1. Nonlinear Schr\'odinger Network
- Author
-
Zhou, Yiming, MacPhee, Callen, Zhou, Tingyi, and Jalali, Bahram
- Subjects
Computer Science - Machine Learning - Abstract
Deep neural networks (DNNs) have achieved exceptional performance across various fields by learning complex nonlinear mappings from large-scale datasets. However, they encounter challenges such as high computational costs and limited interpretability. To address these issues, hybrid approaches that integrate physics with AI are gaining interest. This paper introduces a novel physics-based AI model called the "Nonlinear Schr\"odinger Network", which treats the Nonlinear Schr\"odinger Equation (NLSE) as a general-purpose trainable model for learning complex patterns including nonlinear mappings and memory effects from data. Existing physics-informed machine learning methods use neural networks to approximate the solutions of partial differential equations (PDEs). In contrast, our approach directly treats the PDE as a trainable model to obtain general nonlinear mappings that would otherwise require neural networks. As a type of physics-AI symbiosis, it offers a more interpretable and parameter-efficient alternative to traditional black-box neural networks, achieving comparable or better accuracy in some time series classification tasks while significantly reducing the number of required parameters. Notably, the trained Nonlinear Schr\"odinger Network is interpretable, with all parameters having physical meanings as properties of a virtual physical system that transforms the data to a more separable space. This interpretability allows for insight into the underlying dynamics of the data transformation process. Applications to time series forecasting have also been explored. While our current implementation utilizes the NLSE, the proposed method of using physics equations as trainable models to learn nonlinear mappings from data is not limited to the NLSE and may be extended to other master equations of physics.
- Published
- 2024