1. Unsupervised algorithms to detect single trees in a mixed-species and multilayered Mediterranean forest using LiDAR data
- Author
-
Alvites, Cesar, Santopuoli, Giovanni, Maesano, Mauro, Chirici, Gherardo, Moresi, Federico Valerio, Tognetti, Roberto, Marchetti, Marco, and Lasserre, Bruno
- Subjects
Optical radar -- Usage ,Land cover -- Measurement ,Forest management -- Methods ,Earth sciences - Abstract
Accurate measurement of forest growing stock is a prerequisite for implementing climate-smart forestry strategies. This study deals with the use of airborne laser scanning data to assess carbon stock at the tree level. It aims to demonstrate that the combined use of two unsupervised techniques will improve the accuracy of estimation supporting sustainable forest management. Based on the heterogeneity of tree height and point cloud density, we classified 31 forest stands into four complexity categories. The point cloud of each stand was further divided into three horizontal layers, improving the accuracy of tree detection at tree level for which we calculated volume and carbon stock. The average accuracy of tree detection was 0.48. The accuracy was higher for forest stands with lower tree density and higher frequency of large trees, as well as a dense point cloud (0.65). The prediction of carbon stock was higher with a bias ranging from -0.3% to 1.5% and a root mean square error ranging from 0.14% to 1.48%. Key words: tree detection, airborne laser scanning (ALS), forest structure, carbon stock, climate-smart forestry. La mesure precise du capital forestier en croissance est un prerequis a l'implantation de strategies forestieres intelligentes face au climat. Cette etude porte sur l'utilisation de donnees de balayage laser aeroporte pour evaluer le stock de carbone a l'echelle de l'arbre. Elle vise a demontrer que l'utilisation combinee de deux techniques non supervisees va ameliorer la precision de l'estimation sur laquelle s'appuie un amenagement forestier durable. Sur la base de l'heterogeneite de la hauteur des arbres et de la densite du nuage de points, nous avons classe 31 peuplements forestiers dans quatre categories de complexite. Le nuage de points de chaque peuplement a par la suite ete divise en trois couches horizontales, ce qui ameliore la precision de la detection de chacun des arbres pour lesquels nous avons calcule le volume et le stock de carbone. La precision moyenne de la detection des arbres etait de 0,48. La precision etait plus elevee pour les peuplements forestiers qui avaient une plus faible densite et une frequence plus elevee de gros arbres, ainsi qu'un nuage de points dense (0,65). La prediction du stock de carbone etait plus elevee avec un biais allant de -0,3 a 1,5 % et un ecart moyen quadratique (EMQ) entre 0,14 et 1,48 %. [Traduit par la Redaction] Mots-cles: detection des arbres, balayage laser aeroporte (BLA), structure de la foret, stock de carbone, foresterie intelligente face au climat., 1. Introduction In Europe, forests cover about 35% of the total land area (SoEF 2020) and play a significant role in climate change mitigation thanks to their capacity to remove [...]
- Published
- 2021
- Full Text
- View/download PDF