15 results on '"Magaletti F"'
Search Results
2. Cahn-Hilliard model for the simulation of unsteady binary flows
- Author
-
Picano, Francesco, Magaletti, F., Chinappi, M., Marino, L., and Casciola, C. M.
- Subjects
multiphase flows ,binary mixture - Published
- 2011
3. Shock Wave Formation in the Collapse of a Vapor Nanobubble
- Author
-
Magaletti, F., primary, Marino, L., additional, and Casciola, C. M., additional
- Published
- 2015
- Full Text
- View/download PDF
4. The sharp-interface limit of the Cahn-Hilliard/Navier-Stokes model for binary fluids
- Author
-
Magaletti, F., Picano, Francesco, Chinappi, M., Marino, L., Casciola, C. M., Magaletti, F., Picano, Francesco, Chinappi, M., Marino, L., and Casciola, C. M.
- Abstract
The Cahn-Hilliard model is increasingly often being used in combination with the incompressible Navier-Stokes equation to describe unsteady binary fluids in a variety of applications ranging from turbulent two-phase flows to microfluidics. The thickness of the interface between the two bulk fluids and the mobility are the main parameters of the model. For real fluids they are usually too small to be directly used in numerical simulations. Several authors proposed criteria for the proper choice of interface thickness and mobility in order to reach the so-called 'sharp-interface limit'. In this paper the problem is approached by a formal asymptotic expansion of the governing equations. It is shown that the mobility is an effective parameter to be chosen proportional to the square of the interface thickness. The theoretical results are confirmed by numerical simulations for two prototypal flows, namely capillary waves riding the interface and droplets coalescence. The numerical analysis of two different physical problems confirms the theoretical findings and establishes an optimal relationship between the effective parameters of the model., QC 20130213
- Published
- 2013
- Full Text
- View/download PDF
5. The sharp-interface limit of the Cahn–Hilliard/Navier–Stokes model for binary fluids
- Author
-
Magaletti, F., primary, Picano, F., additional, Chinappi, M., additional, Marino, L., additional, and Casciola, C. M., additional
- Published
- 2013
- Full Text
- View/download PDF
6. Developing Advanced Antibacterial Alginic Acid Biomaterials through Dual Functionalization.
- Author
-
Patamia V, Saccullo E, Fuochi V, Magaletti F, Trecarichi L, Furnari S, Furneri PM, Barbera V, Floresta G, and Rescifina A
- Subjects
- Particle Size, Staphylococcus aureus drug effects, Humans, Molecular Structure, Escherichia coli drug effects, Ionic Liquids chemistry, Ionic Liquids pharmacology, Cell Survival drug effects, Alginates chemistry, Alginates pharmacology, Anti-Bacterial Agents pharmacology, Anti-Bacterial Agents chemistry, Anti-Bacterial Agents chemical synthesis, Biocompatible Materials chemistry, Biocompatible Materials pharmacology, Biocompatible Materials chemical synthesis, Microbial Sensitivity Tests, Materials Testing, Alginic Acid chemistry, Alginic Acid pharmacology
- Abstract
This paper delves into the intersection of biomaterials and antibacterial agents, highlighting the importance of alginic acid-based biomaterials. We investigate enhancing antibacterial properties by functionalizing alginic acid with an ionic liquid and a potent chelating agent, tris(hydroxypyridinone) (THP). Initial functionalization with the ionic liquid markedly improves the material's antibacterial efficacy. Subsequent functionalization with THP further enhances this activity, reducing the minimum inhibitory concentration from 6 to 3 mg/mL. Notably, the newly developed dual-functionalized materials exhibit no cytotoxic effects at the concentrations tested, underscoring their potential for safe and effective antibacterial applications. These findings highlight the promising role of dual-functionalized alginic acid biomaterials in developing advanced antibacterial treatments.
- Published
- 2024
- Full Text
- View/download PDF
7. Nature-inspired innovation: Alginic-kojic acid material for sustainable antibacterial and carbon dioxide fixation.
- Author
-
Patamia V, Saccullo E, Magaletti F, Fuochi V, Furnari S, Fiorenza R, Furneri PM, Barbera V, Floresta G, and Rescifina A
- Subjects
- Humans, Biocompatible Materials chemistry, Biocompatible Materials pharmacology, Catalysis, Microbial Sensitivity Tests, Alginates chemistry, Pyrones chemistry, Pyrones pharmacology, Anti-Bacterial Agents chemistry, Anti-Bacterial Agents pharmacology, Carbon Dioxide chemistry, Alginic Acid chemistry
- Abstract
The current environmental consciousness of the world's population encourages researchers to work on new materials that are environmentally benign and able to display the appropriate features for the needed application. To develop high-performing, inexpensive eco-materials, scientists have frequently turned to nature, attempting to mimic its processes' excellent performance at a reasonable price. In this regard, we decided to focus on alginic acid (AA), a polysaccharide widely found in brown algae, and kojic acid (KA), a chelating agent fungi produces. This study proposes rapidly synthesizing a sustainable, biocompatible material (AK) based on AA and KA, employing chlorokojic acid (CKA). The material has a dual function: antibacterial activity on both Gram-positive and Gram-negative bacteria, without any cytotoxic action on human cells in vitro, and catalytic ability to convert CO
2 into cyclic carbonates at atmospheric pressure, without solvents, with high yields, and without the use of metals. Furthermore, the material's insolubility in organic solvents allows it to be easily separated from the reaction product and reused for other catalytic cycles. Both applications have a key role in the medical and environmental fields, combating the outbreak of infections and providing an innovative methodology to fix the CO2 on specific substrates., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF
8. Carbon Black Functionalized with Serinol Pyrrole to Replace Silica in Elastomeric Composites.
- Author
-
Magaletti F, Galbusera M, Gentile D, Giese U, Barbera V, and Galimberti M
- Abstract
Elastomer composites for dynamic mechanical applications with a low dissipation of energy are of great importance in view of their application in tire compounds. In this work, furnace carbon black functionalized with 2-2,5-dimethyl-1 H -pyrrol-1-yl-1,3-propanediol (SP) was used in place of silica in an elastomer composite based on poly(styrene-co-butadiene) from solution anionic polymerization and poly(1,4-cis-isoprene) from Hevea Brasiliensis . The traditional coupling agent used for silica was also used for the CB/SP adduct: 3,3'-bis(triethoxysilylpropyl)tetrasulfide (TESPT). The composite with the CB/SP + TESPT system revealed a lower Payne effect, higher dynamic rigidity, and lower hysteresis, compared to the composite with CB + TESPT, although the latter composite had a higher crosslinking density. The properties of the silica and the CB/SP + TESPT-based composites appear similar, though in the presence of slightly higher hysteresis and lower ultimate properties for the CB/SP-based composite. The use of CB in place of silica allows us to prepare lighter compounds and paves the way for the preparation of tire compounds with lower environmental impacts.
- Published
- 2024
- Full Text
- View/download PDF
9. Pyrrole Compounds from the Two-Step One-Pot Conversion of 2,5-Dimethylfuran for Elastomer Composites with Low Dissipation of Energy.
- Author
-
Naddeo S, Gentile D, Margani F, Prioglio G, Magaletti F, Galimberti M, and Barbera V
- Abstract
A one-pot, two-step process was developed for the preparation of pyrrole compounds from 2,5-dimethylfuran. The first step was the acid-catalyzed ring-opening reaction of 2,5-dimethylfuran (DF), leading to the formation of 2,5-hexanedione (HD). A stoichiometric amount of water and a sub-stoichiometric amount of sulfuric acid were used by heating at 50 °C for 24 h. Chemically pure HD was isolated, with a quantitative yield (up to 95%), as revealed by
1 H-NMR,13 C-NMR, and GC-MS analyses. In the second step, HD was used as the starting material for the synthesis of pyrrole compounds via the Paal-Knorr reaction. Various primary amines were used in stoichiometric amounts.1 H-NMR,13 C-NMR, ESI-Mass, and GC-Mass analyses confirmed that pyrrole compounds were prepared with very good/excellent yields (80-95%), with water as the only co-product. A further purification step was not necessary. The process was characterized by a very high carbon efficiency, up to 80%, and an E-factor down to 0.128, whereas the typical E-factor for fine chemicals is between 5 and 50. Water, a co-product of the second step, can trigger the first step and therefore make the whole process circular. Thus, this synthetic pathway appears to be in line with the requirements of a sustainable chemical process. A pyrrole compound bearing an SH group (SHP) was used for the functionalization of a furnace carbon black (CB). The functionalized CB (CB/SHP) was utilized in place of silica, resulting in a 15% mass reduction of reinforcing filler, in an elastomeric composite based on poly(styrene-co-butadiene) from solution anionic polymerization and poly(1,4-cis-isoprene) from Hevea Brasiliensis . Compared to the silica-based composite, a reduction in the Payne effect of about 25% and an increase in the dynamic rigidity (E' at 70 °C) of about 25% were obtained with CB/SHP.- Published
- 2024
- Full Text
- View/download PDF
10. Hexagonal Boron Nitride as Filler for Silica-Based Elastomer Nanocomposites.
- Author
-
Magaletti F, Prioglio G, Giese U, Barbera V, and Galimberti M
- Abstract
Two-dimensional hexagonal boron nitride (hBN) has attracted tremendous attention over the last few years, thanks to its stable structure and its outstanding properties, such as mechanical strength, thermal conductivity, electrical insulation, and lubricant behavior. This work demonstrates that hBN can also improve the rheological and mechanical properties of elastomer composites when used to partially replace silica. In this work, commercially available pristine hBN (hBN-p) was exfoliated and ball-mill treated in air for different durations (2.5, 5, and 10 h milling). Functionalization occurred with the -NH and -OH groups (hBN-OH). The functional groups were detected using Fourier-Transform Infrared pectroscopy (FT-IR) and were estimated to be up to about 7% through thermogravimetric analysis. The presence of an increased amount of oxygen in hBN-OH was confirmed using Scanning Electron Microscopy coupled with Energy-Dispersive X-ray Spectroscopy. (SEM-EDS). The number of stacked layers, estimated using WAXD analysis, decreased to 8-9 in hBN-OH (10 h milling) from about 130 in hBN-p. High-resolution transmission electron microscopy (HR-TEM) and SEM-EDS revealed the increase in disorder in hBN-OH. hBN-p and hBN-OH were used to partially replace silica by 15% and 30%, respectively, by volume, in elastomer composites based on poly(styrene-co-butadiene) from solution anionic polymerization (S-SBR) and poly(1,4-cis-isoprene) from Hevea Brasiliensis (natural rubber, NR) as the elastomers (volume (mm
3 ) of composites released by the instrument). The use of both hBNs in substitution of 30% of silica led to a lower Payne effect, a higher dynamic rigidity, and an increase in E' of up to about 15% at 70 °C, with similar/lower hysteresis. Indeed, the composites with hBN-OH revealed a better balance of tan delta (higher at low temperatures and lower at high temperatures) and better ultimate properties. The functional groups reasonably promote the interaction of hBN with silica and with the silica's coupling agent, sulfur-based silane, and thus promoted the interaction with the elastomer chains. The volume of the composite, measured using a high-pressure capillary viscometer, increased by about 500% and 400% after one week of storage in the presence of hBN-p and hBN-OH. Hence, both hBNs improved the processability and the shelf life of the composites. Composites obtained using hBN-OH had even filler dispersion without the detachments of the filler from the elastomer matrix, as shown through TEM micrographs. These results pave the way for substantial improvements in the important properties of silica-based composites for tire compounds, used to reduce rolling resistance and thus the improve environmental impacts.- Published
- 2023
- Full Text
- View/download PDF
11. A nanoscale view of the origin of boiling and its dynamics.
- Author
-
Gallo M, Magaletti F, Georgoulas A, Marengo M, De Coninck J, and Casciola CM
- Abstract
In this work, we present a dynamical theory of boiling based on fluctuating hydrodynamics and the diffuse interface approach. The model is able to describe boiling from the stochastic nucleation up to the macroscopic bubble dynamics. It covers, with a modest computational cost, the mesoscale area from nano to micrometers, where most of the controversial observations related to the phenomenon originate. In particular, the role of wettability in the macroscopic observables of boiling is elucidated. In addition, by comparing the ideal case of boiling on ultra-smooth surfaces with a chemically heterogeneous wall, our results will definitively shed light on the puzzling low onset temperatures measured in experiments. Sporadic nanometric spots of hydrophobic wettability will be shown to be enough to trigger the nucleation at low superheat, significantly reducing the temperature of boiling onset, in line with experimental results. The proposed mesoscale approach constitutes the missing link between macroscopic approaches and molecular dynamics simulations and will open a breakthrough pathway toward accurate understanding and prediction., (© 2023. Springer Nature Limited.)
- Published
- 2023
- Full Text
- View/download PDF
12. Adducts of Carbon Black with a Biosourced Janus Molecule for Elastomeric Composites with Lower Dissipation of Energy.
- Author
-
Magaletti F, Margani F, Monti A, Dezyani R, Prioglio G, Giese U, Barbera V, and Galimberti MS
- Abstract
Elastomer composites with low hysteresis are of great importance for sustainable development, as they find application in billions of tires. For these composites, a filler such as silica, able to establish a chemical bond with the elastomer chains, is used, in spite of its technical drawbacks. In this work, a furnace carbon black (CB) functionalized with polar groups was used in replacement of silica, obtaining lower hysteresis. CBN326 was functionalized with 2-(2,5-dimethyl-1 H -pyrrol-1-yl)-1,3-propanediol (serinol pyrrole, SP), and samples of CB/SP adducts were prepared with different SP content, ranging from four to seven parts per hundred carbon (phc). The entire process, from the synthesis of SP to the preparation of the CB/SP adduct, was characterized by a yield close to 80%. The functionalization did not alter the bulk structure of CB. Composites were prepared, based on diene rubbers-poly(1,4- cis -isoprene) from Hevea Brasiliensis and poly(1,4- cis -butadiene) in a first study and synthetic poly(1,4- cis -isoprene) in a second study-and were crosslinked with a sulfur-based system. A CB/silica hybrid filler system (30/35 parts) was used and the partial replacement (66% by volume) of silica with CB/SP was performed. The composites with CB/SP exhibited more efficient crosslinking, a lower Payne effect and higher dynamic rigidity, for all the SP content, with the effect of the functionalized CB consistently increasing the amount of SP. Lower hysteresis was obtained for the composites with CB/SP. A CB/SP adduct with approximately 6 phc of SP, used in place of silica, resulted in a reduction in ΔG'/G' of more than 10% and an increase in E' at 70 °C and in σ
300 in tensile measurements of about 35% and 30%, respectively. The results of this work increase the degrees of freedom for preparing elastomer composites with low hysteresis, allowing for the use of either silica or CB as filler, with a potentially great impact on an industrial scale.- Published
- 2023
- Full Text
- View/download PDF
13. Water cavitation from ambient to high temperatures.
- Author
-
Magaletti F, Gallo M, and Casciola CM
- Abstract
Predicting cavitation has proved a formidable task, particularly for water. Despite the experimental difficulty of controlling the sample purity, there is nowadays substantial consensus on the remarkable tensile strength of water, on the order of -120 MPa at ambient conditions. Recent progress significantly advanced our predictive capability which, however, still considerably depends on elaborate fitting procedures based on the input of external data. Here a self-contained model is discussed which is shown able to accurately reproduce cavitation data for water over the most extended range of temperatures for which accurate experiments are available. The computations are based on a diffuse interface model which, as only inputs, requires a reliable equation of state for the bulk free energy and the interfacial tension. A rare event technique, namely the string method, is used to evaluate the free-energy barrier as the base for determining the nucleation rate and the cavitation pressure. The data allow discussing the role of the Tolman length in determining the nucleation barrier, confirming that, when the size of the cavitation nuclei exceed the thickness of the interfacial layer, the Tolman correction effectively improves the predictions of the plain Classical Nucleation Theory., (© 2021. The Author(s).)
- Published
- 2021
- Full Text
- View/download PDF
14. The detailed acoustic signature of a micro-confined cavitation bubble.
- Author
-
Scognamiglio C, Magaletti F, Izmaylov Y, Gallo M, Casciola CM, and Noblin X
- Abstract
Numerous scenarios exist for a cavitation bubble growing in a liquid. We focus here on cavitation phenomena within water under static tension in a confined environment. Drawing inspiration from the natural materials in plants, we design a novel experimental setup where a micrometric volume of water is confined by a hydrogel-based material. We show that, submerging the sample in a hypertonic solution, the water within the cavity is placed under tension and the acoustic emission produced by the resulting bubble nucleation is precisely detected. This new experimental procedure is able to strongly reduce the acoustic reflections occurring at the hydrogel/air interface with more classical techniques. We also propose a mathematical model to characterise the pressure wave emitted in order to correctly take into account the dissipation effect induced by the visco-elastic behaviour of the confining hydrogel. Both bubble resonant frequency and damping are captured by the model and quantitatively match the values found in the experiments.
- Published
- 2018
- Full Text
- View/download PDF
15. Relaxation of a steep density gradient in a simple fluid: comparison between atomistic and continuum modeling.
- Author
-
Pourali M, Meloni S, Magaletti F, Maghari A, Casciola CM, and Ciccotti G
- Abstract
We compare dynamical nonequilibrium molecular dynamics and continuum simulations of the dynamics of relaxation of a fluid system characterized by a non-uniform density profile. Results match quite well as long as the lengthscale of density nonuniformities are greater than the molecular scale (~10 times the molecular size). In presence of molecular scale features some of the continuum fields (e.g., density and momentum) are in good agreement with atomistic counterparts, but are smoother. On the contrary, other fields, such as the temperature field, present very large difference with respect to reference (atomistic) ones. This is due to the limited accuracy of some of the empirical relations used in continuum models, the equation of state of the fluid in the present example.
- Published
- 2014
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.