694 results on '"Madariaga J"'
Search Results
2. Radiation-induced alteration of apatite on the surface of Mars: first in situ observations with SuperCam Raman onboard Perseverance
- Author
-
Clavé, E., Beyssac, O., Bernard, S., Royer, C., Lopez-Reyes, G., Schröder, S., Rammelkamp, K., Forni, O., Fau, A., Cousin, A., Manrique, J. A., Ollila, A., Madariaga, J. M., Aramendia, J., Sharma, S. K., Fornaro, T., Maurice, S., and Wiens, R. C.
- Published
- 2024
- Full Text
- View/download PDF
3. Identifying Shocked Feldspar on Mars Using Perseverance Spectroscopic Instruments: Implications for Geochronology Studies on Returned Samples
- Author
-
Shkolyar, S., Jaret, S. J., Cohen, B. A., Johnson, J. R., Beyssac, O., Madariaga, J. M., Wiens, R. C., Ollila, A., Holm-Alwmark, S., and Liu, Y.
- Published
- 2022
- Full Text
- View/download PDF
4. Autocrine and paracrine purinergic signaling in the most lethal types of cancer
- Author
-
Reyna-Jeldes, M., Díaz-Muñoz, M., Madariaga, J. A., Coddou, C., and Vázquez-Cuevas, F. G.
- Published
- 2021
- Full Text
- View/download PDF
5. Radiation-induced alteration of apatite on the surface of Mars:first in situ observations with SuperCam Raman onboard Perseverance
- Author
-
Clavé, E., Beyssac, O., Bernard, S., Royer, C., Lopez-Reyes, G., Schröder, S., Rammelkamp, K., Forni, O., Fau, A., Cousin, A., Manrique, J. A., Ollila, A., Madariaga, J. M., Aramendia, J., Sharma, S. K., Fornaro, T., Maurice, S., Wiens, R. C., Acosta-Maeda, Tayro, Agard, Christophe, Alberquilla, Fernando, Alvarez Llamas, Cesar, Anderson, Ryan, Applin, Daniel, Aramendia, Julene, Arana, Gorka, Beal, Roberta, Beck, Pierre, Bedford, Candice, Benzerara, Karim, Bernard, Sylvain, Bernardi, Pernelle, Bertrand, Tanguy, Beyssac, Olivier, Bloch, Thierry, Bonnet, Jean-Yves, Bousquet, Bruno, Boustelitane, Abderrahmane, Bouyssou Mann, Magali, Brand, Matthew, Cais, Philippe, Caravaca, Gwenael, De Pinedo, Kepa Castro Ortiz, Cazalla, Charlene, Charpentier, Antoine, Chide, Baptiste, Clavé, Elise, Clegg, Samuel, Cloutis, Ed, Coloma, Leire, Comellas, Jade, Connell, Stephanie, Cousin, Agnes, DeFlores, Lauren, Dehouck, Erwin, Delapp, Dot, Perez, Tomas Delgado, Deron, Robin, Donny, Christophe, Doressoundiram, Alain, Dromart, Gilles, Essunfeld, Ari, Fabre, Cecile, Fau, Amaury, Fischer, Woodward, Follic, Hugo, Forni, Olivier, Fouchet, Thierry, Francis, Raymond, Frydenvang, Jens, Gabriel, Travis, Gallegos, Zachary, García-Florentino, Cristina, Gasda, Patrick, Gasnault, Olivier, Gibbons, Erin, Gillier, Martin, Gomez, Laura, Gonzalez, Sofia, Grotzinger, John, Huidobro, Jennifer, Jacob, Xavier, Johnson, Jeffrey, Kalucha, Hemani, Kelly, Evan, Knutsen, Elise, Lacombe, Gaetan, Lamarque, Florentin, Lanza, Nina, Larmat, Carene, Laserna, Javier, Lasue, Jeremie, Le Deit, Laetitia, Le Mouelic, Stephane, Legett, Chip, Leveille, Richard, Lewin, Eric, Little, Cynthia, Loche, Mattéo, Lopez Reyes, Guillermo, Lorenz, Ralph, Lorigny, Eric, Madariaga, Juan Manuel, Madsen, Morten, Mandon, Lucia, Manelski, Henry, Mangold, Nicolas, Martinez, Jose Manrique, Martin, Noah, Martinez Frias, Jesus, Maurice, Sylvestre, Mcconnochie, Timothy, McLennan, Scott, Melikechi, Noureddine, Meslin, Pierre Yves, Meunier, Frederique, Mimoun, David, Montagnac, Gilles, Montmessin, Franck, Moros, Javier, Mousset, Valerie, Murdoch, Naomi, Nelson, Tony, Newell, Ray, Nicolas, Cécile, Newsom, Horton, O’Shea, Colleen, Ollila, Ann, Pantalacci, Philippe, Parmentier, Jonathan, Peret, Laurent, Perrachon, Pascal, Pilleri, Paolo, Pilorget, Cédric, Pinet, Patrick, Poblacion, Iratxe, Poulet, Francois, Quantin Nataf, Cathy, Rapin, William, Reyes, Ivan, Rigaud, Laurent, Robinson, Scott, Rochas, Ludovic, Root, Margaret, Ropert, Eloise, Rouverand, Léa, Royer, Clement, Perez, Fernando Rull, Said, David, Sans-Jofre, Pierre, Schroeder, Susanne, Seel, Fabian, Sharma, Shiv, Sheridan, Amanda, Sobron Sanchez, Pablo, Stcherbinine, Aurélien, Stott, Alex, Toplis, Michael, Turenne, Nathalie, Veneranda, Marco, Venhaus, Dawn, Wiens, Roger, Wolf, Uriah, Zastrow, Allison, Clavé, E., Beyssac, O., Bernard, S., Royer, C., Lopez-Reyes, G., Schröder, S., Rammelkamp, K., Forni, O., Fau, A., Cousin, A., Manrique, J. A., Ollila, A., Madariaga, J. M., Aramendia, J., Sharma, S. K., Fornaro, T., Maurice, S., Wiens, R. C., Acosta-Maeda, Tayro, Agard, Christophe, Alberquilla, Fernando, Alvarez Llamas, Cesar, Anderson, Ryan, Applin, Daniel, Aramendia, Julene, Arana, Gorka, Beal, Roberta, Beck, Pierre, Bedford, Candice, Benzerara, Karim, Bernard, Sylvain, Bernardi, Pernelle, Bertrand, Tanguy, Beyssac, Olivier, Bloch, Thierry, Bonnet, Jean-Yves, Bousquet, Bruno, Boustelitane, Abderrahmane, Bouyssou Mann, Magali, Brand, Matthew, Cais, Philippe, Caravaca, Gwenael, De Pinedo, Kepa Castro Ortiz, Cazalla, Charlene, Charpentier, Antoine, Chide, Baptiste, Clavé, Elise, Clegg, Samuel, Cloutis, Ed, Coloma, Leire, Comellas, Jade, Connell, Stephanie, Cousin, Agnes, DeFlores, Lauren, Dehouck, Erwin, Delapp, Dot, Perez, Tomas Delgado, Deron, Robin, Donny, Christophe, Doressoundiram, Alain, Dromart, Gilles, Essunfeld, Ari, Fabre, Cecile, Fau, Amaury, Fischer, Woodward, Follic, Hugo, Forni, Olivier, Fouchet, Thierry, Francis, Raymond, Frydenvang, Jens, Gabriel, Travis, Gallegos, Zachary, García-Florentino, Cristina, Gasda, Patrick, Gasnault, Olivier, Gibbons, Erin, Gillier, Martin, Gomez, Laura, Gonzalez, Sofia, Grotzinger, John, Huidobro, Jennifer, Jacob, Xavier, Johnson, Jeffrey, Kalucha, Hemani, Kelly, Evan, Knutsen, Elise, Lacombe, Gaetan, Lamarque, Florentin, Lanza, Nina, Larmat, Carene, Laserna, Javier, Lasue, Jeremie, Le Deit, Laetitia, Le Mouelic, Stephane, Legett, Chip, Leveille, Richard, Lewin, Eric, Little, Cynthia, Loche, Mattéo, Lopez Reyes, Guillermo, Lorenz, Ralph, Lorigny, Eric, Madariaga, Juan Manuel, Madsen, Morten, Mandon, Lucia, Manelski, Henry, Mangold, Nicolas, Martinez, Jose Manrique, Martin, Noah, Martinez Frias, Jesus, Maurice, Sylvestre, Mcconnochie, Timothy, McLennan, Scott, Melikechi, Noureddine, Meslin, Pierre Yves, Meunier, Frederique, Mimoun, David, Montagnac, Gilles, Montmessin, Franck, Moros, Javier, Mousset, Valerie, Murdoch, Naomi, Nelson, Tony, Newell, Ray, Nicolas, Cécile, Newsom, Horton, O’Shea, Colleen, Ollila, Ann, Pantalacci, Philippe, Parmentier, Jonathan, Peret, Laurent, Perrachon, Pascal, Pilleri, Paolo, Pilorget, Cédric, Pinet, Patrick, Poblacion, Iratxe, Poulet, Francois, Quantin Nataf, Cathy, Rapin, William, Reyes, Ivan, Rigaud, Laurent, Robinson, Scott, Rochas, Ludovic, Root, Margaret, Ropert, Eloise, Rouverand, Léa, Royer, Clement, Perez, Fernando Rull, Said, David, Sans-Jofre, Pierre, Schroeder, Susanne, Seel, Fabian, Sharma, Shiv, Sheridan, Amanda, Sobron Sanchez, Pablo, Stcherbinine, Aurélien, Stott, Alex, Toplis, Michael, Turenne, Nathalie, Veneranda, Marco, Venhaus, Dawn, Wiens, Roger, Wolf, Uriah, and Zastrow, Allison
- Abstract
Planetary exploration relies considerably on mineral characterization to advance our understanding of the solar system, the planets and their evolution. Thus, we must understand past and present processes that can alter materials exposed on the surface, affecting space mission data. Here, we analyze the first dataset monitoring the evolution of a known mineral target in situ on the Martian surface, brought there as a SuperCam calibration target onboard the Perseverance rover. We used Raman spectroscopy to monitor the crystalline state of a synthetic apatite sample over the first 950 Martian days (sols) of the Mars2020 mission. We note significant variations in the Raman spectra acquired on this target, specifically a decrease in the relative contribution of the Raman signal to the total signal. These observations are consistent with the results of a UV-irradiation test performed in the laboratory under conditions mimicking ambient Martian conditions. We conclude that the observed evolution reflects an alteration of the material, specifically the creation of electronic defects, due to its exposure to the Martian environment and, in particular, UV irradiation. This ongoing process of alteration of the Martian surface needs to be taken into account for mineralogical space mission data analysis.
- Published
- 2024
6. Probable Concretions Observed in the Shenandoah Formation of Jezero Crater, Mars and Comparison With Terrestrial Analogs.
- Author
-
Kalucha, H., Broz, A., Randazzo, N., Aramendia, J., Madariaga, J. M., Garczynski, B., Lanza, N., Mandon, L., Fouchet, T., Catling, D. C., Fairén, A. G., Kivrak, L., Gasda, P. J., Núñez, J. I., Cloutis, E., Hand, K. P., Rice, J. W., Fischer, W. W., Maurice, S., and Wiens, R. C.
- Subjects
MARTIAN craters ,BEDROCK ,MICROBIAL metabolism ,CLAY minerals ,CALCIUM salts - Abstract
The Mars 2020 Perseverance Rover imaged diagenetic textural features in four separate sedimentary units in its exploration of the 25‐m‐thick Shenandoah formation at Jezero Crater, Mars, that we interpreted as probable concretions. These concretions were most abundant in the Hogwallow Flats member of the Shenandoah formation and were restricted to the light‐toned, platy, sulfur‐cemented bedrock at outcrop surfaces, whereas the finely laminated, darker toned, mottled and deformed strata lack concretions. The concretions also had a wide range of morphologies including concentric, oblate, urn, and spheroidal shaped forms that were not clustered, and ranged in size from ∼1 to 16 mm with a median of 2.65 mm. The elemental composition of the concretions compared to the bedrock had greater abundance of magnesium and calcium salts, silicates, and possibly hematite. We compared these Jezero Crater concretions to the geochemistry of concretions from previously published studies and from two new terrestrial analog sites (Gallup Formation, New Mexico and Torrey Pines, California). In addition, we measured organic carbon content of three terrestrial sedimentary analogs of increasing age that contain concretions (Torrey Pines (Pleistocene), Gallup Formation (∼89 Ma), and Moodies Group (∼3.2 Ga)). All measured concretions contained significant concentrations of organic carbon with the maximum organic carbon content (∼2 wt. % Total organic carbon) found in the Moodies Group concretions. Organic carbon abundances in terrestrial concretions was controlled more by the formation mechanism and relative timing of concretion development rather than deposit age. These findings suggested that concretions at Jezero Crater reflect local sites of enhanced biosignature preservation potential. Plain Language Summary: The Perseverance Rover discovered concretions in its exploration of the rock packages at Jezero Crater, Mars and one of the sample return cores was collected from concretion‐rich bedrock. Concretions are resistant cement in the rock that are found in many shapes (usually spherical or oblate) and range from millimeter to meter size scales on Earth; they can be formed through inorganic water‐rock reactions or facilitated by microbial metabolisms. We documented the abundance, size, composition, and shape of the concretions to understand how these features were formed. We found that the concretions are mixtures of salts, clay minerals, and iron oxides. We compared these results to terrestrial concretions with similar mineral compositions and measured the organic carbon in four terrestrial analogs. Comparisons with terrestrial concretions in this study and the literature suggested that the concretion composition in Jezero Crater could have high organic preservation potential. Thus, the concretions in Jezero Crater may retain organic carbon and other biosignatures and might therefore be considered as high priority samples of astrobiological interest out of the current sample suite for return to Earth. Key Points: Jezero Crater concretions are variably enriched in Si, Ca, and Mg salts, and Fe oxidesTerrestrial concretions of similar mineralogy analyzed in this study contain significant organic carbon phasesBased on terrestrial analogs, Jezero Crater concretions may represent sites of enhanced biosignature preservation potential [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
7. The SuperCam Instrument Suite on the Mars 2020 Rover: Science Objectives and Mast-Unit Description
- Author
-
Maurice, S., Wiens, R. C., Bernardi, P., Caïs, P., Robinson, S., Nelson, T., Gasnault, O., Reess, J.-M., Deleuze, M., Rull, F., Manrique, J.-A., Abbaki, S., Anderson, R. B., André, Y., Angel, S. M., Arana, G., Battault, T., Beck, P., Benzerara, K., Bernard, S., Berthias, J.-P., Beyssac, O., Bonafous, M., Bousquet, B., Boutillier, M., Cadu, A., Castro, K., Chapron, F., Chide, B., Clark, K., Clavé, E., Clegg, S., Cloutis, E., Collin, C., Cordoba, E. C., Cousin, A., Dameury, J.-C., D’Anna, W., Daydou, Y., Debus, A., Deflores, L., Dehouck, E., Delapp, D., De Los Santos, G., Donny, C., Doressoundiram, A., Dromart, G., Dubois, B., Dufour, A., Dupieux, M., Egan, M., Ervin, J., Fabre, C., Fau, A., Fischer, W., Forni, O., Fouchet, T., Frydenvang, J., Gauffre, S., Gauthier, M., Gharakanian, V., Gilard, O., Gontijo, I., Gonzalez, R., Granena, D., Grotzinger, J., Hassen-Khodja, R., Heim, M., Hello, Y., Hervet, G., Humeau, O., Jacob, X., Jacquinod, S., Johnson, J. R., Kouach, D., Lacombe, G., Lanza, N., Lapauw, L., Laserna, J., Lasue, J., Le Deit, L., Le Mouélic, S., Le Comte, E., Lee, Q.-M., Legett, IV, C., Leveille, R., Lewin, E., Leyrat, C., Lopez-Reyes, G., Lorenz, R., Lucero, B., Madariaga, J. M., Madsen, S., Madsen, M., Mangold, N., Manni, F., Mariscal, J.-F., Martinez-Frias, J., Mathieu, K., Mathon, R., McCabe, K. P., McConnochie, T., McLennan, S. M., Mekki, J., Melikechi, N., Meslin, P.-Y., Micheau, Y., Michel, Y., Michel, J. M., Mimoun, D., Misra, A., Montagnac, G., Montaron, C., Montmessin, F., Moros, J., Mousset, V., Morizet, Y., Murdoch, N., Newell, R. T., Newsom, H., Nguyen Tuong, N., Ollila, A. M., Orttner, G., Oudda, L., Pares, L., Parisot, J., Parot, Y., Pérez, R., Pheav, D., Picot, L., Pilleri, P., Pilorget, C., Pinet, P., Pont, G., Poulet, F., Quantin-Nataf, C., Quertier, B., Rambaud, D., Rapin, W., Romano, P., Roucayrol, L., Royer, C., Ruellan, M., Sandoval, B. F., Sautter, V., Schoppers, M. J., Schröder, S., Seran, H.-C., Sharma, S. K., Sobron, P., Sodki, M., Sournac, A., Sridhar, V., Standarovsky, D., Storms, S., Striebig, N., Tatat, M., Toplis, M., Torre-Fdez, I., Toulemont, N., Velasco, C., Veneranda, M., Venhaus, D., Virmontois, C., Viso, M., Willis, P., and Wong, K. W.
- Published
- 2021
- Full Text
- View/download PDF
8. SuperCam Calibration Targets: Design and Development
- Author
-
Manrique, J. A., Lopez-Reyes, G., Cousin, A., Rull, F., Maurice, S., Wiens, R. C., Madsen, M. B., Madariaga, J. M., Gasnault, O., Aramendia, J., Arana, G., Beck, P., Bernard, S., Bernardi, P., Bernt, M. H., Berrocal, A., Beyssac, O., Caïs, P., Castro, C., Castro, K., Clegg, S. M., Cloutis, E., Dromart, G., Drouet, C., Dubois, B., Escribano, D., Fabre, C., Fernandez, A., Forni, O., Garcia-Baonza, V., Gontijo, I., Johnson, J., Laserna, J., Lasue, J., Madsen, S., Mateo-Marti, E., Medina, J., Meslin, P.-Y., Montagnac, G., Moral, A., Moros, J., Ollila, A. M., Ortega, C., Prieto-Ballesteros, O., Reess, J. M., Robinson, S., Rodriguez, J., Saiz, J., Sanz-Arranz, J. A., Sard, I., Sautter, V., Sobron, P., Toplis, M., and Veneranda, M.
- Published
- 2020
- Full Text
- View/download PDF
9. Samples Collected From the Floor of Jezero Crater With the Mars 2020 Perseverance Rover
- Author
-
Simon, J. I., primary, Hickman‐Lewis, K., additional, Cohen, B. A., additional, Mayhew, L. E., additional, Shuster, D. L., additional, Debaille, V., additional, Hausrath, E. M., additional, Weiss, B. P., additional, Bosak, T., additional, Zorzano, M.‐P., additional, Amundsen, H. E. F., additional, Beegle, L. W., additional, Bell, J. F., additional, Benison, K. C., additional, Berger, E. L., additional, Beyssac, O., additional, Brown, A. J., additional, Calef, F., additional, Casademont, T. M., additional, Clark, B., additional, Clavé, E., additional, Crumpler, L., additional, Czaja, A. D., additional, Fairén, A. G., additional, Farley, K. A., additional, Flannery, D. T., additional, Fornaro, T., additional, Forni, O., additional, Gómez, F., additional, Goreva, Y., additional, Gorin, A., additional, Hand, K. P., additional, Hamran, S.‐E., additional, Henneke, J., additional, Herd, C. D. K., additional, Horgan, B. H. N., additional, Johnson, J. R., additional, Joseph, J., additional, Kronyak, R. E., additional, Madariaga, J. M., additional, Maki, J. N., additional, Mandon, L., additional, McCubbin, F. M., additional, McLennan, S. M., additional, Moeller, R. C., additional, Newman, C. E., additional, Núñez, J. I., additional, Pascuzzo, A. C., additional, Pedersen, D. A., additional, Poggiali, G., additional, Pinet, P., additional, Quantin‐Nataf, C., additional, Rice, M., additional, Rice, J. W., additional, Royer, C., additional, Schmidt, M., additional, Sephton, M., additional, Sharma, S., additional, Siljeström, S., additional, Stack, K. M., additional, Steele, A., additional, Sun, V. Z., additional, Udry, A., additional, VanBommel, S., additional, Wadhwa, M., additional, Wiens, R. C., additional, Williams, A. J., additional, and Williford, K. H., additional
- Published
- 2023
- Full Text
- View/download PDF
10. Corporate social responsibility, customer satisfaction, corporate reputation, and firms’ market value: Evidence from the automobile industry
- Author
-
García-Madariaga, J. and Rodríguez-Rivera, F.
- Published
- 2017
- Full Text
- View/download PDF
11. A first evaluation of the usefulness of Kudzu starch in cultural heritage restoration
- Author
-
Lama, E., Veneranda, M., Prieto-Taboada, N., Hernando, F. L., Rodríguez Laso, M. D., and Madariaga, J. M.
- Published
- 2020
- Full Text
- View/download PDF
12. A Mars 2020 Perseverance SuperCam Perspective on the Igneous Nature of the Máaz Formation at Jezero Crater and Link With Séítah, Mars
- Author
-
Udry, A., Ostwald, A., Sautter, V., Cousin, A., Beyssac, O., Forni, O., Dromart, G., Benzerara, K., Nachon, M., Horgan, B., Mandon, L., Clavé, E., Dehouck, E., Gibbons, E., Alwmark, S., Ravanis, E., Wiens, R. C., Legett, C., Anderson, R., Pilleri, P., Mangold, N., Schmidt, M., Liu, Y., Núñez, J. I., Castro, K., Madariaga, J. M., Kizovski, T., Beck, P., Bernard, S., Bosak, T., Brown, A., Clegg, S., Cloutis, E., Cohen, B., Connell, S., Crumpler, L., Debaille, V., Flannery, D., Fouchet, T., Gabriel, T. S.J., Gasnault, O., Herd, C. D.K., Johnson, J., Manrique, J. A., Maurice, S., McCubbin, F. M., McLennan, S., Ollila, A., Pinet, P., Quantin-Nataf, C., Udry, A., Ostwald, A., Sautter, V., Cousin, A., Beyssac, O., Forni, O., Dromart, G., Benzerara, K., Nachon, M., Horgan, B., Mandon, L., Clavé, E., Dehouck, E., Gibbons, E., Alwmark, S., Ravanis, E., Wiens, R. C., Legett, C., Anderson, R., Pilleri, P., Mangold, N., Schmidt, M., Liu, Y., Núñez, J. I., Castro, K., Madariaga, J. M., Kizovski, T., Beck, P., Bernard, S., Bosak, T., Brown, A., Clegg, S., Cloutis, E., Cohen, B., Connell, S., Crumpler, L., Debaille, V., Flannery, D., Fouchet, T., Gabriel, T. S.J., Gasnault, O., Herd, C. D.K., Johnson, J., Manrique, J. A., Maurice, S., McCubbin, F. M., McLennan, S., Ollila, A., Pinet, P., and Quantin-Nataf, C.
- Abstract
The Máaz formation consists of the first lithologies in Jezero crater analyzed by the Mars 2020 Perseverance rover. This formation, investigated from Sols (Martian days) 1 to 201 and from Sols 343 to 382, overlies the Séítah formation (previously described as an olivine-rich cumulate) and was initially suggested to represent an igneous crater floor unit based on orbital analyses. Using SuperCam data, we conducted a detailed textural, chemical, and mineralogical analyses of the Máaz formation and the Content member of the Séítah formation. We conclude that the Máaz formation and the Content member are igneous and consist of different lava flows and/or possibly pyroclastic flows with complex textures, including vesicular and non-vesicular rocks with different grain sizes. The Máaz formation rocks exhibit some of the lowest Mg# (=molar 100 × MgO/MgO + FeO) of all Martian igneous rocks analyzed so far (including meteorites and surface rocks) and show similar basaltic to basaltic-andesitic compositions. Their mineralogy is dominated by Fe-rich augite to possibly ferrosilite and plagioclase, and minor phases such as Fe-Ti oxides and Si-rich phases. They show a broad diversity of both compositions and textures when compared to Martian meteorites and other surface rocks. The different Máaz and Content lava or pyroclastic flows all originate from the same parental magma and/or the same magmatic system, but are not petrogenetically linked to the Séítah formation. The study of returned Máaz samples in Earth-based laboratories will help constrain the formation of these rocks, calibrate Martian crater counting, and overall, improve our understanding of magmatism on Mars.
- Published
- 2023
13. Samples Collected from the Floor of Jezero Crater with the Mars 2020 Perseverance Rover
- Author
-
Simon, J. I., Hickman-Lewis, K., Cohen, B. A., Mayhew, L.E., Shuster, D.L., Debaille, V., Hausrath, E. M., Weiss, B.P., Bosak, T., Zorzano, M.-P., Amundsen, H. E. F., Beegle, L.W., Bell III, J.F., Benison, K. C., Berger, E. L., Beyssac, O., Brown, A.J., Calef, F., Casademont, T. M., Clark, B., Clavé, E., Crumpler, L., Czaja, A. D., Fairén, A. G., Farley, K. A., Flannery, D. T., Fornaro, T., Forni, O., Gómez, F., Goreva, Y., Gorin, A., Hand, K. P., Hamran, S.-E., Henneke, J., Herd, C. D. K., Horgan, B. H. N., Johnson, J. R., Joseph, J., Kronyak, R. E., Madariaga, J. M., Maki, J. N., Mandon, L., McCubbin, F. M., McLennan, S. M., Moeller, R. C., Newman, C. E., Núñez, J. I., Pascuzzo, A. C., Pedersen, D. A., Poggiali, G., Pinet, P., Quantin-Nataf, C., Rice, M., Rice Jr., J. W., Royer, C., Schmidt, M., Sephton, M., Sharma, S., Siljeström, S., Stack, K. M., Steele, A., Sun, V. Z., Udry, A., VanBommel, S., Wadhwa, M., Wiens, R. C., Williams, A. J., Williford, K. H., Simon, J. I., Hickman-Lewis, K., Cohen, B. A., Mayhew, L.E., Shuster, D.L., Debaille, V., Hausrath, E. M., Weiss, B.P., Bosak, T., Zorzano, M.-P., Amundsen, H. E. F., Beegle, L.W., Bell III, J.F., Benison, K. C., Berger, E. L., Beyssac, O., Brown, A.J., Calef, F., Casademont, T. M., Clark, B., Clavé, E., Crumpler, L., Czaja, A. D., Fairén, A. G., Farley, K. A., Flannery, D. T., Fornaro, T., Forni, O., Gómez, F., Goreva, Y., Gorin, A., Hand, K. P., Hamran, S.-E., Henneke, J., Herd, C. D. K., Horgan, B. H. N., Johnson, J. R., Joseph, J., Kronyak, R. E., Madariaga, J. M., Maki, J. N., Mandon, L., McCubbin, F. M., McLennan, S. M., Moeller, R. C., Newman, C. E., Núñez, J. I., Pascuzzo, A. C., Pedersen, D. A., Poggiali, G., Pinet, P., Quantin-Nataf, C., Rice, M., Rice Jr., J. W., Royer, C., Schmidt, M., Sephton, M., Sharma, S., Siljeström, S., Stack, K. M., Steele, A., Sun, V. Z., Udry, A., VanBommel, S., Wadhwa, M., Wiens, R. C., Williams, A. J., and Williford, K. H.
- Abstract
The first samples collected by the Mars 2020 mission represent units exposed on the Jezero Crater floor, from the potentially oldest Séítah formation outcrops to the potentially youngest rocks of the heavily cratered Máaz formation. Surface investigations reveal landscape-to-microscopic textural, mineralogical, and geochemical evidence for igneous lithologies, some possibly emplaced as lava flows. The samples contain major rock-forming minerals such as pyroxene, olivine, and feldspar, accessory minerals including oxides and phosphates, and evidence for various degrees of aqueous activity in the form of water-soluble salt, carbonate, sulfate, iron oxide, and iron silicate minerals. Following sample return, the compositions and ages of these variably altered igneous rocks are expected to reveal the geophysical and geochemical nature of the planet’s interior at the time of emplacement, characterize martian magmatism, and place timing constraints on geologic processes, both in Jezero Crater and more widely on Mars. Petrographic observations and geochemical analyses, coupled with geochronology of secondary minerals, can also reveal the timing of aqueous activity as well as constrain the chemical and physical conditions of the environments in which these minerals precipitated, and the nature and composition of organic compounds preserved in association with these phases. Returned samples from these units will help constrain the crater chronology of Mars and the global evolution of the planet’s interior, for understanding the processes that formed Jezero Crater floor units, and for constraining the style and duration of aqueous activity in Jezero Crater, past habitability, and cycling of organic elements in Jezero Crater.
- Published
- 2023
14. Multi-analytical characterization of an oncoid from a high altitude hypersaline lake using techniques employed in the Mars2020 and Rosalind Franklin missions on Mars
- Author
-
Agencia Estatal de Investigación (España), 0000-0001-8302-8583, 0000-0003-1568-4591, 0000-0002-2609-4485, 0000-0002-7185-2791, 0000-0002-9162-3734, Huidobro, J, Madariaga, J M, Carrizo, D, Laserna, J L, Rull, F, Martínez-Frías, J., Aramendia, J, Sánchez-García, L, García-Gómez, L, Vignale, F A, Farías, M E, Veneranda, M, Población, I, Cabalín, L M, López-Reyes, G, Coloma, L, García-Florentino, C, Arana, G, Castro, K, Delgado, T, Álvarez-Llamas, C, Fortes, F J, Manrique, J A, Agencia Estatal de Investigación (España), 0000-0001-8302-8583, 0000-0003-1568-4591, 0000-0002-2609-4485, 0000-0002-7185-2791, 0000-0002-9162-3734, Huidobro, J, Madariaga, J M, Carrizo, D, Laserna, J L, Rull, F, Martínez-Frías, J., Aramendia, J, Sánchez-García, L, García-Gómez, L, Vignale, F A, Farías, M E, Veneranda, M, Población, I, Cabalín, L M, López-Reyes, G, Coloma, L, García-Florentino, C, Arana, G, Castro, K, Delgado, T, Álvarez-Llamas, C, Fortes, F J, and Manrique, J A
- Abstract
In this work, a geological sample of great astrobiological interest was studied through analytical techniques that are currently operating in situ on Mars and others that will operate in the near future. The sample analyzed consisted of an oncoid, which is a type of microbialite, collected in the Salar Carachi Pampa, Argentina. The main peculiarity of microbialites is that they are organo-sedimentary deposits formed by the in situ fixation and precipitation of calcium carbonate due to the growth and metabolic activities of microorganisms. For this reason, the Carachi Pampa oncoid was selected as a Martian analog for astrobiogeochemistry study. In this sense, the sample was characterized by means of the PIXL-like, SuperCam-like and SHERLOC-like instruments, which represent instruments on board the NASA Perseverance rover, and by means of RLS-like and MOMA-like instruments, which represent instruments on board the future ESA Rosalind Franklin rover. It was possible to verify that the most important conclusions and discoveries have been obtained from the combination of the results. Likewise, it was also shown that Perseverance rover-like remote-sensing instruments allowed a first detailed characterization of the biogeochemistry of the Martian surface. With this first characterization, areas of interest for in-depth analysis with Rosalind Franklin-like instruments could be identified. Therefore, from a first remote-sensing elemental identification (PIXL-like instrument), followed by a remote-sensing molecular characterization (SuperCam and SHERLOC-like instruments) and ending with an in-depth microscopic analysis (RLS and MOMA-like instruments), a wide variety of compounds were found. On the one hand, the expected minerals were carbonates, such as aragonite, calcite and high-magnesium calcite. On the other hand, unexpected compounds consisted of minerals related to the Martian/terrestrial surface (feldspars, pyroxenes, hematite) and organic compounds related to the past
- Published
- 2023
15. An approach for using iterative learning for controlling the jet penetration depth in abrasive waterjet milling
- Author
-
Rabani, A., Madariaga, J., Bouvier, C., and Axinte, D.
- Published
- 2016
- Full Text
- View/download PDF
16. Contribution to thermodiffusion coefficient measurements in DCMIX project
- Author
-
Alonso de Mezquia, David, Larrañaga, Miren, Bou-Ali, M. Mounir, Madariaga, J. Antonio, Santamaría, Carlos, and Platten, J. Karl
- Published
- 2015
- Full Text
- View/download PDF
17. Aqueously altered igneous rocks sampled on the floor of Jezero crater, Mars
- Author
-
Farley, K. A., primary, Stack, K. M., additional, Shuster, D. L., additional, Horgan, B. H. N., additional, Hurowitz, J. A., additional, Tarnas, J. D., additional, Simon, J. I., additional, Sun, V. Z., additional, Scheller, E. L., additional, Moore, K. R., additional, McLennan, S. M., additional, Vasconcelos, P. M., additional, Wiens, R. C., additional, Treiman, A. H., additional, Mayhew, L. E., additional, Beyssac, O., additional, Kizovski, T. V., additional, Tosca, N. J., additional, Williford, K. H., additional, Crumpler, L. S., additional, Beegle, L. W., additional, Bell, J. F., additional, Ehlmann, B. L., additional, Liu, Y., additional, Maki, J. N., additional, Schmidt, M. E., additional, Allwood, A. C., additional, Amundsen, H. E. F., additional, Bhartia, R., additional, Bosak, T., additional, Brown, A. J., additional, Clark, B. C., additional, Cousin, A., additional, Forni, O., additional, Gabriel, T. S. J., additional, Goreva, Y., additional, Gupta, S., additional, Hamran, S.-E., additional, Herd, C. D. K., additional, Hickman-Lewis, K., additional, Johnson, J. R., additional, Kah, L. C., additional, Kelemen, P. B., additional, Kinch, K. B., additional, Mandon, L., additional, Mangold, N., additional, Quantin-Nataf, C., additional, Rice, M. S., additional, Russell, P. S., additional, Sharma, S., additional, Siljeström, S., additional, Steele, A., additional, Sullivan, R., additional, Wadhwa, M., additional, Weiss, B. P., additional, Williams, A. J., additional, Wogsland, B. V., additional, Willis, P. A., additional, Acosta-Maeda, T. A., additional, Beck, P., additional, Benzerara, K., additional, Bernard, S., additional, Burton, A. S., additional, Cardarelli, E. L., additional, Chide, B., additional, Clavé, E., additional, Cloutis, E. A., additional, Cohen, B. A., additional, Czaja, A. D., additional, Debaille, V., additional, Dehouck, E., additional, Fairén, A. G., additional, Flannery, D. T., additional, Fleron, S. Z., additional, Fouchet, T., additional, Frydenvang, J., additional, Garczynski, B. J., additional, Gibbons, E. F., additional, Hausrath, E. M., additional, Hayes, A. G., additional, Henneke, J., additional, Jørgensen, J. L., additional, Kelly, E. M., additional, Lasue, J., additional, Le Mouélic, S., additional, Madariaga, J. M., additional, Maurice, S., additional, Merusi, M., additional, Meslin, P.-Y., additional, Milkovich, S. M., additional, Million, C. C., additional, Moeller, R. C., additional, Núñez, J. I., additional, Ollila, A. M., additional, Paar, G., additional, Paige, D. A., additional, Pedersen, D. A. K., additional, Pilleri, P., additional, Pilorget, C., additional, Pinet, P. C., additional, Rice, J. W., additional, Royer, C., additional, Sautter, V., additional, Schulte, M., additional, Sephton, M. A., additional, Sharma, S. K., additional, Sholes, S. F., additional, Spanovich, N., additional, St. Clair, M., additional, Tate, C. D., additional, Uckert, K., additional, VanBommel, S. J., additional, Yanchilina, A. G., additional, and Zorzano, M.-P., additional
- Published
- 2022
- Full Text
- View/download PDF
18. Developing Tailored Data Combination Strategies to Optimize the SuperCam Classification of Carbonate Phases on Mars.
- Author
-
Veneranda, M., Manrique, J. A., Lopez‐Reyes, G., Julve‐Gonzalez, S., Rull, F., Alvarez Llamas, C., Delgado Pérez, T., Gibbons, E., Clavé, E., Cloutis, E., Huidobro, J., Castro, K., Madariaga, J. M., Randazzo, N., Brown, A., Willis, P., Maurice, S., and Wiens, R. C.
- Subjects
LASER-induced breakdown spectroscopy ,CARBONATE minerals ,FISHER discriminant analysis ,MARS (Planet) ,PRINCIPAL components analysis ,DISCRIMINANT analysis ,GEOLOGICAL modeling ,NAIVE Bayes classification - Abstract
The SuperCam instrument onboard the Mars 2020 Perseverance rover investigates Martian geological targets by a combination of multiple spectroscopic techniques. As Raman, Visible‐Infrared Spectroscopy, and Laser‐Induced Breakdown Spectroscopy (LIBS) spectra deliver complementary information about the interrogated sample, the multivariate analysis of combined spectroscopic data sets is here proposed as a tool to optimize the SuperCam capability to discriminate mineral phases on Mars. For this purpose, the laboratory study of carbonate phases within the Ca‐Mg‐Fe ternary system were selected as representative case of study. After the characterization of model samples, the discrimination capability of mono analytical Raman, VISIR, and LIBS data sets was evaluated by applying a chemometric approach based on the combination of principal component analysis (for sample clustering) and Linear Discriminant Analysis (for mineral classification). Afterward, the low‐level combination (LL) of Raman, VISIR, and LIBS data was achieved by concatenating their spectra into a single data matrix. The mineral classification achieved by LL data sets outperformed the mono analytical ones, thus proving the complementarity between molecular and elemental spectroscopic techniques. Mineral classification was further improved by using a mid‐level data combination strategy. After evaluating benefits and limitations afforded by the proposed combination strategies, future developments are finally outlined. As such, the final objective of this research line is to develop a classification model based on data combination to optimize the capability of SuperCam in discriminating relevant minerals on Mars, this being a key requirement for the selection of the optimal targets to be cached for the future Mars Sample Return Mission. Plain Language Summary: The SuperCam instrument onboard the Perseverance rover is capable of analyzing Martian rocks and soils by a combination of Laser‐Induced Breakdown Spectroscopy (LIBS), Raman and Visible‐Infrared Spectroscopy (VISIR). Learning from terrestrial applications, the complementary information provided by the three spectroscopic techniques can be correlated to obtain a more accurate interpretation of the analyzed target. This approach could be particularly useful to discriminate carbonates, which are interesting minerals where to look for traces of past life. Having this in mind, several carbonate samples have been analyzed with laboratory Raman, LIBS, and VISIR instrument. After evaluating the advantages and limitations of each technique, their data were merged by using low‐level and mid‐level strategies that were successfully used previous works. This work proved that, when spectra are combined, the discrimination of carbonate phases is more accurate than when each technique is interpreted separately. This suggests the scientific results obtained by SuperCam on Mars could benefit from the development of tailored classification models based on data combination. Key Points: Data combination of Raman, Visible‐Infrared Spectroscopy, and Laser‐Induced Breakdown Spectroscopy spectra collected by SuperCam is proposedLow‐ and mid‐level data combination strategies based on principal component analysis (discrimination) + PC‐Linear Discriminant Analysis (classification are evaluated and compared)The low‐level combination method outperformed the mono analytical discrimination. The mid‐level one further improved the results [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
19. Thermodiffusion Coefficients of Water/Ethanol Mixtures for Low Water Mass Fractions
- Author
-
Lapeira, E., Bou-Ali, M. M., Madariaga, J. A., and Santamaría, C.
- Published
- 2016
- Full Text
- View/download PDF
20. Evolution of Surface Roughness in Grinding and its Relationship with the Dressing Parameters and the Radial Wear
- Author
-
Puerto, P., Fernández, R., Madariaga, J., Arana, J., and Gallego, I.
- Published
- 2013
- Full Text
- View/download PDF
21. Research advances and steps towards the control of geometric deviations in the surface grinding of big components
- Author
-
Barrenetxea, D., Alvarez, J., Monedero, A., Madariaga, J., and Akorta, A.
- Published
- 2013
- Full Text
- View/download PDF
22. In situ recording of Mars soundscape
- Author
-
Maurice, S., Chide, B., Murdoch, N., Lorenz, R. D., Mimoun, D., Wiens, R. C., Stott, A., Jacob, X., Bertrand, T., Montmessin, F., Lanza, N. L., Alvarez-Llamas, C., Angel, S. M., Aung, M., Balaram, J., Beyssac, O., Cousin, A., Delory, G., Forni, O., Fouchet, T., Gasnault, O., Grip, H., Hecht, M., Hoffman, J., Laserna, J., Lasue, J., Maki, J., McClean, J., Meslin, P.-Y., Le Mouélic, S., Munguira, A., Newman, C. E., Rodríguez Manfredi, J. A., Moros, J., Ollila, A., Pilleri, P., Schröder, S., de la Torre Juárez, M., Tzanetos, T., Stack, K. M., Farley, K., Williford, K., Acosta-Maeda, T., Anderson, R. B., Applin, D. M., Arana, G., Bassas-Portus, M., Beal, R., Beck, P., Benzerara, K., Bernard, S., Bernardi, P., Bosak, T., Bousquet, B., Brown, A., Cadu, A., Caïs, P., Castro, K., Clavé, E., Clegg, S. M., Cloutis, E., Connell, S., Debus, A., Dehouck, E., Delapp, D., Donny, C., Dorresoundiram, A., Dromart, G., Dubois, B., Fabre, C., Fau, A., Fischer, W., Francis, R., Frydenvang, J., Gabriel, T., Gibbons, E., Gontijo, I., Johnson, J. R., Kalucha, H., Kelly, E., Knutsen, E. W., Lacombe, G., Legett, C., Leveille, R., Lewin, E., Lopez-Reyes, G., Lorigny, E., Madariaga, J. M., Madsen, M., Madsen, S., Mandon, L., Mangold, N., Mann, M., Manrique, J.-A., Martinez-Frias, J., Mayhew, L. E., McConnochie, T., McLennan, S. M., Melikechi, N., Meunier, F., Montagnac, G., Mousset, V., Nelson, T., Newell, R. T., Parot, Y., Pilorget, C., Pinet, P., Pont, G., Poulet, F., Quantin-Nataf, C., Quertier, B., Rapin, W., Reyes-Newell, A., Robinson, S., Rochas, L., Royer, C., Rull, F., Sautter, V., Sharma, S., Shridar, V., Sournac, A., Toplis, M., Torre-Fdez, I., Turenne, N., Udry, A., Veneranda, M., Venhaus, D., Vogt, D., Willis, P., Maurice, S., Chide, B., Murdoch, N., Lorenz, R. D., Mimoun, D., Wiens, R. C., Stott, A., Jacob, X., Bertrand, T., Montmessin, F., Lanza, N. L., Alvarez-Llamas, C., Angel, S. M., Aung, M., Balaram, J., Beyssac, O., Cousin, A., Delory, G., Forni, O., Fouchet, T., Gasnault, O., Grip, H., Hecht, M., Hoffman, J., Laserna, J., Lasue, J., Maki, J., McClean, J., Meslin, P.-Y., Le Mouélic, S., Munguira, A., Newman, C. E., Rodríguez Manfredi, J. A., Moros, J., Ollila, A., Pilleri, P., Schröder, S., de la Torre Juárez, M., Tzanetos, T., Stack, K. M., Farley, K., Williford, K., Acosta-Maeda, T., Anderson, R. B., Applin, D. M., Arana, G., Bassas-Portus, M., Beal, R., Beck, P., Benzerara, K., Bernard, S., Bernardi, P., Bosak, T., Bousquet, B., Brown, A., Cadu, A., Caïs, P., Castro, K., Clavé, E., Clegg, S. M., Cloutis, E., Connell, S., Debus, A., Dehouck, E., Delapp, D., Donny, C., Dorresoundiram, A., Dromart, G., Dubois, B., Fabre, C., Fau, A., Fischer, W., Francis, R., Frydenvang, J., Gabriel, T., Gibbons, E., Gontijo, I., Johnson, J. R., Kalucha, H., Kelly, E., Knutsen, E. W., Lacombe, G., Legett, C., Leveille, R., Lewin, E., Lopez-Reyes, G., Lorigny, E., Madariaga, J. M., Madsen, M., Madsen, S., Mandon, L., Mangold, N., Mann, M., Manrique, J.-A., Martinez-Frias, J., Mayhew, L. E., McConnochie, T., McLennan, S. M., Melikechi, N., Meunier, F., Montagnac, G., Mousset, V., Nelson, T., Newell, R. T., Parot, Y., Pilorget, C., Pinet, P., Pont, G., Poulet, F., Quantin-Nataf, C., Quertier, B., Rapin, W., Reyes-Newell, A., Robinson, S., Rochas, L., Royer, C., Rull, F., Sautter, V., Sharma, S., Shridar, V., Sournac, A., Toplis, M., Torre-Fdez, I., Turenne, N., Udry, A., Veneranda, M., Venhaus, D., Vogt, D., and Willis, P.
- Abstract
Prior to the Perseverance rover landing, the acoustic environment of Mars was unknown. Models predicted that: (i) atmospheric turbulence changes at centimeter scales or smaller at the point where molecular viscosity converts kinetic energy into heat1, (ii) the speed of sound varies at the surface with frequency, and (iii) high frequency waves are strongly attenuated with distance in CO₂. However, theoretical models were uncertain because of a lack of experimental data at low pressure, and the difficulty to characterize turbulence or attenuation in a closed environment. Here using Perseverance microphone recordings, we present the first characterization of Mars’ acoustic environment and pressure fluctuations in the audible range and beyond, from 20 Hz to 50 kHz. We find that atmospheric sounds extend measurements of pressure variations down to 1,000 times smaller scales than ever observed before, revealing a dissipative regime extending over 5 orders of magnitude in energy. Using point sources of sound (Ingenuity rotorcraft, laser-induced sparks), we highlight two distinct values for the speed of sound that are ~10 m/s apart below and above 240 Hz, a unique characteristic of low-pressure CO₂-dominated atmosphere. We also provide the acoustic attenuation with distance above 2 kHz, allowing us to elucidate the large contribution of the CO₂ vibrational relaxation in the audible range. These results establish a ground truth for modelling of acoustic processes, which is critical for studies in atmospheres like Mars and Venus ones.
- Published
- 2022
23. Aqueously altered igneous rocks sampled on the floor of Jezero crater, Mars
- Author
-
Farley, K A, Stack, K M, Shuster, D L, Horgan, B H N, Hurowitz, J A, Tarnas, J D, Simon, J I, Sun, V Z, Scheller, E L, Moore, K R, McLennan, S M, Vasconcelos, P M, Wiens, R C, Treiman, A H, Mayhew, L E, Beyssac, O, Kizovski, T V, Tosca, N J, Williford, K H, Crumpler, L S, Beegle, L W, Bell, J F, Ehlmann, B L, Liu, Y, Maki, J N, Schmidt, M E, Allwood, A C, Amundsen, H E F, Bhartia, R, Bosak, T, Brown, A J, Clark, B C, Cousin, A, Forni, O, Gabriel, T S J, Goreva, Y, Gupta, S, Hamran, S-E, Herd, C D K, Hickman-Lewis, K, Johnson, J R, Kah, L C, Kelemen, P B, Kinch, K B, Mandon, L, Mangold, N, Quantin-Nataf, C, Rice, M S, Russell, P S, Sharma, S K, Siljeström, S, Steele, A, Sullivan, R, Wadhwa, M, Weiss, B P, Williams, A J, Wogsland, B V, Willis, P A, Acosta-Maeda, T A, Beck, P, Benzerara, K, Bernard, S, Burton, A S, Cardarelli, E L, Chide, B, Clavé, E, Cloutis, E A, Cohen, B A, Czaja, A D, Debaille, V, Dehouck, E, Fairén, A G, Flannery, D T, Fleron, S Z, Fouchet, T, Frydenvang, J, Garczynski, B J, Gibbons, E F, Hausrath, E M, Hayes, A G, Henneke, J, Jørgensen, J L, Kelly, E M, Lasue, J, Le Mouélic, S, Madariaga, J M, Maurice, S, Merusi, M, Meslin, P-Y, Milkovich, S M, Million, C C, Moeller, R C, Núñez, J I, Ollila, A M, Paar, G, Paige, D A, Pedersen, D A K, Pilleri, P, Pilorget, C, Pinet, P C, Rice, J W, Royer, C, Sautter, V, Schulte, M, Sephton, M A, Sholes, S F, Spanovich, N, St Clair, M, Tate, C D, Uckert, K, VanBommel, S J, Yanchilina, A G, Zorzano, M-P, Farley, K A, Stack, K M, Shuster, D L, Horgan, B H N, Hurowitz, J A, Tarnas, J D, Simon, J I, Sun, V Z, Scheller, E L, Moore, K R, McLennan, S M, Vasconcelos, P M, Wiens, R C, Treiman, A H, Mayhew, L E, Beyssac, O, Kizovski, T V, Tosca, N J, Williford, K H, Crumpler, L S, Beegle, L W, Bell, J F, Ehlmann, B L, Liu, Y, Maki, J N, Schmidt, M E, Allwood, A C, Amundsen, H E F, Bhartia, R, Bosak, T, Brown, A J, Clark, B C, Cousin, A, Forni, O, Gabriel, T S J, Goreva, Y, Gupta, S, Hamran, S-E, Herd, C D K, Hickman-Lewis, K, Johnson, J R, Kah, L C, Kelemen, P B, Kinch, K B, Mandon, L, Mangold, N, Quantin-Nataf, C, Rice, M S, Russell, P S, Sharma, S K, Siljeström, S, Steele, A, Sullivan, R, Wadhwa, M, Weiss, B P, Williams, A J, Wogsland, B V, Willis, P A, Acosta-Maeda, T A, Beck, P, Benzerara, K, Bernard, S, Burton, A S, Cardarelli, E L, Chide, B, Clavé, E, Cloutis, E A, Cohen, B A, Czaja, A D, Debaille, V, Dehouck, E, Fairén, A G, Flannery, D T, Fleron, S Z, Fouchet, T, Frydenvang, J, Garczynski, B J, Gibbons, E F, Hausrath, E M, Hayes, A G, Henneke, J, Jørgensen, J L, Kelly, E M, Lasue, J, Le Mouélic, S, Madariaga, J M, Maurice, S, Merusi, M, Meslin, P-Y, Milkovich, S M, Million, C C, Moeller, R C, Núñez, J I, Ollila, A M, Paar, G, Paige, D A, Pedersen, D A K, Pilleri, P, Pilorget, C, Pinet, P C, Rice, J W, Royer, C, Sautter, V, Schulte, M, Sephton, M A, Sholes, S F, Spanovich, N, St Clair, M, Tate, C D, Uckert, K, VanBommel, S J, Yanchilina, A G, and Zorzano, M-P
- Abstract
The Perseverance rover landed in Jezero crater, Mars, to investigate ancient lake and river deposits. We report observations of the crater floor, below the crater’s sedimentary delta, finding the floor consists of igneous rocks altered by water. The lowest exposed unit, informally named Séítah, is a coarsely crystalline olivine-rich rock, which accumulated at the base of a magma body. Fe-Mg carbonates along grain boundaries indicate reactions with CO2-rich water, under water-poor conditions. Overlying Séítah is a unit informally named Máaz, which we interpret as lava flows or the chemical complement to Séítah in a layered igneous body. Voids in these rocks contain sulfates and perchlorates, likely introduced by later near-surface brine evaporation. Core samples of these rocks were stored aboard Perseverance for potential return to Earth.
- Published
- 2022
24. Aqueously altered igneous rocks sampled on the floor of Jezero crater, Mars
- Author
-
Farley, K. A., Stack, K. M., Shuster, D. L., Horgan, B. H. N., Hurowitz, J. A., Tarnas, J. D., Simon, J. I., Sun, V. Z., Scheller, E. L., Moore, K. R., McLennan, S. M., Vasconcelos, P. M., Wiens, R. C., Treiman, A. H., Mayhew, L. E., Beyssac, O., Kizovski, T. V., Tosca, N. J., Williford, K. H., Crumpler, L. S., Beegle, L. W., Bell, J. F., Ehlmann, B. L., Liu, Y., Maki, J. N., Schmidt, M. E., Allwood, A. C., Amundsen, H. E. F., Bhartia, R., Bosak, T., Brown, A. J., Clark, B. C., Cousin, A., Forni, O., Gabriel, T. S. J., Goreva, Y., Gupta, S., Hamran, S.-E., Herd, C. D. K., Hickman-Lewis, K., Johnson, J. R., Kah, L. C., Kelemen, P. B., Kinch, K. B., Mandon, L., Mangold, N., Quantin-Nataf, C., Rice, M. S., Russell, P. S., Sharma, S., Siljeström, S., Steele, A., Sullivan, R., Wadhwa, M., Weiss, B. P., Williams, A. J., Wogsland, B. V., Willis, P. A., Acosta-Maeda, T. A., Beck, P., Benzerara, K., Bernard, S., Burton, A. S., Cardarelli, E. L., Chide, B., Clavé, E., Cloutis, E. A., Cohen, B. A., Czaja, A. D., Debaille, V., Dehouck, E., Fairén, A. G., Flannery, D. T., Fleron, S. Z., Fouchet, T., Frydenvang, J., Garczynski, B. J., Gibbons, E. F., Hausrath, E. M., Hayes, A. G., Henneke, J., Jørgensen, J. L., Kelly, E. M., Lasue, J., Le Mouélic, S., Madariaga, J. M., Maurice, S., Merusi, M., Meslin, P.-Y., Milkovich, S. M., Million, C. C., Moeller, R. C., Nuñez, J. I., Ollila, A. M., Paar, G., Paige, D. A., Pedersen, D. A. K., Pilleri, P., Pilorget, C., Pinet, P. C., Rice, J. W., Royer, C., Sautter, V., Schulte, M., Sephton, M. A., Sharma, S. K., Sholes, S. F., Spanovich, N., Clair, M. St., Tate, C. D., Uckert, K., VanBommel, S. J., Yanchilina, A. G., Zorzano, M.-P., Farley, K. A., Stack, K. M., Shuster, D. L., Horgan, B. H. N., Hurowitz, J. A., Tarnas, J. D., Simon, J. I., Sun, V. Z., Scheller, E. L., Moore, K. R., McLennan, S. M., Vasconcelos, P. M., Wiens, R. C., Treiman, A. H., Mayhew, L. E., Beyssac, O., Kizovski, T. V., Tosca, N. J., Williford, K. H., Crumpler, L. S., Beegle, L. W., Bell, J. F., Ehlmann, B. L., Liu, Y., Maki, J. N., Schmidt, M. E., Allwood, A. C., Amundsen, H. E. F., Bhartia, R., Bosak, T., Brown, A. J., Clark, B. C., Cousin, A., Forni, O., Gabriel, T. S. J., Goreva, Y., Gupta, S., Hamran, S.-E., Herd, C. D. K., Hickman-Lewis, K., Johnson, J. R., Kah, L. C., Kelemen, P. B., Kinch, K. B., Mandon, L., Mangold, N., Quantin-Nataf, C., Rice, M. S., Russell, P. S., Sharma, S., Siljeström, S., Steele, A., Sullivan, R., Wadhwa, M., Weiss, B. P., Williams, A. J., Wogsland, B. V., Willis, P. A., Acosta-Maeda, T. A., Beck, P., Benzerara, K., Bernard, S., Burton, A. S., Cardarelli, E. L., Chide, B., Clavé, E., Cloutis, E. A., Cohen, B. A., Czaja, A. D., Debaille, V., Dehouck, E., Fairén, A. G., Flannery, D. T., Fleron, S. Z., Fouchet, T., Frydenvang, J., Garczynski, B. J., Gibbons, E. F., Hausrath, E. M., Hayes, A. G., Henneke, J., Jørgensen, J. L., Kelly, E. M., Lasue, J., Le Mouélic, S., Madariaga, J. M., Maurice, S., Merusi, M., Meslin, P.-Y., Milkovich, S. M., Million, C. C., Moeller, R. C., Nuñez, J. I., Ollila, A. M., Paar, G., Paige, D. A., Pedersen, D. A. K., Pilleri, P., Pilorget, C., Pinet, P. C., Rice, J. W., Royer, C., Sautter, V., Schulte, M., Sephton, M. A., Sharma, S. K., Sholes, S. F., Spanovich, N., Clair, M. St., Tate, C. D., Uckert, K., VanBommel, S. J., Yanchilina, A. G., and Zorzano, M.-P.
- Abstract
The Perseverance rover landed in Jezero crater, Mars, to investigate ancient lake and river deposits. We report observations of the crater floor, below the crater's sedimentary delta, finding that the floor consists of igneous rocks altered by water. The lowest exposed unit, informally named Seitah, is a coarsely crystalline olivine-rich rock, which accumulated at the base of a magma body. Magnesium-iron carbonates along grain boundaries indicate reactions with carbon dioxide-rich water under water-poor conditions. Overlying Seitah is a unit informally named Maaz, which we interpret as lava flows or the chemical complement to Seitah in a layered igneous body. Voids in these rocks contain sulfates and perchlorates, likely introduced by later near-surface brine evaporation. Core samples of these rocks have been stored aboard Perseverance for potential return to Earth.
- Published
- 2022
25. Homogeneity assessment of the SuperCam calibration targets onboard rover perseverance
- Author
-
Madariaga, J. M., Aramendia, J., Arana, G., Castro, K., Gomez-Nubla, L., de Vallejuelo, S. Fdez-Ortiz, Garcia-Florentino, C., Maguregui, M., Manrique, J. A., Lopez-Reyes, G., Moros, J., Cousin, A., Maurice, S., Ollila, A. M., Wiens, R. C., Rull, F., Laserna, J., Garcia-Baonza, V., Madsen, M. B., Forni, O., Lasue, J., Clegg, S. M., Robinson, S., Bernardi, P., Brown, A. J., Cais, P., Martinez-Frias, J., Beck, P., Bernard, S., Bernt, M. H., Beyssac, O., Cloutis, E., Drouet, C., Dromart, G., Dubois, B., Fabre, C., Gasnault, O., Gontijo, I., Johnson, J. R., Medina, J., Meslin, P. -Y., Montagnac, G., Sautter, V., Sharma, S. K., Veneranda, M., Willis, P. A., Madariaga, J. M., Aramendia, J., Arana, G., Castro, K., Gomez-Nubla, L., de Vallejuelo, S. Fdez-Ortiz, Garcia-Florentino, C., Maguregui, M., Manrique, J. A., Lopez-Reyes, G., Moros, J., Cousin, A., Maurice, S., Ollila, A. M., Wiens, R. C., Rull, F., Laserna, J., Garcia-Baonza, V., Madsen, M. B., Forni, O., Lasue, J., Clegg, S. M., Robinson, S., Bernardi, P., Brown, A. J., Cais, P., Martinez-Frias, J., Beck, P., Bernard, S., Bernt, M. H., Beyssac, O., Cloutis, E., Drouet, C., Dromart, G., Dubois, B., Fabre, C., Gasnault, O., Gontijo, I., Johnson, J. R., Medina, J., Meslin, P. -Y., Montagnac, G., Sautter, V., Sharma, S. K., Veneranda, M., and Willis, P. A.
- Abstract
The SuperCam instrument, onboard the Perseverance rover (Mars 2020 mission) is designed to perform remote analysis on the Martian surface employing several spectroscopic techniques such as Laser Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman (TRR), Time-Resolved Fluorescence (TRF) and Visible and Infrared (VISIR) reflectance. In addition, SuperCam also acquires high-resolution images using a color remote micro imager (RMI) as well as sounds with its microphone. SuperCam has three main subsystems, the Mast Unit (MU) where the laser for chemical analysis and collection optics are housed, the Body Unit (BU) where the different spectrometers are located inside the rover, and the SuperCam Calibration Target (SCCT) located on the rover's deck to facilitate calibration tests at similar ambient conditions as the analyzed samples. To perform adequate calibrations on Mars, the 22 mineral samples included in the complex SCCT assembly must have a very homogeneous distribution of major and minor elements. The analysis and verification of such homogeneity for the 5-6 replicates of the samples included in the SCCT has been the aim of this work. To verify the physic chemical homogeneity of the calibration targets, micro Energy Dispersive X-ray Fluorescence (EDXRF) imaging was first used on the whole surface of the targets, then the relative abundances of the detected elements were computed on 20 randomly distributed areas of 100 x 100 mu m. For those targets showing a positive Raman response, micro-Raman spectroscopy imaging was performed on the whole surface of the targets at a resolution of 100 x 100 mu m. The %RSD values (percent of relative standard deviation of mean values) for the major elements measured with EDXRF were compared with similar values obtained by two independent LIBS set-ups at spot sizes of 300 mu m in diameter. The statistical analysis showed which elements were homogeneously distributed in the 22 mineral targets of the SCCT, providing their unc
- Published
- 2022
26. Evidence for perchlorate and sulfate salts in jezero crater, mars, from supercam observations
- Author
-
Meslin, P.-Y, Forni, O, Beck, P, Cousin, A, Beyssac, O, Lopez-Reyes, G, Benzerara, K, Ollila, A, Mandon, L, Wiens, R, Clegg, S, Montagnac, G, Clavé, E, Manrique, J.-A, Chide, B, Maurice, S, Gasnault, Olivier, Lasue, J, Quantin-Nataf, C, Dehouck, E, Sharma, S, Arana, G, Madariaga, J, Castro, K, Schröder, S, Mangold, N, Poulet, F, Johnson, J, Le Mouélic, S, Zorzano, M.-P, Gasnault, Olivier, Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France, Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Universidad de Valladolid [Valladolid] (UVa), Los Alamos National Laboratory (LANL), Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Centre d'Etudes Lasers Intenses et Applications (CELIA), Université de Bordeaux (UB)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), University of Hawaii, University of the Basque Country/Euskal Herriko Unibertsitatea (UPV/EHU), Deutsches Zentrum für Luft- und Raumfahrt [Berlin] (DLR), Laboratoire de Planétologie et Géosciences [UMR_C 6112] (LPG), Université d'Angers (UA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Nantes université - UFR des Sciences et des Techniques (Nantes univ - UFR ST), Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ), Institut d'astrophysique spatiale (IAS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL), Instituto Nacional de Técnica Aeroespacial (INTA), and Lunar and Planetary Institute
- Subjects
[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,[SDU.STU.PL] Sciences of the Universe [physics]/Earth Sciences/Planetology - Abstract
International audience
- Published
- 2022
27. Stability analysis and time domain simulation of multiple diameter parts during infeed centerless grinding
- Author
-
Barrenetxea, D., Alvarez, J., Madariaga, J., and Gallego, I.
- Published
- 2011
- Full Text
- View/download PDF
28. Stakeholders Management Systems: Empirical Insights from Relationship Marketing and Market Orientation Perspectives
- Author
-
de Madariaga, J. Garcia and Valor, C.
- Published
- 2007
- Full Text
- View/download PDF
29. The problem of sampling on built heritage: a preliminary study of a new non-invasive method
- Author
-
Prieto-Taboada, N., Isca, C., Martínez-Arkarazo, I., Casoli, A., Olazabal, M. A., Arana, G., and Madariaga, J. M.
- Published
- 2014
- Full Text
- View/download PDF
30. Author Correction: In situ recording of Mars soundscape
- Author
-
Maurice, S., Chide, B., Murdoch, N., Lorenz, R, Mimoun, D., Wiens, R., Stott, A., Jacob, X., Bertrand, T., Montmessin, Franck, Lanza, N, Alvarez-Llamas, C., Angel, S, Aung, M., Balaram, J., Beyssac, O., Cousin, A., Delory, G., Forni, O., Fouchet, T., Gasnault, O., Grip, H., Hecht, M., Hoffman, J., Laserna, J., Lasue, Jérémie, Maki, J., Mcclean, J., Meslin, P.-Y., Le Mouélic, S., Munguira, A., Newman, C., Rodríguez Manfredi, J., Moros, J., Ollila, A., Pilleri, P., Schröder, S., de La Torre Juárez, M., Tzanetos, T., Stack, K., Farley, K., Williford, K., Acosta-Maeda, T., Anderson, R., Applin, D., Arana, G., Bassas-Portus, M., Beal, R., Beck, P., Benzerara, K., Bernard, S., Bernardi, P., Bosak, T., Bousquet, B., Brown, A., Cadu, A., Caïs, P., Castro, K., Clavé, E., Clegg, S, Cloutis, E., Connell, S., Debus, A., Dehouck, E., Delapp, D., Donny, C., Dorresoundiram, A., Dromart, G., Dubois, B., Fabre, C., Fau, A., Fischer, W., Francis, R., Frydenvang, J., Gabriel, T., Gibbons, E., Gontijo, I., Johnson, J., Kalucha, H., Kelly, E., Knutsen, Elise Wright, Lacombe, Gaetan, Legett, C., Leveille, R., Lewin, E., Lopez-Reyes, G., Lorigny, E., Madariaga, J., Madsen, M., Madsen, S., Mandon, L., Mangold, N., Mann, M., Manrique, J.-A., Martinez-Frias, J., Mayhew, L., Mcconnochie, T., Mclennan, S., Melikechi, N., Meunier, F., Montagnac, G., Mousset, V., Nelson, T., Newell, R, Parot, Y., Pilorget, C., Pinet, P., Pont, G., Poulet, F., Quantin-Nataf, C., Quertier, B., Rapin, W., Reyes-Newell, A., Robinson, S., Rochas, L., Royer, C., Rull, F., Sautter, V., Sharma, S., Shridar, V., Sournac, A., Toplis, M., Torre-Fdez, I., Turenne, N., Udry, A., Veneranda, M., Venhaus, D., Vogt, D., Willis, P., Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Los Alamos National Laboratory (LANL), Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO), Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL), Department of Earth, Atmospheric, and Planetary Sciences [West Lafayette] (EAPS), Purdue University [West Lafayette], Institut de mécanique des fluides de Toulouse (IMFT), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT), Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Universidad de Málaga [Málaga] = University of Málaga [Málaga], Department of Chemistry and Biochemistry [Columbia, South Carolina], University of South Carolina [Columbia], Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Heliospace Corporation, MIT Haystack Observatory, Massachusetts Institute of Technology (MIT), Department of Aeronautics and Astronautics [Cambridge], Laboratoire de Planétologie et Géosciences [UMR_C 6112] (LPG), Université d'Angers (UA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Nantes université - UFR des Sciences et des Techniques (Nantes univ - UFR ST), Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ), Escuela de Ingeniería de Bilbao, Universidad del Pais Vasco / Euskal Herriko Unibertsitatea [Espagne] (UPV/EHU), Aeolis Corporation, Centro de Astrobiologia [Madrid] (CAB), Instituto Nacional de Técnica Aeroespacial (INTA)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), DLR Institute of Optical Sensor Systems, Deutsches Zentrum für Luft- und Raumfahrt [Berlin] (DLR), Blue Marble Space Institute of Science (BMSIS), University of Hawai‘i [Mānoa] (UHM), US Geological Survey [Flagstaff], United States Geological Survey [Reston] (USGS), University of Winnipeg, University of the Basque Country/Euskal Herriko Unibertsitatea (UPV/EHU), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France, Department of Earth, Atmospheric and Planetary Sciences [MIT, Cambridge] (EAPS), Centre d'Etudes Lasers Intenses et Applications (CELIA), Université de Bordeaux (UB)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Plancius Research LLC, Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Centre National d'Études Spatiales [Toulouse] (CNES), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France, Université de Lyon, GeoRessources, Institut national des sciences de l'Univers (INSU - CNRS)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), California Institute of Technology (CALTECH), University of Copenhagen = Københavns Universitet (UCPH), McGill University = Université McGill [Montréal, Canada], Universidad de Valladolid [Valladolid] (UVa), IT University of Copenhagen (ITU), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Department of Geological Sciences [Boulder], University of Colorado [Boulder], University of Maryland [College Park], University of Maryland System, Stony Brook University [SUNY] (SBU), State University of New York (SUNY), Department of Physics and Applied Physics [Lowell], University of Massachusetts [Lowell] (UMass Lowell), University of Massachusetts System (UMASS)-University of Massachusetts System (UMASS), Institut d'astrophysique spatiale (IAS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), University of Nevada [Las Vegas] (WGU Nevada), and NASA’s Mars Exploration ProgramCNES
- Subjects
Multidisciplinary ,Carbon dioxide ,Modélisation ,[SDU]Sciences of the Universe [physics] ,Atmospheric Turbulence ,Atmospheric Sound ,Microphone ,Mars ,Attenuation ,CO2 ,Perseverance ,Acoustic Environment - Abstract
International audience
- Published
- 2022
31. The SuperCam Instrument Suite on the Mars 2020 Rover: Science Objectives and Mast-Unit Description
- Author
-
Química analítica, Kimika analitikoa, Maurice, Sylvestre, Wiens, Roger C., Bernardi, Pernelle, Cais, Philippe, Robinson, Scott H., Nelson, T., Gasnault, Olivier, Reess, Jean-Michel, Deleuze, Muriel, Rull, Fernando, Manrique, José Antonio, Abbaki, S., Anderson, Ryan B., Andre, Yves, Angel, S. M., Arana Momoitio, Gorka, Battault, T., Beck, Pierre, Benzerara, Karim, Bernard, Sylvain, Berthias, J. P., Beyssac, Olivier, Bonafous, M., Bousquet, Bruno, Boutillier, M., Cadu, A., Castro Ortiz de Pinedo, Kepa, Chapron, F., Chide, Baptiste, Clark, Kevin, Clavé, E., Clegg, Sam, Cloutis, Edward, Collin, C., Cordoba, Elizabeth C., Cousin, Agnes, Dameury, J. C., D'Anna, W., Daydou, Y., Debus, A., Deflores, Lauren, Dehouck, E., Delapp, Dorothea, De Los Santos, G., Donny, Christophe, Doressoundiram, A., Dromart, Gilles, Dubois, Bruno, Dufour, A., Dupieux, M., Egan, Miles, Ervin, Joan, Fabre, Cecile, Fau, Amaury, Fischer, Woodward, Forni, Olivie, Fouchet, Thierry, Frydenvang, Jens, Gauffre, S., Gauthier, M., Gharakanian, V., Gilard, O., Gontijo, Ivair, González, R., Granena, D., Grotzinger, John, Hassen Khodja, R., Heim, M., Hello, Y., Hervet, G., Humeau, O., Jacob, Xavier, Jacquinod, Sophie, Johnson, Jeffrey R., Kouach, D., Lacombe, G., Lanza, Nina, Lapauw, L., Laserna, Javier, Lasue, Jeremie, Le Deit, L., Le Comte, E., Lee, Q. M., Legett, Carey, Leveille, Richard, Lewin, Eric, Leyrat, C., López Reyes, Guillermo, Lorenz, Ralph, Lucero, Briana, Madariaga, J. M., Madsen, Soren, Madsen, Morten, Mangold, Nicolas, Manni, F., Mariscal, J. F., Martínez Frías, Jesús, Mathieu, K., Mathon, R., McCabe, Kevin P., McConnochie, Timothy H., McLennan, Scott M., Mekki, J., Melikechi, Noureddine, Meslin, Pierre-Yves, Micheau, Y., Michel, Y., Michel, John M., Mimoun, David, Misra, Anupam, Montagnac, Gilles, Montaron, C., Montmessin, Franck, Moros, J., Mousset, Valerie, Morizet, Y., Murdoch, Naomi, Newell, Raymond T., Newsom, Horton, Tuong, N. N., Ollila, Ann M., Orttner, G., Oudda, L., Pares, Laurent, Parisot, J., Parot, Yann, Pérez, R., Pheav, D., Picot, L., Pilleri, Paolo, Pilorget, C., Pinet, Patrick, Pont, Gabriel, Poulet, Francois, Quantin-Nataf, C., Quertier, Benjamin, Rambaud, D., Rapin, William, Romano, Philip J., Roucayrol, L., Royer, Clement, Ruellan, M., Sandoval, Benigno, Sautter, Violaine, Schoppers, Marcel J., Schroder, S., Seran, H. C., Sharma, Shiv K., Sobrón, Pablo, Sodki, M., Sournac, A., Sridhar, Vishnu, Standarovsky, D., Storms, Steven, Striebig, N., Tatat, M., Toplis, Michael J., Torre Fernández, Imanol, Toulemont, N., Velasco, C., Veneranda, Marco, Venhaus, Dawn, Virmontois, C., Viso, M., Willis, Peter, Wong, K. W., Química analítica, Kimika analitikoa, Maurice, Sylvestre, Wiens, Roger C., Bernardi, Pernelle, Cais, Philippe, Robinson, Scott H., Nelson, T., Gasnault, Olivier, Reess, Jean-Michel, Deleuze, Muriel, Rull, Fernando, Manrique, José Antonio, Abbaki, S., Anderson, Ryan B., Andre, Yves, Angel, S. M., Arana Momoitio, Gorka, Battault, T., Beck, Pierre, Benzerara, Karim, Bernard, Sylvain, Berthias, J. P., Beyssac, Olivier, Bonafous, M., Bousquet, Bruno, Boutillier, M., Cadu, A., Castro Ortiz de Pinedo, Kepa, Chapron, F., Chide, Baptiste, Clark, Kevin, Clavé, E., Clegg, Sam, Cloutis, Edward, Collin, C., Cordoba, Elizabeth C., Cousin, Agnes, Dameury, J. C., D'Anna, W., Daydou, Y., Debus, A., Deflores, Lauren, Dehouck, E., Delapp, Dorothea, De Los Santos, G., Donny, Christophe, Doressoundiram, A., Dromart, Gilles, Dubois, Bruno, Dufour, A., Dupieux, M., Egan, Miles, Ervin, Joan, Fabre, Cecile, Fau, Amaury, Fischer, Woodward, Forni, Olivie, Fouchet, Thierry, Frydenvang, Jens, Gauffre, S., Gauthier, M., Gharakanian, V., Gilard, O., Gontijo, Ivair, González, R., Granena, D., Grotzinger, John, Hassen Khodja, R., Heim, M., Hello, Y., Hervet, G., Humeau, O., Jacob, Xavier, Jacquinod, Sophie, Johnson, Jeffrey R., Kouach, D., Lacombe, G., Lanza, Nina, Lapauw, L., Laserna, Javier, Lasue, Jeremie, Le Deit, L., Le Comte, E., Lee, Q. M., Legett, Carey, Leveille, Richard, Lewin, Eric, Leyrat, C., López Reyes, Guillermo, Lorenz, Ralph, Lucero, Briana, Madariaga, J. M., Madsen, Soren, Madsen, Morten, Mangold, Nicolas, Manni, F., Mariscal, J. F., Martínez Frías, Jesús, Mathieu, K., Mathon, R., McCabe, Kevin P., McConnochie, Timothy H., McLennan, Scott M., Mekki, J., Melikechi, Noureddine, Meslin, Pierre-Yves, Micheau, Y., Michel, Y., Michel, John M., Mimoun, David, Misra, Anupam, Montagnac, Gilles, Montaron, C., Montmessin, Franck, Moros, J., Mousset, Valerie, Morizet, Y., Murdoch, Naomi, Newell, Raymond T., Newsom, Horton, Tuong, N. N., Ollila, Ann M., Orttner, G., Oudda, L., Pares, Laurent, Parisot, J., Parot, Yann, Pérez, R., Pheav, D., Picot, L., Pilleri, Paolo, Pilorget, C., Pinet, Patrick, Pont, Gabriel, Poulet, Francois, Quantin-Nataf, C., Quertier, Benjamin, Rambaud, D., Rapin, William, Romano, Philip J., Roucayrol, L., Royer, Clement, Ruellan, M., Sandoval, Benigno, Sautter, Violaine, Schoppers, Marcel J., Schroder, S., Seran, H. C., Sharma, Shiv K., Sobrón, Pablo, Sodki, M., Sournac, A., Sridhar, Vishnu, Standarovsky, D., Storms, Steven, Striebig, N., Tatat, M., Toplis, Michael J., Torre Fernández, Imanol, Toulemont, N., Velasco, C., Veneranda, Marco, Venhaus, Dawn, Virmontois, C., Viso, M., Willis, Peter, and Wong, K. W.
- Abstract
On the NASA 2020 rover mission to Jezero crater, the remote determination of the texture, mineralogy and chemistry of rocks is essential to quickly and thoroughly characterize an area and to optimize the selection of samples for return to Earth. As part of the Perseverance payload, SuperCam is a suite of five techniques that provide critical and complementary observations via Laser-Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman and Luminescence (TRR/L), visible and near-infrared spectroscopy (VISIR), high-resolution color imaging (RMI), and acoustic recording (MIC). SuperCam operates at remote distances, primarily 2-7 m, while providing data at sub-mm to mm scales. We report on SuperCam's science objectives in the context of the Mars 2020 mission goals and ways the different techniques can address these questions. The instrument is made up of three separate subsystems: the Mast Unit is designed and built in France; the Body Unit is provided by the United States; the calibration target holder is contributed by Spain, and the targets themselves by the entire science team. This publication focuses on the design, development, and tests of the Mast Unit; companion papers describe the other units. The goal of this work is to provide an understanding of the technical choices made, the constraints that were imposed, and ultimately the validated performance of the flight model as it leaves Earth, and it will serve as the foundation for Mars operations and future processing of the data.
- Published
- 2021
32. A new procedure to quantify silver nanoparticles in sediments
- Author
-
Rodriguez-Iruretagoiena, A., Graham, M., Gredilla, A., Fdez-Ortiz de Vallejuelo, S., Cornelis, G., Schulte-Herbrüggen, Helfrid, Madariaga, J. M., de Diego, A., Rodriguez-Iruretagoiena, A., Graham, M., Gredilla, A., Fdez-Ortiz de Vallejuelo, S., Cornelis, G., Schulte-Herbrüggen, Helfrid, Madariaga, J. M., and de Diego, A.
- Abstract
Silver nanoparticles (AgNPs) are highly produced in developed countries for a variety of products. Consequently, AgNPs end up being introduced in aquatic systems all over the world, and usually deposited in riverine sediments, from where they can be taken up by aquatic organisms and transferred along the food chain. The analysis of AgNPs in natural samples is not an easy task, because of their low presence and complicated reactions, which can change their speciation. The objective of this work is to help in this challenge, developing a method applicable to analyse sediment samples from any place around the world where AgNPs are suspected to be present. Firstly, four methods for the synthesis of AgNPs were investigated by Ultraviolet–visible (UV–VIS) spectroscopy and particle size analysis. The methods differed in the reducing agent used and in the concentration of the stabilising agent applied. The method including NaBH4 and SDS (sodium dodecyl sulphate) resulted to be more adequate as the Surface Plasmon Resonance (SPR) band position and width indicated. This conclusion was corroborated considering the hydrodynamic diameters and polydispersity indices of the synthesised AgNPs. The Z-average hydrodynamic diameter and the UV–VIS spectrum of AgNPs synthesised using this method indicated that the AgNPs remained kinetically stable for at least 10 days. Finally, ten potential extraction solutions were investigated, in terms of maximal extraction efficiency, but minimal effects on AgNP dissolution and aggregation. The candidate solutions ranged from deionized water and salts to strong acids and bases. The intensity of the SPR band concluded that using NaOH media the synthesised AgNPs was kinetically stable. Moreover, TEM (Transmission Electron Microscopy) images showed that the AgNPs in NaOH retained their shape and size after 10 days. Therefore, NaOH media turned out to be the best potential extractant for the analysis of sediment samples., QC 20220427
- Published
- 2021
- Full Text
- View/download PDF
33. Sampling Mars: Notional Caches from Mars 2020 Strategic Planning
- Author
-
Herd, Chris, Bosak, T., Stack, K. M., Sun, V. Z., Benison, Kathleen C., Cohen, Barbara A., Czaja, Andrew D., Debaille, V., Hausrath, Elisabeth M., Hickman-Lewis, K., Mayhew, L. E., Moynier, Frederic, Sephton, Mark A., Shuster, David L., Siljeström, Sandra, Simon, J. I., Weiss, Benjamin P., Flannery, David, Goreva, Y. S., Gupta, S., Kah, L. C., Minitti, Michelle, McLennan, S. M., Madariaga, J. M., Brown, A. J., Williford, K. H., Farley, K. A., Herd, Chris, Bosak, T., Stack, K. M., Sun, V. Z., Benison, Kathleen C., Cohen, Barbara A., Czaja, Andrew D., Debaille, V., Hausrath, Elisabeth M., Hickman-Lewis, K., Mayhew, L. E., Moynier, Frederic, Sephton, Mark A., Shuster, David L., Siljeström, Sandra, Simon, J. I., Weiss, Benjamin P., Flannery, David, Goreva, Y. S., Gupta, S., Kah, L. C., Minitti, Michelle, McLennan, S. M., Madariaga, J. M., Brown, A. J., Williford, K. H., and Farley, K. A.
- Abstract
A central objective of the NASA Mars 2020 Perseverance rover mission is to collect and document a suite of scientifically compelling samples for possible return to Earth by a subsequent mission [1]. Strategic planning by the Mars 2020 Science Team has thus far identified a set of notional sample caches. These arose from integrating the testable hypotheses that could be addressed by Mars 2020 within the framework of the geology of Jezero crater and its surroundings [2], identifying specific locations of high scientific interest by analysis of remotely sensed data, and traversability considerations [1]. Here we describe the general characteristics of the identified notional caches and compare them to the types of samples previously prioritized by the wider Mars science community [3]. While strategic planning will guide and streamline the decision-making processes once the rover lands at Jezero crater, the actual samples collected will depend on the landing location, the traverse taken, and decisions made by the Mars 2020 Science Team.
- Published
- 2021
34. The SuperCam Instrument Suite on the Mars 2020 Rover:Science Objectives and Mast-Unit Description
- Author
-
Maurice, S., Wiens, R. C., Bernardi, P., Caïs, P., Robinson, S., Nelson, T., Gasnault, O., Reess, J. M., Deleuze, M., Rull, F., Manrique, J. A., Abbaki, S., Anderson, R. B., André, Y., Angel, S. M., Arana, G., Battault, T., Beck, P., Benzerara, K., Bernard, S., Berthias, J. P., Beyssac, O., Bonafous, M., Bousquet, B., Boutillier, M., Cadu, A., Castro, K., Chapron, F., Chide, B., Clark, K., Clavé, E., Clegg, S., Cloutis, E., Collin, C., Cordoba, E. C., Cousin, A., Dameury, J. C., D’Anna, W., Daydou, Y., Debus, A., Deflores, L., Dehouck, E., Delapp, D., De Los Santos, G., Donny, C., Doressoundiram, A., Dromart, G., Dubois, B., Dufour, A., Dupieux, M., Egan, M., Ervin, J., Fabre, C., Fau, A., Fischer, W., Forni, O., Fouchet, T., Frydenvang, J., Gauffre, S., Gauthier, M., Gharakanian, V., Gilard, O., Gontijo, I., Gonzalez, R., Granena, D., Grotzinger, J., Hassen-Khodja, R., Heim, M., Hello, Y., Hervet, G., Humeau, O., Jacob, X., Jacquinod, S., Johnson, J. R., Kouach, D., Lacombe, G., Lanza, N., Lapauw, L., Laserna, J., Lasue, J., Le Deit, L., Le Mouélic, S., Le Comte, E., Lee, Q. M., Legett, C., Leveille, R., Lewin, E., Leyrat, C., Lopez-Reyes, G., Lorenz, R., Lucero, B., Madariaga, J. M., Madsen, S., Madsen, M., Mangold, N., Manni, F., Mariscal, J. F., Martinez-Frias, J., Mathieu, K., Mathon, R., McCabe, K. P., McConnochie, T., McLennan, S. M., Mekki, J., Melikechi, N., Meslin, P.-Y., Micheau, Y., Michel, Y., Michel, J. M., Mimoun, D., Misra, A., Montagnac, G., Montaron, C., Montmessin, F., Moros, J., Mousset, V., Morizet, Y., Murdoch, N., Newell, R. T., Newsom, H., Nguyen Tuong, N., Ollila, A. M., Orttner, G., Oudda, L., Pares, L., Parisot, J., Parot, Y., Pérez, R., Pheav, D., Picot, L., Pilleri, P., Pilorget, C., Pinet, P., Pont, G., Poulet, F., Quantin-Nataf, C., Quertier, B., Rambaud, D., Rapin, W., Romano, P., Roucayrol, L., Royer, C., Ruellan, M., Sandoval, B. F., Sautter, V., Schoppers, M. J., Schröder, S., Seran, H. C., Sharma, S. K., Sobron, P., Sodki, M., Sournac, A., Sridhar, V., Standarovsky, D., Storms, S., Striebig, N., Tatat, M., Toplis, M., Torre-Fdez, I., Toulemont, N., Velasco, C., Veneranda, M., Venhaus, D., Virmontois, C., Viso, M., Willis, P., Wong, K. W., Maurice, S., Wiens, R. C., Bernardi, P., Caïs, P., Robinson, S., Nelson, T., Gasnault, O., Reess, J. M., Deleuze, M., Rull, F., Manrique, J. A., Abbaki, S., Anderson, R. B., André, Y., Angel, S. M., Arana, G., Battault, T., Beck, P., Benzerara, K., Bernard, S., Berthias, J. P., Beyssac, O., Bonafous, M., Bousquet, B., Boutillier, M., Cadu, A., Castro, K., Chapron, F., Chide, B., Clark, K., Clavé, E., Clegg, S., Cloutis, E., Collin, C., Cordoba, E. C., Cousin, A., Dameury, J. C., D’Anna, W., Daydou, Y., Debus, A., Deflores, L., Dehouck, E., Delapp, D., De Los Santos, G., Donny, C., Doressoundiram, A., Dromart, G., Dubois, B., Dufour, A., Dupieux, M., Egan, M., Ervin, J., Fabre, C., Fau, A., Fischer, W., Forni, O., Fouchet, T., Frydenvang, J., Gauffre, S., Gauthier, M., Gharakanian, V., Gilard, O., Gontijo, I., Gonzalez, R., Granena, D., Grotzinger, J., Hassen-Khodja, R., Heim, M., Hello, Y., Hervet, G., Humeau, O., Jacob, X., Jacquinod, S., Johnson, J. R., Kouach, D., Lacombe, G., Lanza, N., Lapauw, L., Laserna, J., Lasue, J., Le Deit, L., Le Mouélic, S., Le Comte, E., Lee, Q. M., Legett, C., Leveille, R., Lewin, E., Leyrat, C., Lopez-Reyes, G., Lorenz, R., Lucero, B., Madariaga, J. M., Madsen, S., Madsen, M., Mangold, N., Manni, F., Mariscal, J. F., Martinez-Frias, J., Mathieu, K., Mathon, R., McCabe, K. P., McConnochie, T., McLennan, S. M., Mekki, J., Melikechi, N., Meslin, P.-Y., Micheau, Y., Michel, Y., Michel, J. M., Mimoun, D., Misra, A., Montagnac, G., Montaron, C., Montmessin, F., Moros, J., Mousset, V., Morizet, Y., Murdoch, N., Newell, R. T., Newsom, H., Nguyen Tuong, N., Ollila, A. M., Orttner, G., Oudda, L., Pares, L., Parisot, J., Parot, Y., Pérez, R., Pheav, D., Picot, L., Pilleri, P., Pilorget, C., Pinet, P., Pont, G., Poulet, F., Quantin-Nataf, C., Quertier, B., Rambaud, D., Rapin, W., Romano, P., Roucayrol, L., Royer, C., Ruellan, M., Sandoval, B. F., Sautter, V., Schoppers, M. J., Schröder, S., Seran, H. C., Sharma, S. K., Sobron, P., Sodki, M., Sournac, A., Sridhar, V., Standarovsky, D., Storms, S., Striebig, N., Tatat, M., Toplis, M., Torre-Fdez, I., Toulemont, N., Velasco, C., Veneranda, M., Venhaus, D., Virmontois, C., Viso, M., Willis, P., and Wong, K. W.
- Abstract
On the NASA 2020 rover mission to Jezero crater, the remote determination of the texture, mineralogy and chemistry of rocks is essential to quickly and thoroughly characterize an area and to optimize the selection of samples for return to Earth. As part of the Perseverance payload, SuperCam is a suite of five techniques that provide critical and complementary observations via Laser-Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman and Luminescence (TRR/L), visible and near-infrared spectroscopy (VISIR), high-resolution color imaging (RMI), and acoustic recording (MIC). SuperCam operates at remote distances, primarily 2–7 m, while providing data at sub-mm to mm scales. We report on SuperCam’s science objectives in the context of the Mars 2020 mission goals and ways the different techniques can address these questions. The instrument is made up of three separate subsystems: the Mast Unit is designed and built in France; the Body Unit is provided by the United States; the calibration target holder is contributed by Spain, and the targets themselves by the entire science team. This publication focuses on the design, development, and tests of the Mast Unit; companion papers describe the other units. The goal of this work is to provide an understanding of the technical choices made, the constraints that were imposed, and ultimately the validated performance of the flight model as it leaves Earth, and it will serve as the foundation for Mars operations and future processing of the data.
- Published
- 2021
35. Use of in situ and confocal Raman spectroscopy to study the nature and distribution of carotenoids in brown patinas from a deteriorated wall painting in Marcus Lucretius House (Pompeii)
- Author
-
Maguregui, M., Knuutinen, U., Trebolazabala, J., Morillas, H., Castro, K., Martinez-Arkarazo, I., and Madariaga, J. M.
- Published
- 2012
- Full Text
- View/download PDF
36. Classification and identification of organic binding media in artworks by means of Fourier transform infrared spectroscopy and principal component analysis
- Author
-
Sarmiento, A., Pérez-Alonso, M., Olivares, M., Castro, K., Martínez-Arkarazo, I., Fernández, L. A., and Madariaga, J. M.
- Published
- 2011
- Full Text
- View/download PDF
37. Spectroscopic evaluation of the environmental impact on black crusted modern mortars in urban–industrial areas
- Author
-
Prieto-Taboada, N., Maguregui, M., Martinez-Arkarazo, I., Olazabal, M. A., Arana, G., and Madariaga, J. M.
- Published
- 2011
- Full Text
- View/download PDF
38. Portable Raman monitoring of modern cleaning and consolidation operations of artworks on mineral supports
- Author
-
Martínez-Arkarazo, I., Sarmiento, A., Maguregui, M., Castro, K., and Madariaga, J. M.
- Published
- 2010
- Full Text
- View/download PDF
39. New models and global stability charts to avoid principal instabilities and constraints in throughfeed centerless grinding
- Author
-
Barrenetxea, D., Alvarez, J., Marquinez, J.I., Madariaga, J., Gallego, I., and Perello, I. Muguerza
- Subjects
Stability -- Research ,Grinding and polishing -- Management ,Mathematical optimization -- Research ,Company business management ,Engineering and manufacturing industries ,Science and technology - Abstract
This paper presents new simulation models and global stability charts that have been developed to analyze the principal instabilities and constraints involved in the throughfeed centerless grinding process. In addition to a frequency domain stability analysis of the three characteristic instabilities of the process (geometric lobing, chatter and spinning), new models have been developed and implemented to analyze the other main restrictions, namely, process power, temperature and burning power, roughness, and final part geometrical tolerance due to machine compliance. As a result, new global stability charts have been devised where instabilities are plotted against different productivity rates by combining the two principal variables in the throughfeed process: regulating wheel speed and feed angle. The use of such charts has led to the development of new optimization strategies for throughfeed operation mode and their implementation in a web based SET-UP ASSISTANT software tool developed to improve machining accuracy and productivity in centerless grinding. [DOI: 10.1115/1.4000931] Keywords: centerless grinding, throughfeed, stability, simulation, optimization
- Published
- 2010
40. Raman spectroscopy after accelerated ageing tests to assess the origin of some decayed products found in real historical bricks affected by urban polluted atmospheres
- Author
-
Maguregui, M., Sarmiento, A., Escribano, R., Martinez-Arkarazo, I., Castro, K., and Madariaga, J. M.
- Published
- 2009
- Full Text
- View/download PDF
41. Trace Metals in Oysters, Crassotrea sps., from UNESCO Protected Natural Reserve of Urdaibai: Space-Time Observations and Source Identification
- Author
-
Raposo, J. C., Bartolomé, L., Cortazar, E., Arana, G., Zabaljauregui, M., de Diego, A., Zuloaga, O., Madariaga, J. M., and Etxebarria, N.
- Published
- 2009
- Full Text
- View/download PDF
42. Direct mapping of deformation in punch indentation and correlation with slip line fields
- Author
-
Murthy, T. G., Madariaga, J., and Chandrasekar, S.
- Published
- 2009
- Full Text
- View/download PDF
43. Analytical diagnosis methodology to evaluate nitrate impact on historical building materials
- Author
-
Maguregui, M., Sarmiento, A., Martínez-Arkarazo, I., Angulo, M., Castro, K., Arana, G., Etxebarria, N., and Madariaga, J. M.
- Published
- 2008
- Full Text
- View/download PDF
44. Noninvasive and nondestructive NMR, Raman and XRF analysis of a Blaeu coloured map from the seventeenth century
- Author
-
Castro, K., Pessanha, S., Proietti, N., Princi, E., Capitani, D., Carvalho, M. L., and Madariaga, J. M.
- Published
- 2008
- Full Text
- View/download PDF
45. Potentiometric Study of Aluminium-Fluoride Complexation Equilibria and Definition of the Thermodynamic Model
- Author
-
Corbillon, M. S., Olazabal, M. A., and Madariaga, J. M.
- Published
- 2008
- Full Text
- View/download PDF
46. Zoom endoscopic monitoring of small bowel allograft rejection
- Author
-
Kato, T., Gaynor, J. J., Nishida, S., Mittal, N., Selvaggi, G., Levi, D., Moon, J., Thompson, J., Ruiz, P., Madariaga, J., and Tzakis, A. G.
- Published
- 2006
- Full Text
- View/download PDF
47. SuperCam Calibration Targets:Design and Development
- Author
-
Manrique, J. A., Lopez-Reyes, G., Cousin, A., Rull, F., Maurice, S., Wiens, R. C., Madsen, M. B., Madariaga, J. M., Gasnault, O., Aramendia, J., Arana, G., Beck, P., Bernard, S., Bernardi, P., Bernt, M. H., Berrocal, A., Beyssac, O., Cais, P., Castro, C., Castro, K., Clegg, S. M., Cloutis, E., Dromart, G., Drouet, C., Dubois, B., Escribano, D., Fabre, C., Fernandez, A., Forni, O., Garcia-Baonza, V., Gontijo, I., Johnson, J., Laserna, J., Lasue, J., Madsen, S., Mateo-Marti, E., Medina, J., Meslin, P. -Y., Montagnac, G., Moral, A., Moros, J., Ollila, A. M., Ortega, C., Prieto-Ballesteros, O., Reess, J. M., Robinson, S., Rodriguez, J., Saiz, J., Sanz-Arranz, J. A., Sard, I., Sautter, V., Sobron, P., Toplis, M., Veneranda, M., Manrique, J. A., Lopez-Reyes, G., Cousin, A., Rull, F., Maurice, S., Wiens, R. C., Madsen, M. B., Madariaga, J. M., Gasnault, O., Aramendia, J., Arana, G., Beck, P., Bernard, S., Bernardi, P., Bernt, M. H., Berrocal, A., Beyssac, O., Cais, P., Castro, C., Castro, K., Clegg, S. M., Cloutis, E., Dromart, G., Drouet, C., Dubois, B., Escribano, D., Fabre, C., Fernandez, A., Forni, O., Garcia-Baonza, V., Gontijo, I., Johnson, J., Laserna, J., Lasue, J., Madsen, S., Mateo-Marti, E., Medina, J., Meslin, P. -Y., Montagnac, G., Moral, A., Moros, J., Ollila, A. M., Ortega, C., Prieto-Ballesteros, O., Reess, J. M., Robinson, S., Rodriguez, J., Saiz, J., Sanz-Arranz, J. A., Sard, I., Sautter, V., Sobron, P., Toplis, M., and Veneranda, M.
- Abstract
SuperCam is a highly integrated remote-sensing instrumental suite for NASA's Mars 2020 mission. It consists of a co-aligned combination of Laser-Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman and Luminescence (TRR/L), Visible and Infrared Spectroscopy (VISIR), together with sound recording (MIC) and high-magnification imaging techniques (RMI). They provide information on the mineralogy, geochemistry and mineral context around the Perseverance Rover. The calibration of this complex suite is a major challenge. Not only does each technique require its own standards or references, their combination also introduces new requirements to obtain optimal scientific output. Elemental composition, molecular vibrational features, fluorescence, morphology and texture provide a full picture of the sample with spectral information that needs to be co-aligned, correlated, and individually calibrated. The resulting hardware includes different kinds of targets, each one covering different needs of the instrument. Standards for imaging calibration, geological samples for mineral identification and chemometric calculations or spectral references to calibrate and evaluate the health of the instrument, are all included in the SuperCam Calibration Target (SCCT). The system also includes a specifically designed assembly in which the samples are mounted. This hardware allows the targets to survive the harsh environmental conditions of the launch, cruise, landing and operation on Mars during the whole mission. Here we summarize the design, development, integration, verification and functional testing of the SCCT. This work includes some key results obtained to verify the scientific outcome of the SuperCam system.
- Published
- 2020
48. On-line FT-Raman and dispersive Raman spectra database of artists’ materials (e-VISART database)
- Author
-
Castro, K., Pérez-Alonso, M., Rodríguez-Laso, M. D., Fernández, L. A., and Madariaga, J. M.
- Published
- 2005
- Full Text
- View/download PDF
49. Micro-Raman analysis of coloured lithographs
- Author
-
Castro, K., Vandenabeele, P., Rodríguez-Laso, M. D., Moens, L., and Madariaga, J. M.
- Published
- 2004
- Full Text
- View/download PDF
50. Analysis of bulk and inorganic degradation products of stones, mortars and wall paintings by portable Raman microprobe spectroscopy
- Author
-
Pérez-Alonso, M., Castro, K., Martinez-Arkarazo, I., Angulo, M., Olazabal, M. A., and Madariaga, J. M.
- Published
- 2004
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.