7 results on '"Machner L"'
Search Results
2. Heparin promotes rapid fibrillation of the basic parathyroid hormone at physiological pH.
- Author
-
Lauth LM, Voigt B, Bhatia T, Machner L, Balbach J, and Ott M
- Subjects
- Animals, Parathyroid Hormone chemistry, Parathyroid Hormone metabolism, Scattering, Small Angle, X-Ray Diffraction, Hydrogen-Ion Concentration, Mammals, Heparin metabolism, Amyloid metabolism
- Abstract
In acidic secretory granules of mammalian cells, peptide hormones including the parathyroid hormone are presumably stored in the form of functional amyloid fibrils. Mature PTH, however, is considerably positively charged in acidic environments, a condition known to impede unassisted self-aggregation into fibrils. Here, we studied the role of the polyanion heparin on promoting fibril formation of PTH. Employing ITC, CD spectroscopy, NMR, SAXS, and fluorescence-based assays, we could demonstrate that heparin binds PTH with submicromolar affinity and facilitates its conversion into fibrillar seeds, enabling rapid formation of amyloid fibrils under acidic conditions. In the absence of heparin, PTH remained in a soluble monomeric state. We suspect that heparin-like surfaces are required in vivo to convert PTH efficiently into fibrillar deposits., (© 2022 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.)
- Published
- 2022
- Full Text
- View/download PDF
3. Lighting up Nobel Prize-winning studies with protein intrinsic disorder.
- Author
-
Piersimoni L, Abd El Malek M, Bhatia T, Bender J, Brankatschk C, Calvo Sánchez J, Dayhoff GW, Di Ianni A, Figueroa Parra JO, Garcia-Martinez D, Hesselbarth J, Köppen J, Lauth LM, Lippik L, Machner L, Sachan S, Schmidt L, Selle R, Skalidis I, Sorokin O, Ubbiali D, Voigt B, Wedler A, Wei AAJ, Zorn P, Dunker AK, Köhn M, Sinz A, and Uversky VN
- Subjects
- Protein Conformation, Intrinsically Disordered Proteins chemistry, Nobel Prize
- Abstract
Intrinsically disordered proteins and regions (IDPs and IDRs) and their importance in biology are becoming increasingly recognized in biology, biochemistry, molecular biology and chemistry textbooks, as well as in current protein science and structural biology curricula. We argue that the sequence → dynamic conformational ensemble → function principle is of equal importance as the classical sequence → structure → function paradigm. To highlight this point, we describe the IDPs and/or IDRs behind the discoveries associated with 17 Nobel Prizes, 11 in Physiology or Medicine and 6 in Chemistry. The Nobel Laureates themselves did not always mention that the proteins underlying the phenomena investigated in their award-winning studies are in fact IDPs or contain IDRs. In several cases, IDP- or IDR-based molecular functions have been elucidated, while in other instances, it is recognized that the respective protein(s) contain IDRs, but the specific IDR-based molecular functions have yet to be determined. To highlight the importance of IDPs and IDRs as general principle in biology, we present here illustrative examples of IDPs/IDRs in Nobel Prize-winning mechanisms and processes., (© 2022. The Author(s), under exclusive licence to Springer Nature Switzerland AG.)
- Published
- 2022
- Full Text
- View/download PDF
4. Macromolecular Crowding Induces a Binding Competent Transient Structure in Intrinsically Disordered Gab1.
- Author
-
Gruber T, Lewitzky M, Machner L, Weininger U, Feller SM, and Balbach J
- Subjects
- Humans, Phosphorylation, Protein Binding, Protein Conformation, Tyrosine chemistry, Adaptor Proteins, Signal Transducing chemistry, Adaptor Proteins, Signal Transducing genetics, Intrinsically Disordered Proteins chemistry, Protein Tyrosine Phosphatase, Non-Receptor Type 11 chemistry
- Abstract
Intrinsically disordered proteins (IDPs) are an important class of proteins which lack tertiary structure elements. Their dynamic properties can depend on reversible post-translational modifications and the complex cellular milieu, which provides a crowded environment. Both influences the thermodynamic stability and folding of globular proteins as well as the conformational plasticity of IDPs. Here we investigate the intrinsically disordered C-terminal region (amino acids 613-694) of human Grb2-associated binding protein 1 (Gab1), which binds to the disease-relevant Src homolog region 2 (SH2) domain-containing protein tyrosine phosphatase SHP2 (PTPN11). This binding is mediated by phosphorylation at Tyr 627 and Tyr 659 in Gab1. We characterize induced structure in Gab1
613-694 and binding to SHP2 by NMR, CD and ITC under non-crowding and crowding conditions, employing chemical and biological crowding agents and compare the results of the non-phosphorylated and tyrosine phosphorylated C-terminal Gab1 fragment. Our results show that under crowding conditions pre-structured motifs in two distinct regions of Gab1 are formed whereas phosphorylation has no impact on the dynamics and IDP character. These structured regions are identical to the binding regions towards SHP2. Therefore, biological crowders could induce some SHP2 binding capacity. Our results therefore indicate that high concentrations of macromolecules stabilize the preformed or excited binding state in the C-terminal Gab1 region and foster the binding to the SH2 tandem motif of SHP2, even in the absence of tyrosine phosphorylation., Competing Interests: Declaration of interests The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2021. Published by Elsevier Ltd.)- Published
- 2022
- Full Text
- View/download PDF
5. A glutaminyl cyclase-catalyzed α-synuclein modification identified in human synucleinopathies.
- Author
-
Hartlage-Rübsamen M, Bluhm A, Moceri S, Machner L, Köppen J, Schenk M, Hilbrich I, Holzer M, Weidenfeller M, Richter F, Coras R, Serrano GE, Beach TG, Schilling S, von Hörsten S, Xiang W, Schulze A, and Roßner S
- Subjects
- Animals, Brain pathology, Cell Survival, Chromatography, Gel, Dopaminergic Neurons metabolism, Glutamine metabolism, Humans, Kinetics, Lewy Body Disease genetics, Lewy Body Disease metabolism, Mice, Mice, Transgenic, Parkinson Disease genetics, Parkinson Disease metabolism, Protein Processing, Post-Translational, Sambucus nigra cytology, Sambucus nigra metabolism, Aminoacyltransferases metabolism, Synucleinopathies genetics, alpha-Synuclein metabolism
- Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that is neuropathologically characterized by degeneration of dopaminergic neurons of the substantia nigra (SN) and formation of Lewy bodies and Lewy neurites composed of aggregated α-synuclein. Proteolysis of α-synuclein by matrix metalloproteinases was shown to facilitate its aggregation and to affect cell viability. One of the proteolysed fragments, Gln79-α-synuclein, possesses a glutamine residue at its N-terminus. We argue that glutaminyl cyclase (QC) may catalyze the pyroglutamate (pGlu)79-α-synuclein formation and, thereby, contribute to enhanced aggregation and compromised degradation of α-synuclein in human synucleinopathies. Here, the kinetic characteristics of Gln79-α-synuclein conversion into the pGlu-form by QC are shown using enzymatic assays and mass spectrometry. Thioflavin T assays and electron microscopy demonstrated a decreased potential of pGlu79-α-synuclein to form fibrils. However, size exclusion chromatography and cell viability assays revealed an increased propensity of pGlu79-α-synuclein to form oligomeric aggregates with high neurotoxicity. In brains of wild-type mice, QC and α-synuclein were co-expressed by dopaminergic SN neurons. Using a specific antibody against the pGlu-modified neo-epitope of α-synuclein, pGlu79-α-synuclein aggregates were detected in association with QC in brains of two transgenic mouse lines with human α-synuclein overexpression. In human brain samples of PD and dementia with Lewy body subjects, pGlu79-α-synuclein was shown to be present in SN neurons, in a number of Lewy bodies and in dystrophic neurites. Importantly, there was a spatial co-occurrence of pGlu79-α-synuclein with the enzyme QC in the human SN complex and a defined association of QC with neuropathological structures. We conclude that QC catalyzes the formation of oligomer-prone pGlu79-α-synuclein in human synucleinopathies, which may-in analogy to pGlu-Aβ peptides in Alzheimer's disease-act as a seed for pathogenic protein aggregation., (© 2021. The Author(s).)
- Published
- 2021
- Full Text
- View/download PDF
6. Amyloid-Beta Peptides Trigger Aggregation of Alpha-Synuclein In Vitro.
- Author
-
Köppen J, Schulze A, Machner L, Wermann M, Eichentopf R, Guthardt M, Hähnel A, Klehm J, Kriegeskorte MC, Hartlage-Rübsamen M, Morawski M, von Hörsten S, Demuth HU, Roßner S, and Schilling S
- Subjects
- Alzheimer Disease, Amyloid chemistry, Amyloid ultrastructure, Amyloid beta-Peptides metabolism, Amyloid beta-Peptides pharmacology, Animals, Cell Survival, Fluorescent Antibody Technique, Kinetics, Lewy Bodies, Mice, Neurons metabolism, Neurons pathology, Protein Aggregation, Pathological, Recombinant Proteins chemistry, Recombinant Proteins metabolism, alpha-Synuclein metabolism, Amyloid beta-Peptides chemistry, Protein Aggregates, alpha-Synuclein chemistry
- Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD), including dementia with Lewy bodies (DLB), account for the majority of dementia cases worldwide. Interestingly, a significant number of patients have clinical and neuropathological features of both AD and PD, i.e., the presence of amyloid deposits and Lewy bodies in the neocortex. The identification of α-synuclein peptides in amyloid plaques in DLB brain led to the hypothesis that both peptides mutually interact with each other to facilitate neurodegeneration. In this article, we report the influence of Aβ(1-42) and pGlu-Aβ(3-42) on the aggregation of α-synuclein in vitro. The aggregation of human recombinant α-synuclein was investigated using thioflavin-T fluorescence assay. Fibrils were investigated by means of antibody conjugated immunogold followed by transmission electron microscopy (TEM). Our data demonstrate a significantly increased aggregation propensity of α-synuclein in the presence of minor concentrations of Aβ(1-42) and pGlu-Aβ(3-42) for the first time, but without effect on toxicity on mouse primary neurons. The analysis of the composition of the fibrils by TEM combined with immunogold labeling of the peptides revealed an interaction of α-synuclein and Aβ in vitro, leading to an accelerated fibril formation. The analysis of kinetic data suggests that significantly enhanced nucleus formation accounts for this effect. Additionally, co-occurrence of α-synuclein and Aβ and pGlu-Aβ, respectively, under pathological conditions was confirmed in vivo by double immunofluorescent labelings in brains of aged transgenic mice with amyloid pathology. These observations imply a cross-talk of the amyloid peptides α-synuclein and Aβ species in neurodegeneration. Such effects might be responsible for the co-occurrence of Lewy bodies and plaques in many dementia cases.
- Published
- 2020
- Full Text
- View/download PDF
7. Endogenous mouse huntingtin is highly abundant in cranial nerve nuclei, co-aggregates to Abeta plaques and is induced in reactive astrocytes in a transgenic mouse model of Alzheimer's disease.
- Author
-
Hartlage-Rübsamen M, Ratz V, Zeitschel U, Finzel L, Machner L, Köppen J, Schulze A, Demuth HU, von Hörsten S, Höfling C, and Roßner S
- Subjects
- Animals, Brain metabolism, Cricetinae, Disease Models, Animal, Mice, Inbred BALB C, Mice, Inbred C57BL, Neurons metabolism, Protein Aggregation, Pathological, Rats, Wistar, Alzheimer Disease metabolism, Amyloid beta-Peptides metabolism, Astrocytes metabolism, Cranial Nerves metabolism, Huntingtin Protein metabolism, Plaque, Amyloid metabolism
- Abstract
Pathogenic variants of the huntingtin (HTT) protein and their aggregation have been investigated in great detail in brains of Huntington's disease patients and HTT-transgenic animals. However, little is known about the physiological brain region- and cell type-specific HTT expression pattern in wild type mice and a potential recruitment of endogenous HTT to other pathogenic protein aggregates such as amyloid plaques in cross seeding events. Employing a monoclonal anti-HTT antibody directed against the HTT mid-region and using brain tissue of three different mouse strains, we detected prominent immunoreactivity in a number of brain areas, particularly in cholinergic cranial nerve nuclei, while ubiquitous neuronal staining appeared faint. The region-specific distribution of endogenous HTT was found to be comparable in wild type rat and hamster brain. In human amyloid precursor protein transgenic Tg2576 mice with amyloid plaque pathology, similar neuronal HTT expression patterns and a distinct association of HTT with Abeta plaques were revealed by immunohistochemical double labelling. Additionally, the localization of HTT in reactive astrocytes was demonstrated for the first time in a transgenic Alzheimer's disease animal model. Both, plaque association of HTT and occurrence in astrocytes appeared to be age-dependent. Astrocytic HTT gene and protein expression was confirmed in primary cultures by RT-qPCR and by immunocytochemistry. We provide the first detailed analysis of physiological HTT expression in rodent brain and, under pathological conditions, demonstrate HTT aggregation in proximity to Abeta plaques and Abeta-induced astrocytic expression of endogenous HTT in Tg2576 mice.
- Published
- 2019
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.