1. Unique continuation principles for finite-element discretizations of the Laplacian
- Author
-
Cox, Graham, MacLachlan, Scott, and Steeves, Luke
- Subjects
Mathematics - Numerical Analysis ,Mathematics - Analysis of PDEs ,Mathematics - Spectral Theory - Abstract
Unique continuation principles are fundamental properties of elliptic partial differential equations, giving conditions that guarantee that the solution to an elliptic equation must be uniformly zero. Since finite-element discretizations are a natural tool to help gain understanding into elliptic equations, it is natural to ask if such principles also hold at the discrete level. In this work, we prove a version of the unique continuation principle for piecewise-linear and -bilinear finite-element discretizations of the Laplacian eigenvalue problem on polygonal domains in $\mathbb{R}^2$. Namely, we show that any solution to the discretized equation $-\Delta u = \lambda u$ with vanishing Dirichlet and Neumann traces must be identically zero under certain geometric and topological assumptions on the resulting triangulation. We also provide a counterexample, showing that a nonzero \emph{inner solution} exists when the topological assumptions are not satisfied. Finally, we give an application to an eigenvalue interlacing problem, where the space of inner solutions makes an explicit appearance.
- Published
- 2024