., Landriau, M., Levi, M. E., Manera, M., Miquel, R., Mueller, E., Myers, A. D., Nadathur, S., Nie, J., Noriega, H. E., Palanque-Delabrouille, N., Percival, W. J., Poppett, C., Ramirez-Solano, S., Rezaie, M., Rocher, A., Rossi, G., Sanchez, E., Schlegel, D., Schubnell, M., Seo, H., Sprayberry, D., Tarlé, G., Vargas-Magaña, M., Weaver, B. A., Yuan, S., Zarrouk, P., Zhang, H., Zhou, R., and Zou, H.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
In anticipation of forthcoming data releases of current and future spectroscopic surveys, we present the validation tests and analysis of systematic effects within \texttt{velocileptors} modeling pipeline when fitting mock data from the \texttt{AbacusSummit} N-body simulations. We compare the constraints obtained from parameter compression methods to the direct fitting (Full-Modeling) approaches of modeling the galaxy power spectra, and show that the ShapeFit extension to the traditional template method is consistent with the Full-Modeling method within the standard $\Lambda$CDM parameter space. We show the dependence on scale cuts when fitting the different redshift bins using the ShapeFit and Full-Modeling methods. We test the ability to jointly fit data from multiple redshift bins as well as joint analysis of the pre-reconstruction power spectrum with the post-reconstruction BAO correlation function signal. We further demonstrate the behavior of the model when opening up the parameter space beyond $\Lambda$CDM and also when combining likelihoods with external datasets, namely the Planck CMB priors. Finally, we describe different parametrization options for the galaxy bias, counterterm, and stochastic parameters, and employ the halo model in order to physically motivate suitable priors that are necessary to ensure the stability of the perturbation theory., Comment: 56 pages, 23 figures. Supporting publication of DESI 2024 V: Analysis of the full shape of two-point clustering statistics from galaxies and quasars
- Published
- 2024
49. Validating the Galaxy and Quasar Catalog-Level Blinding Scheme for the DESI 2024 analysis
- Author
-
Andrade, U., Mena-Fernández, J., Awan, H., Ross, A. J., Brieden, S., Pan, J., de Mattia, A., Aguilar, J., Ahlen, S., Alves, O., Brooks, D., Buckley-Geer, E., Chaussidon, E., Claybaugh, T., Cole, S., de la Macorra, A., Dey, Arjun, Doel, P., Fanning, K., Forero-Romero, J. E., Gaztañaga, E., Gil-Marín, H., Gontcho, S. Gontcho A, Guy, J., Hahn, C., Hanif, M. M. S, Honscheid, K., Howlett, C., Huterer, D., Juneau, S., Kremin, A., Landriau, M., Guillou, L. Le, Levi, M. E., Manera, M., Martini, P., Meisner, A., Miquel, R., Moustakas, J., Mueller, E., Muñoz-Gutiérrez, A., Myers, A. D., Nadathur, S., Newman, J. A., Nie, J., Niz, G., Palanque-Delabrouille, N., Percival, W. J., Pinon, M., Poppett, C., Prada, F., Rashkovetskyi, M., Rezaie, M., Rossi, G., Sanchez, E., Schlegel, D., Schubnell, M., Seo, H., Sprayberry, D., Tarlé, G., Vargas-Magaña, M., Verde, L., and Weaver, B. A.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
In the era of precision cosmology, ensuring the integrity of data analysis through blinding techniques is paramount -- a challenge particularly relevant for the Dark Energy Spectroscopic Instrument (DESI). DESI represents a monumental effort to map the cosmic web, with the goal to measure the redshifts of tens of millions of galaxies and quasars. Given the data volume and the impact of the findings, the potential for confirmation bias poses a significant challenge. To address this, we implement and validate a comprehensive blind analysis strategy for DESI Data Release 1 (DR1), tailored to the specific observables DESI is most sensitive to: Baryonic Acoustic Oscillations (BAO), Redshift-Space Distortion (RSD) and primordial non-Gaussianities (PNG). We carry out the blinding at the catalog level, implementing shifts in the redshifts of the observed galaxies to blind for BAO and RSD signals and weights to blind for PNG through a scale-dependent bias. We validate the blinding technique on mocks, as well as on data by applying a second blinding layer to perform a battery of sanity checks. We find that the blinding strategy alters the data vector in a controlled way such that the BAO and RSD analysis choices do not need any modification before and after unblinding. The successful validation of the blinding strategy paves the way for the unblinded DESI DR1 analysis, alongside future blind analyses with DESI and other surveys., Comment: Supporting publication of "DESI 2024 II: Sample definitions, characteristics, and two-point clustering statistics", "DESI 2024 III: Baryon Acoustic Oscillations from Galaxies and Quasars", and "DESI 2024 V: Analysis of the full shape of two-point clustering statistics from galaxies and quasars". (v2 - update DESI references)
- Published
- 2024
50. A comparison between Shapefit compression and Full-Modelling method with PyBird for DESI 2024 and beyond
- Author
-
Lai, Y., Howlett, C., Maus, M., Gil-Marín, H., Noriega, H. E., Ramírez-Solano, S., Zarrouk, P., Aguilar, J., Ahlen, S., Alves, O., Aviles, A., Brooks, D., Chen, S., Claybaugh, T., Davis, T. M., Dawson, K., de la Macorra, A., Doel, P., Forero-Romero, J. E., Gaztañaga, E., Gontcho, S. Gontcho A, Honscheid, K., Juneau, S., Landriau, M., Manera, M., Miquel, R., Mueller, E., Nadathur, S., Niz, G., Palanque-Delabrouille, N., Percival, W., Poppett, C., Rezaie, M., Rossi, G., Sanchez, E., Schubnell, M., Sprayberry, D., Tarlé, G., Vargas-Magaña, M., Verde, L., Yuan, S., Zhou, R., and Zou, H.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
DESI aims to provide one of the tightest constraints on cosmological parameters by analysing the clustering of more than thirty million galaxies. However, obtaining such constraints requires special care in validating the methodology and efforts to reduce the computational time required through data compression and emulation techniques. In this work, we perform a rigorous validation of the PyBird power spectrum modelling code with both a traditional emulated Full-Modelling approach and the model-independent ShapeFit compression approach. By using cubic box simulations that accurately reproduce the clustering and precision of the DESI survey, we find that the cosmological constraints from ShapeFit and Full-Modelling are consistent with each other at the $\sim0.5\sigma$ level for the $\Lambda$CDM model. Both ShapeFit and Full-Modelling are also consistent with the true $\Lambda$CDM simulation cosmology down to a scale of $k_{\mathrm{max}} = 0.20 h\mathrm{Mpc}^{-1}$ even after including the hexadecapole. For extended models such as the wCDM and the oCDM models, we find that including the hexadecapole can significantly improve the constraints and reduce the modelling errors with the same $k_{\mathrm{max}}$. While their discrepancies between the constraints from ShapeFit and Full-Modelling are more significant than $\Lambda$CDM, they remain consistent within $0.7\sigma$. Lastly, we also show that the constraints on cosmological parameters with the correlation function evaluated from PyBird down to $s_{\mathrm{min}} = 30 h^{-1} \mathrm{Mpc}$ are unbiased and consistent with the constraints from the power spectrum., Comment: Supporting publication of DESI 2024 V: Analysis of the full shape of two-point clustering statistics from galaxies and quasars (In prep). 51 pages, 21 figures, and 12 tables. 2nd revised version for JCAP
- Published
- 2024
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.